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The need for deeper semantic processing of human language by our natural language

processing systems is evidenced by their still-unreliable performance on inferencing

tasks, even using deep learning techniques. These tasks require the detection of

subtle interactions between participants in events, of sequencing of subevents that are

often not explicitly mentioned, and of changes to various participants across an event.

Human beings can perform this detection even when sparse lexical items are involved,

suggesting that linguistic insights into these abilities could improve NLP performance.

In this article, we describe new, hand-crafted semantic representations for the lexical

resource VerbNet that draw heavily on the linguistic theories about subevent semantics

in the Generative Lexicon (GL). VerbNet defines classes of verbs based on both

their semantic and syntactic similarities, paying particular attention to shared diathesis

alternations. For each class of verbs, VerbNet provides common semantic roles and

typical syntactic patterns. For each syntactic pattern in a class, VerbNet defines a

detailed semantic representation that traces the event participants from their initial states,

through any changes and into their resulting states. The Generative Lexicon guided

the structure of these representations. In GL, event structure has been integrated with

dynamic semantic models in order to represent the attribute modified in the course of the

event (the location of the moving entity, the extent of a created or destroyed entity, etc.) as

a sequence of states related to time points or intervals. We applied that model to VerbNet

semantic representations, using a class’s semantic roles and a set of predicates defined

across classes as components in each subevent. We will describe in detail the structure

of these representations, the underlying theory that guides them, and the definition and

use of the predicates. We will also evaluate the effectiveness of this resource for NLP by

reviewing efforts to use the semantic representations in NLP tasks.

Keywords: semantics, natural language processing, lexical resource, semantic representation, lexicon, VerbNet,

NLP

1. INTRODUCTION

The long-awaited time when we can communicate with computers naturally-that is, with subtle,
creative human language-has not yet arrived. We’ve come far from the days when computers could
only deal with human language in simple, highly constrained situations, such as leading a speaker
through a phone tree or finding documents based on key words. We have bots that can write simple
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sports articles (Puduppully et al., 2019) and programs that will
syntactically parse a sentence with very high accuracy (He and
Choi, 2020). But question-answering systems still get poor results
for questions that require drawing inferences from documents or
interpreting figurative language. Just identifying the successive
locations of an entity throughout an event described in a
document is a difficult computational task.

Early rule-based systems that depended on linguistic
knowledge showed promise in highly constrained domains and
tasks. However, they could not scale to more general situations.
Machine learning side-stepped the rules and made great progress
on foundational NLP tasks such as syntactic parsing. When
they hit a plateau, more linguistically oriented features were
brought in to boost performance. Additional processing such
as entity type recognition and semantic role labeling, based
on linguistic theories, help considerably, but they require
extensive and expensive annotation efforts. Deep learning left
those linguistic features behind and has improved language
processing and generation to a great extent. However, it falls
short for phenomena involving lower frequency vocabulary
or less common language constructions, as well as in domains
without vast amounts of data. In terms of real language
understanding, many have begun to question these systems’
abilities to actually interpret meaning from language (Bender
and Koller, 2020; Emerson, 2020b). Several studies have shown
that neural networks with high performance on natural language
inferencing tasks are actually exploiting spurious regularities in
the data they are trained on rather than exhibiting understanding
of the text. Once the data sets are corrected/expanded to include
more representative language patterns, performance by these
systems plummets (Glockner et al., 2018; Gururangan et al.,
2018; McCoy et al., 2019).

There is a growing realization among NLP experts that
observations of form alone, without grounding in the referents
it represents, can never lead to true extraction of meaning-by
humans or computers (Bender and Koller, 2020). One possible
solution is to train systems on both language data and perceptual
data (e.g., image data) (Bruni et al., 2014; Bulat et al., 2016), or by
bringing in the attention-focusing means humans use to connect
language to referents, such as gaze and gesture (Pustejovsky and
Krishnaswamy, 2021). Another proposed solution-and one we
hope to contribute to with our work-is to integrate logic or even
explicit logical representations into distributional semantics and
deep learning methods. Emerson has pursued learning logical
representations instead of vectors (Emerson, 2020a), and has
said, “I believe that the right approach is to learn a logically
interpretable model, either by defining a vector space with logical
structure or by directly using logical representations” (Emerson,
2020b, p. 7443).

With the goal of supplying a domain-independent, wide-
coverage repository of logical representations, we have
extensively revised the semantic representations in the lexical
resource VerbNet (Dang et al., 1998; Kipper et al., 2000, 2006,
2008; Schuler, 2005). With its syntactically and semantically
cohesive classes of verbs, VerbNet has long been used in NLP
to improve such tasks as semantic role labeling, verb sense
disambiguation and ontology mapping (Shi and Mihalcea, 2005;

Giuglea and Moschitti, 2006; Loper et al., 2007; Brown et al.,
2014; Indig et al., 2016).

Often compared to the lexical resources FrameNet and
PropBank, which also provide semantic roles, VerbNet actually
differs from these in several key ways, not least of which is its
semantic representations. Both FrameNet and VerbNet group
verbs semantically, although VerbNet takes into consideration
the syntactic regularities of the verbs as well. Both resources
define semantic roles for these verb groupings, with VerbNet
roles being fewer, more coarse-grained, and restricted to central
participants in the events. What we are most concerned with
here is the representation of a class’s (or frame’s) semantics. In
FrameNet, this is done with a prose description naming the
semantic roles and their contribution to the frame. For example,
the Ingestion frame is defined with “An Ingestor consumes food
or drink (Ingestibles), which entails putting the Ingestibles in the
mouth for delivery to the digestive system. This may include the
use of an Instrument.” VerbNet, however, uses first order logic
representations with defined predicates to show the relationships
between roles and to track any changes to the participants across
the timeline of the event, with variations for each syntactic
pattern included in the class.

VerbNet is also somewhat similar to PropBank and Abstract
Meaning Representations (AMRs). PropBank defines semantic
roles for individual verbs and eventive nouns, and these are used
as a base for AMRs, which are semantic graphs for individual
sentences. These representations show the relationships between
arguments in a sentence, including peripheral roles like Time and
Location, but do not make explicit any sequence of subevents
or changes in participants across the timespan of the event.
VerbNet’s explicit subevent sequences allow the extraction of
preconditions and postconditions for many of the verbs in the
resource and the tracking of any changes to participants. In
addition, VerbNet allow users to abstract away from individual
verbs to more general categories of eventualities. We believe
VerbNet is unique in its integration of semantic roles, syntactic
patterns, and first-order-logic representations for wide-coverage
classes of verbs.

VerbNet’s semantic representations, however, have suffered
from several deficiencies that have made them difficult to
use in NLP applications. To unlock the potential in these
representations, we have made them more expressive and more
consistent across classes of verbs. We have grounded them in the
linguistic theory of the Generative Lexicon (GL) (Pustejovsky,
1995, 2013; Pustejovsky and Moszkowicz, 2011), which provides
a coherent structure for expressing the temporal and causal
sequencing of subevents. Explicit pre- and post-conditions,
aspectual information, and well-defined predicates all enable the
tracking of an entity’s state across a complex event.

In the rest of this article, we review the relevant background
on Generative Lexicon (GL) and VerbNet, and explain our
method for using GL’s theory of subevent structure to improve
VerbNet’s semantic representations. We show examples of the
resulting representations and explain the expressiveness of their
components. Finally, we describe some recent studies that made
use of the new representations to accomplish tasks in the area of
computational semantics.
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2. MOTIVATION AND METHOD

2.1. Classic VerbNet
VerbNet is a lexicon of around 5,200 English verbs, organized
primarily around Levin (1993)’s verb classification. Classes
in VerbNet are structured according to the verbs’ syntactic
behaviors, describing the diathesis alternations compatible with
each verb (Bonial et al., 2011). Each VerbNet class contains
semantic representations expressed as conjunctions of primitive
predicates, such as motion or cause. Event participants that
have syntactic relevance are identified with various stages of
the event evoked by the syntactic frame. The original semantic
representations, what we are here calling “Classic VerbNet,” were
intended to provide atomic event representations associated with
groups of semantically similar language predicates (i.e., English
verbs). There are, however, several ways in which the Classic
VerbNet semantics were unsatisfactory: (i) the representation
was not first-order; (ii) there were no explicitly identified (reified)
subevents that could be referenced in discourse models or
planning algorithms; and (iii) there was no mention of the actual
predicative change, i.e., the opposition structure that is implicated
in a change-of-state event, such as close or break.

Consider the first issue. Classic VerbNet represented each
event with a single event variable E, and predicates were
temporally positioned relative to one another within the larger
event through the inclusion of a second-order predicate, namely,
start, during, or end. For example, the semantics for one
intransitive frame in class Run-51.3.2 is shown in (1)1.

(1) Classic Verbnet representation

Billy ran into a cafe.

path_rel(start(E), Theme, ?Initial_location, ch_of_loc, prep)

motion(during(E), Theme)

path_rel(during(E), Theme, ?Trajectory, ch_of_loc, prep)

path_rel(end(E), Theme, Destination, ch_of_loc, prep)

Since there was only a single event variable, any ordering or
subinterval information needed to be performed as second-order
operations. For example, temporal sequencing was indicated with
the second-order predicates, start, during, and end, which were
included as arguments of the appropriate first-order predicates.

However, as Zaenen et al. (2008) point out, the representation
in (1) is still unable to support many temporal and spatial
inferencing tasks, since the temporal ordering annotation
was also not complete or consistent throughout the VerbNet
database; for example, for several motion classes, end(E) was
given but not start(E), and some classes involving change of
location of participants (e.g., gather, mix) did not include a
motion predicate at all. In order to accommodate such inferences,
the event itself needs to have substructure, a topic we now turn to
in the next section.

2.2. Generative Lexicon Event Structure
Many of the issues described in Section 2.1 can be resolved by
adopting a linguistically motivated subevent representation for

1In VerbNet semantic representations-both old and new-any thematic role that

appears in other representations of the class but that is not instantiated in the

current syntactic frame is prefixed with a questionmark (see ?Initial_location in 1).

verb predication, such as that developed in Generative Lexicon
Theory, where different Aktionsarten are distinguished in terms
of their inherent subeventual structure (Pustejovsky, 1995).
On this view, Vendler’s “Aktionsarten” classes are associated
with distinct event structures and their semantic interpretations
(Vendler, 1967): state (b); process (c); achievement (d); and
accomplishment (e). Subevents within an event are ordered
by interval temporal relations (Allen, 1984), including: strict
sequence, <◦ (Allen’s “meet” relation); and strict overlap, ◦
(Allen’s “identity” relation).

(2) a. EVENT → STATE | PROCESS | TRANSITION

b. STATE:→ e
love, know

c. PROCESS:→ e1 . . . en
run, push

d. TRANSITIONach:→ STATE STATE

open, die
e. TRANSITIONacc:→ PROCESS STATE

give, build

In Im and Pustejovsky (2009); Im (2014), the basic logic of
GL’s event schema was applied to some VerbNet classes, to
enrich the event representation for inference. The VerbNet
classes were associated with event frames within an Event
Structure Lexicon (ESL) (Im and Pustejovsky, 2010), encoding
the subevent structure of the predicate. Consider the verb classes
change_of_location and change_of_possession. For instance, the
verb drive as a change_of_location verb generates the closed
domain ESL entry shown below.

(3) drive in John drove to Boston

se1: pre-state: not_be_in (x,y)

se2: process: driving (x)

se3: post-state: be_in (x,y)

The goal of this subevent-based VerbNet representation was
to facilitate inference and textual entailment tasks. Similarly,
Table 1 shows the ESL of the verb arrive, compared with the
semantic frame of the verb in classic VerbNet.

The above discussion has focused on the identification and
encoding of subevent structure for predicative expressions in
language. However, in subsequent work within GL (Pustejovsky
and Moszkowicz, 2011; Mani and Pustejovsky, 2012), event
structure has been enriched to not only encode but dynamically
track those object attributes modified in the course of the
event (the location of the moving entity, the extent of a
created or destroyed entity, etc.) The resulting event structure
representation is called a Dynamic Event Structure (Pustejovsky,
2013). Starting with the view that subevents of a complex event
can be modeled as a sequence of states (containing formulae), a
dynamic event structure explicitly labels the transitions thatmove
an event from state to state (i.e., programs).

A dynamic approach to modeling updates makes a distinction
between formulae, φ, and programs, π (Harel et al., 2000). A
formula is interpreted as a classical propositional expression,
with assignment of a truth value in a specific state in the
model: e.g., “The glass is broken” is interpreted as a proposition,
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TABLE 1 | arrive in ESL vs. VerbNet.

ESL VerbNet

VERB ARRIVE VERB ARRIVE

CLASS change_of_location CLASS escape-51.1-2

SUB_CLASS to_goal

EVENT_TYPE transition

SUBEVENT se1: pre-state: not_be_in (x,y) SEMANTICS

se2: process: arriving(x,y) motion(during(E))

se3: post-state: be_in (x,y) location(end(E),

theme, oblique)

TEMP_ORDER se2 ENDS se1

se3 MEETS se2

SENTENCE John arrived in Boston. EXAMPLE He arrived in U.S.

broken(g), that is true in a state, s, in the model. For our
purposes, a state is a set of propositions with assignments
to individual variables at a specific frame. We can think of
atomic programs as input/output relations, i.e., relations from
states to states, and hence interpreted over an input/output
state-state pairing: e.g., “The glass broke” is interpreted as a
program, α : s1 → s2, where at state s1, the proposition,
¬broken(x), is true, and at s2, the proposition, broken(x)
is true. The model encodes three kinds of representations:
(i) predicative content of a frame; (ii) programs that move
from frame to frame; and tests that must be satisfied for
a program to apply. These include: pre-tests, while-tests,
and result-tests.

2.3. GL-VerbNet
A further step toward a proper subeventual meaning
representation is proposed in Brown et al. (2018, 2019),
where it is argued that, in order to adequately model change,
the VerbNet representation must track the change in the
assignment of values to attributes as the event unfolds. This
includes making explicit any predicative opposition denoted
by the verb. For example, simple transitions (achievements)
encode either an intrinsic predicate opposition (die encodes
going from ¬dead(e1, x) to dead(e2, x)), or a specified relational
opposition (arrive encodes going from ¬loc_at(e1, x, y) to
loc_at(e2, x, y)). Creation predicates and accomplishments
generally also encode predicate oppositions. As we will describe
briefly, GL’s event structure and its temporal sequencing of
subevents solves this problem transparently, while maintaining
consistency with the idea that the sentence describes a single
matrix event, E.

With the introduction of GL’s event structure, the biggest
change to VerbNet is the move from a tripartite division of
the temporal span of any event [i.e., the division into start(E),
during(E), and end(E)] to a model with explicitly quantified
(and indexed) subevents, which can be increased or decreased to
accommodate the complexity of the event and are ordered using
Allen’s relational calculus (Allen, 1983). This also eliminates
the need for the second-order logic of start(E), during(E),

and end(E), allowing for more nuanced temporal relationships
between subevents. The default assumption in this new schema
is that e1 precedes e2, which precedes e3, and so on. When
appropriate, however, more specific predicates can be used to
specify other relationships, such asmeets(e2, e3) to show that the
end of e2 meets the beginning of e3, or co-temporal(e2, e3) to
show that e2 and e3 occur simultaneously. The latter can be seen
in Section 3.1.4 with the example of accompanied motion.

The second significant change is how causation is represented.
In Classic VerbNet, the semantic form implied that the entire
atomic event is caused by an Agent, i.e., cause(Agent, E), as
seen in 4.

(4) Classic Verbnet representation

The lion tamer jumped the lions through the hoop.

motion(during(E), Theme)

path_rel(start(E), Theme, ?Initial_location, ch_of_loc, prep)

path_rel(during(E), Theme, Trajectory, ch_of_loc, prep)

path_rel(end(E), Theme, ?Destination, ch_of_loc, prep)

cause(Agent, E)

In contrast, in revised GL-VerbNet, “events cause events.” Thus,
something an agent does [e.g., do(e2, Agent)] causes a state
change or another event [e.g.,motion(e3, Theme)], which would
be indicated with cause(e2, e3). This is seen in (5) below, where ëi
denotes a process event variable.

(5) GL-Verbnet representation

The lion tamer jumped the lions through the hoop.

Agent V Theme {PREP} Destination

has_location(e1, Theme, ?Initial_Location)

do(e2, Agent)

motion(ë3, Theme, Trajectory)

¬has_location(e4, Theme, ?Initial_location)

has_location(e4, Theme, ?Destination)

cause(e2, e3)

As with Classic VerbNet, each GL-VerbNet class is still defined
by a set of members, thematic roles for the predicate-argument
structure of these members, selectional restrictions on the
arguments, and frames consisting of a syntactic description
and a corresponding semantic representation. The semantic
representations in each GL-VerbNet class are also still compatible
with the member verbs and the syntactic frames of the class.
This pairing of each syntactic frame in a class with a semantic
representation is a unique feature of VerbNet that emphasizes
the close interplay of syntax and semantics. The semantic
information is still expressed as a conjunction of semantic
predicates, such as has_state, emit, or cause, and an event
variable, either E or e (see Section 3.2.3 for an explanation of the
event variable types). This conjunction of predicates more closely
tracks the participants through the various stages of the event
evoked by the syntactic frame. For example, an intransitive frame
in the class Run-51.3.2 is shown in 6, with the final 4 lines making
up the semantic representation, as a conjunction of predicates.

(6) GL-Verbnet representation

The horse ran into the barn.

NP V PP

Theme V Destination
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has_location(e1, Theme, ?Initial_Location)

motion(ë3, Theme, ?Trajectory)

¬has_location(e2, Theme, ?Initial_Location)

has_location(e4, Theme, Destination)

The arguments of each predicate are represented using the
thematic roles for the class. These roles provide the link between
the syntax and the semantic representation. Each participant
mentioned in the syntax, as well as necessary but unmentioned
participants, are accounted for in the semantics. For example, the
second component of the first has_location semantic predicate
above includes an unidentified Initial_Location. That role is
expressed overtly in other syntactic alternations in the class
(e.g., The horse ran from the barn), but in this frame its
absence is indicated with a question mark in front of the role.
Temporal sequencing is indicated with subevent numbering on
the event variable e.

A class’s semantic representations capture generalizations
about the semantic behavior of the member verbs as a group.
For some classes, such as the Put-9.1 class, the verbs are
semantically quite coherent (e.g., put, place, situate) and the
semantic representation is correspondingly precise 7.

(7) GL-Verbnet representation

I put the book on the table.

NP V NP PP

Agent V Theme {PREP} Destination

has_location(e1, Theme, ?Initial_Location)

do(e2, Agent)

motion(ë3, Theme, ?Trajectory)

¬has_location(e4, Theme, ?Initial_location)

has_location(e4, Theme, Destination)

cause(e2, e3)

Other classes, such as Other Change of State-45.4, contain widely
diverse member verbs (e.g., dry, gentrify, renew, whiten). The
representation must be very general to apply to all the verbs. The
following representation captures the change of the Patient from
its initial state to its final state but ignores the specific type of state
change in the example sentence (i.e., from frozen to thawed) in
order to be general enough for any verb in the class when used in
a basic transitive sentence.

(8) GL-Verbnet representation

Nicholas thawed the meat.

NP V NP

Agent V Patient

¬has_state(e1, Patient, V_Final_State)

do(e2, Agent)

has_state(e3, Patient, V_Final_State)

cause(e2, e3)

Classic VerbNet semantic representations were similar to the
new ones in several ways: a class’s thematic roles were used
as arguments to the semantic predicates, and subevents were
situated in a temporal ordering. However, as described in
Section 2.1, the representation only allowed for three temporal
phases: Start, During, and End, which limited the granularity
of the subevents and their sequencing. No predicates existed
to show causal relationships between the subevents, and
semantically necessary roles that were never explicit in the

syntax of a class could not be referred to. For example, in the
Instrument_Communication-37.4.1 class, no mention could be
made of the instrument that was incorporated in every verb in
the class (e.g., phone, cable, radio).

(9) Classic Verbnet representation

Heather emailed the news to Sarah.

Agent V Topic Recipient

transfer_info (during(E), Agent, Recipient, Topic)

cause(Agent, E)

To achieve the expressiveness we wanted in the revised semantic
representations, we identified several desiderata:

• Participants clearly tracked across an event for changes in
location, existence or other states.

• Flexibility in the number of subevents.
• Subevents related within a representation for causality,

temporal sequence and, where appropriate, aspect.
• Predicates consistently used across classes and hierarchically

related for flexible granularity.
• Verb-specific features incorporated in the semantic

representations where possible.
• Roles to refer to semantically relevant but syntactically

absent participants.

Incorporating all these changes consistently across 5,300
verbs posed an enormous challenge, requiring a thoughtful
methodology, as discussed in the following section.

2.4. Method
VerbNet currently has 329 different classes of verbs and over
1,600 semantic representations. A major revision of these
required several stages of development. To begin, we identified
consistencies in the types of events across VerbNet classes and
then grouped all classes by a short list of basic event types:

• Change of location.
• Change of state.
• Change of possession.
• Transfer of information.
• States.
• Processes.
• Other.

By far the most common event types were the first four,
all of which involved some sort of change to one or more
participants in the event. We developed a basic first-order-logic
representation that was consistent with the GL theory of subevent
structure and that could be adapted for the various types of
change events. We preserved existing semantic predicates where
possible, but more fully defined them and their arguments and
applied them consistently across classes. In this first stage, we
decided on our system of subevent sequencing and developed
new predicates to relate them. We also defined our event
variable e and the variations that expressed aspect and temporal
sequencing. At this point, we only worked with the most
prototypical examples of changes of location, state and possession

Frontiers in Artificial Intelligence | www.frontiersin.org 5 April 2022 | Volume 5 | Article 821697

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Brown et al. Semantic Representations for NLP

and that involved a minimum of participants, usually Agents,
Patients, and Themes.

Once our fundamental structure was established, we adapted
these basic representations to events that included more event
participants, such as Instruments and Beneficiaries. We applied
them to all frames in the Change of Location, Change of
State, Change of Possession, and Transfer of Information
classes, a process that required iterative refinements to our
representations as we encountered more complex events and
unexpected variations.

The next stage involved developing representations for classes
that primarily dealt with states and processes. Because our
representations for change events necessarily included state
subevents and often included process subevents, we had already
developed principles for how to represent states and processes.

The final category of classes, “Other,” included a wide
variety of events that had not appeared to fit neatly into our
categories, such as perception events, certain complex social
interactions, and explicit expressions of aspect. However, we did
find commonalities in smaller groups of these classes and could
develop representations consistent with the structure we had
established.Many of these classes had used unique predicates that
applied to only one class. We attempted to replace these with
combinations of predicates we had developed for other classes or
to reuse these predicates in related classes we found.

3. RESULTS

In revising these semantic representations, we made changes that
touched on every part of VerbNet. Within the representations,
we adjusted the subevent structures, number of predicates within
a frame, and structuring and identity of predicates. Changes
to the semantic representations also cascaded upwards, leading
to adjustments in the subclass structuring and the selection of
primary thematic roles within a class. In this section we will go
through the details of these changes. To give an idea of the scope,
as compared to VerbNet version 3.3.2, only seven out of 329—just
2%—of the classes have been left unchanged. We have added 3
new classes and subsumed two others into existing classes.Within
existing classes, we have added 25 new subclasses and removed
or reorganized 20 others. 88 classes have had their primary class
roles adjusted, and 303 classes have undergone changes to their
subevent structure or predicates. Our predicate inventory now
includes 162 predicates, having removed 38, added 47 more, and
made minor name adjustments to 21. All of the rest have been
streamlined for definition and argument structure.

3.1. Application of GL to VerbNet
Representations
Using the Generative Lexicon subevent structure to revise the
existing VerbNet semantic representations resulted in several
new standards in the representations’ form. As discussed in
Section 2.2, applying the GL Dynamic Event Model to VerbNet
temporal sequencing allowed us refine the event sequences
by expanding the previous three-way division of start(E),
during(E), and end(E) into a greater number of subevents if

needed. These numbered subevents allow very precise tracking
of participants across time and a nuanced representation of
causation and action sequencing within a single event. In the
general case, e1 occurs before e2, which occurs before e3, and so
on. We’ve further expanded the expressiveness of the temporal
structure by introducing predicates that indicate temporal and
causal relations between the subevents, such as cause(ei, ej)
and co-temporal(ei, ej).

Second, we followed GL’s principle of using states, processes
and transitions, in various combinations, to represent different
Aktionsarten. We use E to represent states that hold throughout
an event and ën to represent processes. Transitions are en,
as are states that hold for only part of a complex event.
These can usually be distinguished by the type of predicate-
either a predicate that brings about change, such as transfer,
or a state predicate like has_location. Our representations of
accomplishments and achievements use these components to
follow changes to the attributes of participants across discrete
phases of the event.

Finally, the Dynamic Event Model’s emphasis on the
opposition inherent in events of change inspired our choice
to include pre- and post-conditions of a change in all of
the representations of events involving change. Previously in
VerbNet, an event like “eat” would often begin the representation
at the during(E) phase. This type of structure made it
impossible to be explicit about the opposition between an
entity’s initial state and its final state. It also made the job
of tracking participants across subevents much more difficult
for NLP applications. Understanding that the statement ’John
dried the clothes’ entailed that the clothes began in a wet
state would require that systems infer the initial state of
the clothes from our representation. By including that initial
state in the representation explicitly, we eliminate the need
for real-world knowledge or inference, an NLU task that is
notoriously difficult.

One way we captured this opposition was by adding
this type of initial state predicate in those representations
of change that did not already have one. We also greatly
expanded the use of negated predicates to make explicit
the opposition: e.g., John died is analyzed as the opposition
〈alive,(e1,Patient), ¬alive,(e2,Patient)〉. In (10), we use the
opposition between has_location and ¬has_location to make
clear that once the Theme is in motion (in e2), it is no longer at
the Initial_location.

(10) GL-Verbnet representation

The rabbit hopped across the lawn.

Theme V Trajectory

has_location(e1, Theme, ?Initial_Location)

motion(ë2, Theme, Trajectory)

¬has_location(e2, Theme, ?Initial_location)

has_location(e3, Theme, ?Destination)

Although people infer that an entity is no longer at its initial
location once motion has begun, computers need explicit
mention of this fact to accurately track the location of the
entity (see Section 3.1.3 for more examples of opposition and
participant tracking in events of change).
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3.1.1. States
Like the classic VerbNet representations, we use E to indicate a
state that holds throughout an event. For this reason, many of
the representations for state verbs needed no revision, including
the representation from the Long-32.2 class.

(11) Classic and GL-Verbnet representation

Danny longed for a sunny day.

desire(E, Pivot, Theme)

Sixteen classes, however, used theDuring(E) format to represent
states, such as Exist-47.1, Intend-61.2, and Contain-15.4.
The last, for example, was changed from contain(During(E),
Pivot, Theme) to contain(E, Pivot, Theme). In other cases,
the change was in the opposite direction, from state to
process. The representation in the Exhale-40.1.3 class
included body_process(E, Agent), which has been changed
to body_process(ën, Agent).

3.1.2. Processes
Process subevents were not distinguished from other types of
subevents in previous versions of VerbNet. They often occurred
in the During(E) phase of the representation, but that phase was
not restricted to processes. With the introduction of ë, we can not
only identify simple process frames but also distinguish punctual
transitions from one state to another from transitions across a
longer span of time; that is, we can distinguish accomplishments
from achievements.

Eighteen classes in GL-VerbNet group together simple
process verbs. Examples include Snooze-40.4, with the predicate
sleep(ë, Agent); Simple_dressing-41.3.1-1, with the predicate
wear(ë, Agent); and Work-73.2, with the predicates work(ë,
Agent, Theme) and cooperate(ë, Agent, Co-Agent, Theme). Of
course, adding temporal or locational information to a sentence
expressing a process can transform it into an achievement (e.g.,
“He slept for an hour.” or “He ran home.”) VerbNet only includes
such phrases in its syntactic frames when they are obligatory (e.g.,
“She put the book on the table”) or when they are part of key
syntactic alternations that distinguish a class, such as the dative
alternation in the Give-13.1 class.

Processes are very frequently subevents in more complex
representations in GL-VerbNet, as we shall see in the next
section. For example, representations pertaining to changes of
location usually havemotion(ë, Agent, Trajectory) as a subevent.

3.1.3. Change Events
Many of the changes inspired by the Generative Lexicon’s
Dynamic Event Model come together in the 163 VerbNet classes
that focus on events of change. These range from change
of location classes like Run-51.3.2 (39 classes); to change of
possession classes like Give-13.1 (18 classes); to information
transfer classes like Lecture-37.11 (25 classes); to changes of
state like Become-109.1 (81 classes). We give examples here of
the prototypical form used for these events, along with some
variations. Further examples can be found in Brown et al.
(2018, 2019). Some refinements have since been made to the
representations, so this article should be considered the authority
for any differences that can be found.

The Escape-51.1 class is a typical change of location class,
with member verbs like depart, arrive and flee. The most basic
change of location semantic representation (12) begins with a
state predicate has_location, with a subevent argument e1, a
Theme argument for the object inmotion, and an Initial_location
argument. The motion predicate (subevent argument e2) is
underspecified as to the manner of motion in order to be
applicable to all 40 verbs in the class, although it always indicates
translocative motion. Subevent e2 also includes a negated
has_location predicate to clarify that the Theme’s translocation
away from the Initial Location is underway. A final has_location
predicate indicates the Destination of the Theme at the end of the
event. As mentioned earlier, not all of the thematic roles included
in the representation are necessarily instantiated in the sentence.

(12) GL-Verbnet representation

Natasha came to Colorado.

has_location(e1, Theme, ?Initial_Location)

motion(ë2, Theme, ?Trajectory)

¬has_location(e2, Theme, ?Initial_location)

has_location(e3, Theme, Destination)

This representation follows the GL model by breaking down the
transition into a process and several states that trace the phases of
the event.

Representations for changes of state take a couple of different,
but related, forms. For those state changes that we construe as
punctual or for which the verb does not provide a syntactic slot
for an Agent or Causer, we use a basic opposition between state
predicates, as in the Die-42.4 and Become-109.1 classes. 13 shows
a simple version of this format.

(13) GL-Verbnet representation

The belt came undone.

¬has_state(e1, Theme, Result)

has_state(e2, Theme, Result)

State changes with a notable transition or cause take the
form we used for changes in location, with multiple temporal
phases in the event. The similarity can be seen in 14
from the Tape-22.4 class, as can the predicate we use for
Instrument roles.

(14) GL-Verbnet representation

Linda stitched the front to the back with green thread.

¬attached(e1, Patient, Co-patient)

do(e2, Agent)

utilize(e2, Agent, Instrument)

attached(e3, Patient, Co-patient)

cause(e2, e3)

A final pair of examples of change events illustrates the more
subtle entailments we can specify using the new subevent
numbering and the variations on the event variable. Changes
of possession and transfers of information have very similar
representations, with important differences in which entities have
possession of the object or information, respectively, at the end of
the event. In 15, the opposition between the Agent’s possession in
e1 and non-possession in e3 of the Theme makes clear that once
the Agent transfers the Theme, the Agent no longer possesses
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it. However, in 16, the E variable in the initial has_information

predicate shows that the Agent retains knowledge of the Topic
even after it is transferred to the Recipient in e2.

(15) GL-Verbnet representation

I gave my dog a treat.

has_possession(e1, Agent, Theme)

¬has_possession(e1, Recipient, Theme)

transfer(e2, Agent, Theme, Recipient)

has_possession(e3, Recipient, Theme)

¬has_possession(e3, Agent, Theme)

cause(e2, e3)

(16) GL-Verbnet representation

Carlos told Stella about his vacation.

has_information(E, Agent, Topic)

transfer_info(e1, Agent, Topic, Recipient)

has_information(e2, Recipient, Topic)

cause(e1, e2)

3.1.4. Subevent-Subevent Relations
We have introduced or revised eight predicates that refine the
temporal and causal relations between subevents: start, finish,
meets, overlaps, co-temporal, repeated_sequence, cause, and
in_reaction_to. In the semantic representations, the subevent
sequencing indicated by the numbered subevent variables
is enough to express the time sequence when subevents
follow a simple progression. However, subevents can occur
simultaneously or overlap. Predicates that take two or more
subevent variables as arguments clarify what would otherwise be
misleading subevent numbering. For example, in (17), start(e2,
e3) clarifies the relationship between the party (e3) and the speech
(e2). This predicate has been defined as “One subevent is the
beginning portion of another subevent.”

(17) GL-Verbnet representation

I began the party with a speech.

Agent V Eventuality with Subeventuality

¬occur(e1, Eventuality)

engage_in(e2, Agent, Subeventuality)

occur(ë3, Eventuality)

start(e2, ë3)

3.2. Predicate Structure and Types
Another significant change to the semantic representations
in GL-VerbNet was overhauling the predicates themselves,
including their definitions and argument slots. We added
47 new predicates, two new predicate types, and improved
the distribution and consistency of predicates across classes.
Improving the preexisting predicates involved streamlining their
internal structure, providing each with a clear definition and
clear descriptions of the roles played by each argument slot, and
creating hierarchies through which the predicates are linked to
one another according to shared semantics, aspectual behavior,
and valency patterns. Within the representations, new predicate
types add much-needed flexibility in depicting relationships
between subevents and thematic roles. As we worked toward
a better and more consistent distribution of predicates across
classes, we found that new predicate additions increased the
potential for expressiveness and connectivity between classes.We

also replaced many predicates that had only been used in a single
class. In this section, we demonstrate how the new predicates are
structured and how they combine into a better, more nuanced,
and more useful resource. For a complete list of predicates, their
arguments, and their definitions (see Appendix A).

3.2.1. Change in Predicate Structure
Introducing consistency in the predicate structure was a major
goal in this aspect of the revisions. In Classic VerbNet, the basic
predicate structure consisted of a time stamp (Start, During,
or End of E) and an often inconsistent number of semantic
roles. The time stamp pointed to the phase of the overall
representation during which the predicate held, and the semantic
roles were taken from a list that included thematic roles used
across VerbNet as well as constants, which refined the meaning
conveyed by the predicate. Some predicates could appear with or
without a time stamp, and the order of semantic roles was not
fixed. For example, the Battle-36.4 class included the predicate
manner(MANNER, Agent), where a constant that describes the
manner of the Agent fills in for MANNER. While manner did
not appear with a time stamp in this class, it did in others,
such as Bully-59.5 where it was given as manner(E, MANNER,
Agent). In some classes, the order of its two semantic arguments
was reversed.

Each argument slot within a given predicate was restricted
to a limited set of thematic roles. In the Exchange-13.6.1 class,
the path_rel predicate included two argument slots for thematic
roles: one for the possessor of a thing during the phase, and
the other for the thing itself. Like manner, the order of these
two arguments was not always consistent. Path_rel was used
for all kinds of change events, including change of location,
change of state, and transfer of possession; when it was used
in transfer of possession classes like Exchange, the possessor
argument was limited to thematic roles Source and Goal. Since
those roles were not included as primary roles for the class, the
representation included additional equals predicates equating
the class participant named in the syntactic representation and
the Source or Goal named in the path_rel predicate.

(18) Classic Verbnet representation

Twenty couples exchanged rings.

Agent 〈+PLURAL〉 V Theme 〈+PLURAL〉

path_rel(Start(E), Source_I, Theme_I, CH_OF_POSS, PREP)

path_rel(Start(E), Source_J, Theme_J, CH_OF_POSS, PREP)

transfer(During(E), Theme_I)

transfer(During(E), Theme_J)

path_rel(End(E), Goal_J, Theme_I, CH_OF_POSS, PREP)

path_rel(End(E), Goal_I, Theme_J, CH_OF_POSS, PREP)

cause(Agent, E)

equals(Source_I, Agent)

equals(Goal_J, Agent)

equals(Source_J, Agent)

equals(Goal_I, Agent)

opposition(Initial_State, Result)

Having an unfixed argument order was not usually a problem
for the path_rel predicate because of the limitation that one
argument must be of a Source or Goal type. But in some cases
where argument order was not applied consistently and an Agent
role was used, it became difficult for both humans and computers
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to track whether the Agent was initiating the overall event or just
the particular subevent containing the predicate.

The new predicates eliminate the inconsistencies and
ambiguities of the old and define three separate predicate types.
Each predicate now comes with a clear definition and a fixed
set of argument slots, each with a clear description of what the
argument named in the slot contributes to the overall situation
or relation the predicate describes. That the argument slots are
fixed indicates that each argument is an essential part of the
situation. If a predicate is used in a class for which certain
slots are never realized as explicit verb arguments, that predicate
argument should still be understood to be an integral part of the
semantic representation, and the slot will be filled by an essential
role (Palmer, 1990) or a constant. Note the new representation
for the same sentence in the Exchange class:

(19) GL-Verbnet representation

Twenty couples exchanged rings.

Agent 〈+PLURAL〉 V Theme 〈+PLURAL〉

has_possession(e1, Agent_I, Theme_I)

¬has_possession(e1, Agent_J, Theme_I)

has_possession(e2, Agent_J, Theme_J)

¬has_possession(e2, Agent_I, Theme_J)

transfer(e3, Agent_I, Theme_I, Agent_J)

transfer(e4, Agent_J, Theme_J, Agent_I)

has_possession(e5, Agent_J, Theme_I)

¬has_possession(e5, Agent_I, Theme_I)

has_possession(e6, Agent_I, Theme_J)

¬has_possession(e6, Agent_J, Theme_J)

cause(e3, e5)

cause(e4, e6)

The first major change to this representation was that path_rel
was replaced by a series of more specific predicates depending
on what kind of change was underway. Here, it was replaced
by has_possession, which is now defined as “A participant has
possession of or control over a Theme or Asset.” It has three
fixed argument slots of which the first is a time stamp, the second
is the possessing entity, and the third is the possessed entity.
These slots are invariable across classes and the two participant
arguments are now able to take any thematic role that appears
in the syntactic representation or is implicitly understood, which
makes the equals predicate redundant. It is now much easier
to track the progress of a single entity across subevents and
to understand who is initiating change in a change predicate,
especially in cases where the entity called Agent is not listed first.

3.2.2. Basic Predicate Types
The new predicates are divided into three basic structural
types: situation predicates, relation predicates, and subevent
modifier predicates. Situation predicates make up the majority
of the predicate inventory and describe events and states;
each has a time stamp as its first argument slot and
thematic roles or constants in the remaining slots. A typical
situation predicate is has_location(e4, Theme, Destination).
Every semantic representation and every subevent must include
at least one situation predicate.

Relation predicates come in two varieties: subevent-subevent
relations, and role-role relations. As per Section 3.1.4, subevent-
subevent relations take two or more subevent variables as

their arguments and describe a causal or temporal relation
that holds between them, such as cause(e3, e5). Role-role
relations describe relationships between thematic roles, for
example part_of(Theme, Agent), which says that the Theme is
a constituent part of the Agent.

Sometimes a thematic role in a class refers to an argument
of the verb that is an eventuality. Because it is sometimes
important to describe relationships between eventualities that are
given as subevents and those that are given as thematic roles,
we introduce as our third type subevent modifier predicates,
for example, in_reaction_to(e1, Stimulus). Here, as well as in
subevent-subevent relation predicates, the subevent variable in
the first argument slot is not a time stamp; rather, it is one
of the related parties. In_reaction_to(e1, Stimulus) should be
understood to mean that subevent e1 occurs as a response to a
Stimulus. Subevent modifier predicates also include monovalent
predicates such as irrealis(e1), which conveys that the subevent
described through other predicates with the e1 time stamp may
or may not be realized.

3.2.3. Subevent Variable Types
Section 3.1 introduced the new subevent variables en, E, and
ë. Here, we showcase the finer points of how these different
forms are applied across classes to convey aspectual nuance.
As we saw in example 11, E is applied to states that hold
throughout the run time of the overall event described by
a frame. When E is used, the representation says nothing
about the state having beginning or end boundaries other
than that they are not within the scope of the representation.
This is true whether the representation has one or multiple
subevent phases.

Similarly, ë is in and of itself associated with ongoing
processes, i.e., the process event variable in Pustejovsky (1995,
2013). It is not quite parallel to E; there are no instances of ë that
describe a process that holds throughout an entire representation
while other subevents go on in sub-phases within it. Rather, ë
can be used to head one of multiple subevents (as in the motion

example 10) or it can be the only subevent, as in (20) below from
Snooze-40.4:

(20) GL-Verbnet representation

Gloria snoozed.

Agent V

body_process(ë, Agent)

sleep(ë, Agent)

In multi-subevent representations, ë conveys that the subevent it
heads is unambiguously a process for all verbs in the class. If some
verbs in a class realize a particular phase as a process and others
do not, we generalize away from ë and use the underspecified e
instead. A process described by ë is ongoing throughout its entire
subevent. If a representation needs to show that a process begins
or ends during the scope of the event, it does so by way of pre-
or post-state subevents bookending the process. The exception
to this occurs in cases like the Spend_time-104 class (21) where
there is only one subevent. The verb describes a process but
bounds it by taking a Duration phrase as a core argument. For
this, we use a single subevent e1 with a subevent-modifying
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duration predicate to differentiate the representation from ones
like (20) in which a single subevent process is unbounded.

(21) GL-Verbnet representation

She spent five years waiting tables.

Agent V Duration Eventuality

spend_time(e1, Agent, Eventuality)

duration(e1, Duration)

Another pair of classes shows how two identical state or process
predicates may be placed in sequence to show that the state or
process continues past a could-have-been boundary. In example
22 from the Continue-55.3 class, the representation is divided
into two phases, each containing the same process predicate.
This predicate uses ë because, while the event is divided into
two conceptually relevant phases, there is no functional bound
between them.

(22) GL-Verbnet representation

He continued to pack.

Agent V Eventuality

engage_in(ë1, Agent, Eventuality)

engage_in(ë2, Agent, Eventuality)

As we will see in Section 3.3.2, each situation predicate is
associated with its own typical Aktionsart which informs the
type of e it takes as a time stamp. However, since subevent
variables often pick out a period of time during which multiple
predicates hold, a decision must be made as to which type of
e best characterizes the set. Since E can only be used for states
that hold through an entire representation, all predicates headed
with it must meet this criterion. States that hold while a transition
takes place (especially, stative predicates like contact) inherit the
event variable type of the transition, ë or e.

3.2.4. Verb-Specific and Predicate-Specific Roles
Because we have enabled predicates to select thematic roles
that are not realized as verb arguments in the syntactic
representation, we introduce two new role types that appear
as predicate arguments: predicate-specific and verb-specific.
Predicate-specific roles are semantically essential arguments
projected by the predicates. In the event that a VerbNet class does
not provide a primary thematic role for such an argument, we
give the argument a special “PredSpecific” type so that it remains
easily distinguishable from primary thematic roles. These roles
are critical to tracking the behavior of participants through the
subevents. The Trajectory or path argument ofmotion predicates
is frequently realized as predicate-specific, since many change
of location classes do not consider it to be a primary argument
of their verbs. Clearly, it is still essential to understanding a
translocation event, especially for spatial processing systems that
tie language to real-world motion events. In 23 and 24, both the
Initial_Location and Trajectory roles are predicate specific.

Sometimes critical entities or attributes involved in an event
are encoded within the verb itself. VerbNet includes many
classes that are organized specifically according to this behavior,
for example the Tape-22.4 class, in which the verb names
the Instrument of affixing; the Pocket-9.10 class, in which
the verb names the Destination; and the Amuse-31.1 class,

in which the verb names an Emotion. Before now, there
was no way to incorporate this critical information into the
semantic representations. Because some classes differ from one
another according to this behavior alone, we were losing inter-
class specificity as well. All verb-specific roles begin with the
prefix “V_” and end with either a typical thematic role or a
constant, making them easily distinguishable from any instances
of a syntactically explicit realization of the same argument. In
the examples from Pocket-9.10 below, note the change from
V_Destination to Destination when an explicit Destination is
added to the sentence:

(23) GL-Verbnet representation

Lydia pocketed the change.

has_location(e1, Theme, Initial_Location)

do(e2, Agent)

motion(ë3, Theme, Trajectory)

¬has_location(ë3, Theme, Initial_Location)

has_location(e4, Theme, V_Destination)

cause(e2, ë3)

(24) GL-Verbnet representation

We bottled the cider in one-gallon jugs.

has_location(e1, Theme, Initial_Location)

do(e2, Agent)

motion(ë3, Theme, Trajectory)

¬has_location(ë3, Theme, Initial_Location)

has_location(e4, Theme, Destination)

cause(e1, ë3)

3.3. Predicate Coherence
In addition to substantially revising the representation of
subevents, we increased the informativeness of the semantic
predicates themselves and improved their consistency across
classes. This effort included defining each predicate and its
arguments and, where possible, relating them hierarchically
in order for users to chose the appropriate level of meaning
granularity for their needs. We also strove to connect classes that
shared semantic aspects by reusing predicates wherever possible.
In some cases this meant creating new predicates that expressed
these shared meanings, and in others, replacing a single predicate
with a combination of more primitive predicates.

3.3.1. Replacing Uninformative or Redundant

Predicates
One obvious way to increase semantic coherence was to choose
a single predicate to represent opposing predicates and use
negation to show the opposition. For example, Classic VerbNet
had the predicate apart in the Separate-23.1, Split-23.2, and
Disassemble-23.3 classes, but the predicate attached in the
Tape-22.4 class. We eliminated apart and used attached and
¬attached throughout these classes. Similarly, we found three
semantically similar classes in different areas of VerbNet that
each had only a single predicate used in no other classes: The
representation in the Confront-98 class (Lee tackled the problem)
was simply confront(During(E), Agent, Theme, Instrument); in
Cope-83 (She handled the unruly customers) it was cope(E, Agent,
Theme), and in Neglect-75.1 (He failed to do the job), it was
neglect(E, Agent, Theme). We replaced all three with either
handle or ¬handle.
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In thirty classes, we replaced single predicate frames
(especially those with predicates found in only one class) with
multiple predicate frames that clarified the semantics or traced
the event more clearly. For example, (25) and (26) show the
replacement of the base predicate with more general and more
widely-used predicates.

(25) Classic Verbnet representation

We based our plans on his information.

cause(Agent, E)

base(E, Theme, Source)

(26) GL-Verbnet representation

We based our plans on his information.

support(E, Source, Theme)

engage_in(e1, Agent, Theme)

utilize(e1, Agent, Source)

Using the support predicate links this class to deduce-
97.2 and support-15.3 (She supported her argument with
facts), while engage_in and utilize are widely used predicates
throughout VerbNet.

3.3.2. Predicate Taxonomies by Aktionsart, Semantic

Roles and Valency
We have organized the predicate inventory into a series of
taxonomies and clusters according to shared aspectual behavior
and semantics. These structures allow us to demonstrate external
relationships between predicates, such as granularity and valency
differences, and in turn, we can now demonstrate inter-class
relationships that were previously only implicit.

The first taxonomy (Appendix B) groups predicates into
states, processes and perfectives (https://uvi.colorado.edu/
references_page). The perfective category includes all events that
include a terminus and has been subdivided into achievements
and accomplishments. To connect this back to examples we have
already seen,motion (5) is categorized as a process, transfer (15)
as a perfective, and has_location (5) as a state.

Because predicates must apply evenly across all verbs in a class
and because some classes contain an aspectually diverse set of
verbs or verbs that may be realized according to more than one
Aktionsart within the class, we also include subgroups in this
taxonomy for predicates that may be associated with more than
one aspectual type (e.g., emit, which may represent a process or
a perfective). This allows the semantic representations to remain
appropriately general while laying a foundation for future work
in which they may be expanded in a verb-specific manner.

Although they are not situation predicates, subevent-subevent
or subevent-modifying predicates may alter the Aktionsart of a
subevent and are thus included at the end of this taxonomy.
For example, the duration predicate (21) places bounds on a
process or state, and the repeated_sequence(e1, e2, e3, ...) can be
considered to turn a sequence of subevents into a process, as seen
in the Chit_chat-37.6, Pelt-17.2, and Talk-37.5 classes. Irrealis
may be use to make result states optional.

3.3.3. Semantic Clusters
A second, non-hierarchical organization (Appendix C) groups
together predicates that relate to the same semantic domain
and defines, where applicable, the predicates’ relationships to

one another. Predicates within a cluster frequently appear in
classes together, or they may belong to related classes and
exist along a continuum with one another, mirror each other
within narrower domains, or exist as inverses of each other.
For example, we have three predicates that describe degrees of
physical integration with implications for the permanence of
the state. Together is most general, used for co-located items;
attached represents adhesion; and mingled indicates that the
constituent parts of the items are intermixed to the point that
they may not become unmixed. Spend and spend_time mirror
one another within sub-domains of money and time, and in
fact, this distinction is the critical dividing line between the
Consume-66 and Spend_time-104 classes, which contain the
same syntactic frames and many of the same verbs. Similar
class ramifications hold for inverse predicates like encourage

and discourage.
To get a more comprehensive view of how semantic

relatedness and granularity differences between predicates can
inform inter-class relationships, consider the organizational-role
cluster (Figure 1). This set involves classes that have something
to do with employment, roles in an organization, or authority
relationships. These classes were spread out across the VerbNet
class hierarchy, with some in the removal group (classes suffixed
with -10, such as Remove-10.1), the getting group (classes
suffixed with -13, such as Give-13.1), the Attribute-related group
(suffixed with -29, such as Masquerade-29.6), and an authority-
relationship group (suffixed with -95, all included here). The
representations for the classes in Figure 1 were quite brief and
failed to make explicit some of the employment-related inter-
class connections that were implicitly available.

With the aim of improving the semantic specificity of these
classes and capturing inter-class connections, we gathered a set
of domain-relevant predicates and applied them across the set.
Authority_relationship shows a stative relationship dynamic
between animate participants, while has_organization_role

shows a stative relationship between an animate participant
and an organization. Lastly, work allows a task-type role
to be incorporated into a representation (he worked on the
Kepler project).

Fire-10.10 and Resign-10.11 formerly included nothing but
two path_rel(CH_OF_LOC) predicates plus cause, in keeping
with the basic change of location format utilized throughout the
other -10 classes. This representation was somewhat misleading,
since translocation is really only an occasional side effect of
the change that actually takes place, which is the ending of
an employment relationship. See Figure 1 for the old and new
representations from the Fire-10.10 class.

The new representation for the Hire-13.5.3 class mirrors Fire-
10.10 now, clearly demonstrating the connection between these
classes. In the past, Hire-13.5.3 consisted solely of an opposition
between an authority_relationship predicate and its negation,
leaving it with no visible connection to Fire-10.10.

Acquiesce-95.1, Supervision-95.2.2, and Subordinate-95.2.1
all consisted of singleton representations before revisions.
Acquiesce-95.1 used a single yield predicate (a predicate
not defined and not found anywhere else in VerbNet—a
true singleton) while Supervision-95.2.2 and Subordinate-
95.2.1 used just authority_relationship. The latter two
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FIGURE 1 | The classes using the organizational role cluster of semantic predicates, showing the Classic VN vs. VN-GL representations.

Frontiers in Artificial Intelligence | www.frontiersin.org 12 April 2022 | Volume 5 | Article 821697

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Brown et al. Semantic Representations for NLP

representations differed only in the ordering of their predicate
arguments. To flesh these representations out a bit, we added
an authority_relationship predicate to Acquiesce-95.1 and
expanded not only the representation but the overall scope of
Supervision-95.2.2. First, we defined yield and contextualized
it by placing it in the org-role semantic predicate cluster. With
the inclusion of authority_relationship, the representation
now provides more information about the authority dynamic
between the participants within the yielding event and we
connect Acquiesce to the rest of the org-role group. Supervision-
95.2.2’s coverage has expanded considerably with the addition
of work and has_role predicates. We found that all verbs in
the class support syntactic frames that incorporate a task-
type Theme role (Martha led the students in a task), so we
added Theme to the class as a primary role along with two
new frames exemplifying its use. The class has an additional,
previously ignored hallmark: all of the member verbs encode
semantics relating to the social role played by the Agent in the
event (e.g., leader). Since these social roles were not limited to
organization-internal positions, we included the coarser-grained
has_role predicate with a V_Attribute argument pointing
back to the verb. This and the other semantic clusters we
created demonstrate that having external predicate structures
provide a valuable new layer of semantic refinement within and
between classes.

4. EVALUATION

As discussed above, as a broad coverage verb lexiconwith detailed
syntactic and semantic information, VerbNet has already been
used in various NLP tasks, primarily as an aid to semantic
role labeling or ensuring broad syntactic coverage for a parser.
The richer and more coherent representations described in this
article offer opportunities for additional types of downstream
applications that focus more on the semantic consequences of an
event. The clearer specification of pre- and post-conditions has
been useful for automatic story generation (Ammanabrolu et al.,
2020; Martin, 2021), while the more consistent incorporation of
aspect contributed to a system for automatic aspectual tagging
of sentences in context (Chen et al., 2021). However, the clearest
demonstration of the coverage and accuracy of the revised
semantic representations can be found in the Lexis system
(Kazeminejad et al., 2021) described in more detail below.

One of the downstreamNLP tasks in which VerbNet semantic
representations have been used is tracking entity states at the
sentence level (Clark et al., 2018; Kazeminejad et al., 2021).
Entity state tracking is a subset of the greater machine reading
comprehension task. The goal is to track the changes in states
of entities within a paragraph (or larger unit of discourse). This
change could be in location, internal state, or physical state of the
mentioned entities. For instance, a Question Answering system
could benefit from predicting that entity E has been DESTROYED

or has MOVED to a new location at a certain point in the
text, so it can update its state tracking model and would make
correct inferences. By reading a text describing photosynthesis,
for example, it is desirable that a machine will understand in

which step and in what location sugar is produced (location and
existence state tracking for the entity “sugar,”) even though these
state changes are implicit rather than explicitly mentioned. A
clear example of that utility of VerbNet semantic representations
in uncovering implicit information is in a sentence with a verb
such as “carry” (or any verb in the VerbNet carry-11.4 class
for that matter). If we have ◭ X carried Y to Z ◮, we know
that by the end of this event, both Y and X have changed their
location state to Z. This is not recoverable even if we know that
“carry” is a motion event (and therefore has a theme, source, and
destination). This is in contrast to a “throw” event where only
the theme moves to the destination and the agent remains in the
original location. Such semantic nuances have been captured in
the new GL-VerbNet semantic representations, and Lexis, the
system introduced by Kazeminejad et al., 2021, has harnessed
the power of these predicates in its knowledge-based approach
to entity state tracking.

Lexis relies first and foremost on the GL-VerbNet semantic
representations instantiated with the extracted events and
arguments from a given sentence, which are part of the
SemParse output (Gung, 2020)—the state-of-the-art VerbNet
neural semantic parser. In addition, it relies on the semantic
role labels, which are also part of the SemParse output. The
state change types Lexis was designed to predict include change
of existence (created or destroyed), and change of location.
The utility of the subevent structure representations was in the
information they provided to facilitate entity state prediction.
This information includes the predicate types, the temporal order
of the subevents, the polarity of them, as well as the types of
thematic roles involved in each.

As an example, for the sentence “The water forms a stream,”2,
SemParse automatically generated the semantic representation in
(27). In this case, SemParse has incorrectly identified the water
as the Agent rather than the Material, but, crucially for our
purposes, the Result is correctly identified as the stream. The fact
that a Result argument changes from not being (¬be) to being
(be) enables us to infer that at the end of this event, the result
argument, i.e., “a stream,” has been created.

(27) GL-Verbnet representation instantiated by SemParse

The water forms a stream.

¬has_state(e1, ?_Material, V_Final_State)

¬be(e2, a stream_Result, V_Final_State)

do(e2, the water_Agent)

has_state(e3, ?_Material, V_Final_State)

be(e2, a stream_Result, V_Final_State)

As mentioned earlier, the new VerbNet semantic representations
have been designed to uncover certain kinds of implicit
information. Being able to extract such implicit information is
critical in downstream NLP tasks such as question answering or
machine reading comprehension. The above-mentioned “carry”
example has been illustrated in (28). Evidently, the Theme
(urea and carbon dioxide) and Agent (blood) start together at
an uninstantiated/unknown Initial Location. A Motion event
occurs to both the Theme and the Agent and as a result,

2All the examples in this section are from the ProPara dataset (Dalvi et al., 2018).
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both move away from the Initial Location, both move along a
Trajectory, and, finally, both arrive together at the Destination
(kidneys). This change of location (MOVED) for urea, carbon
dioxide, and blood and the resulting ending up in the kidneys
is exactly what human annotators had indicated in the ProPara
dataset (Dalvi et al., 2018). Lexis managed to extract the
same information utilizing the VerbNet semantic representation
generated by SemParse. Of course, what enables the prediction is
a set of heuristic rules which go down a decision tree to predict
whether a change of existence or location has happened, and if so,
pinpoint the type of change, as well as a potential locus of change,
i.e., where did the change occur. An example is occurrence of
¬be followed by be, pointing to a CREATED state change, or
a be followed by ¬be, pointing to a DESTROYED state change.
There is also a Destroyed VerbNet primitive predicate which
points to a DESTROYED state change too. A Motion primitive
predicate is among a series of predicates indicating a MOVED

state change. The more challenging part of crafting the rules
over the logical predicates is identifying the locus of change:
the destination in a MOVED state change, particularly when the
predicate is other than the inherent motion predicates, such as
Motion or Transfer; or when the CREATED or DESTROYED

state change has occurred.

(28) GL-Verbnet representation

The blood carries the urea and carbon dioxide to the kidneys.

has_location(e1, the blood_Agent, ?Initial_Location)

has_location(e2, the urea and carbon

dioxide_Theme, ?Initial_Location)

motion(ë3, the blood_Agent, ?Trajectory)

motion(ë4, the urea and carbon

dioxide_Theme, ?Trajectory)

¬has_location(e3, the blood_Agent, Destination)

¬has_location(e4, the urea and carbon dioxide_Theme,

Destination)

has_location(e5, the blood_Agent, Destination)

has_location(e6, the urea and carbon dioxide_Theme,

Destination)

co-temporal(e3, e4)

In addition to VerbNet semantic representations, SemParse
returns the PropBank parse for the input sentence. In some cases
where the VerbNet parser fails to instantiate an argument (which
is mostly due to the relatively small size of available training data),
there is still a chance that the PropBank parser succeeds in doing
so. For example, in the sentence “The roots absorb water and
minerals from the soil,” the VerbNet semantic representation
Take In(?Goal,water and mineralsTheme) fails to
instantiate the Goal argument. However, from the PropBank
parse of this sentence we have A0: The roots, A1: water and
minerals, A2: from the soil. On the other hand, from the
semantics of the primitive predicate Take In, we know that the
Goal is the same asA0 (protoAgent). As a result, we can complete
the VerbNet semantic representation for the missing value for
Goal with the value for A0, The roots. This is to maximize the
symbolic predictive power of Lexis.

We evaluated Lexis on the ProPara dataset (Dalvi et al., 2018).
ProPara was designed for the task of entity state tracking on
procedural paragraphs, which are texts describing processes. It

contains 488 paragraphs and 3,300 sentences describing 183
processes. Each paragraph is richly annotated with the existence
(created or destroyed) and locations (whether motion has
occurred, of what entity, and to what destination) of all the main
entities at every time step (sentence) throughout the procedure
(∼81,000 annotations). It has an 80/10/10 data split, and it is
ensured that the test paragraphs are unseen in train and dev.

We evaluated Lexis on the ProPara dataset in three
experimental settings. In the first setting, Lexis utilized only
the SemParse-instantiated VerbNet semantic representations and
achieved an F1 score of 33%. In the second setting, Lexis was
augmented with the PropBank parse and achieved an F1 score
of 38%. An error analysis suggested that in many cases Lexis
had correctly identified a changed state but that the ProPara data
had not annotated it as such, possibly resulting in misleading F1
scores. For this reason, Kazeminejad et al., 2021 also introduced
a third “relaxed” setting, in which the false positives were not
counted if and only if they were judged by human annotators
to be reasonable predictions. To accomplish that, a human
judgment task was set up and the judges were presented with
a sentence and the entities in that sentence for which Lexis
had predicted a CREATED, DESTROYED, or MOVED state change,
along with the locus of state change. The results were compared
against the ground truth of the ProPara test data. If a prediction
was incorrectly counted as a false positive, i.e., if the human
judges counted the Lexis prediction as correct but it was not
labeled in ProPara, the data point was ignored in the evaluation
in the relaxed setting. This increased the F1 score to 55% – an
increase of 17 percentage points.

An error analysis of the results indicated that world knowledge
and common sense reasoning were the main sources of error,
where Lexis failed to predict entity state changes. An example
is in the sentence “The water over the years carves through the
rock,” for which ProPara human annotators have indicated that
the entity “space” has been CREATED. This is extra-linguistic
information that is derived through world knowledge only.
Lexis, and any system that relies on linguistic cues only, is
not expected to be able to make this type of analysis. It is
important to recognize the border between linguistic and extra-
linguistic semantic information, and how well VerbNet semantic
representations enable us to achieve an in-depth linguistic
semantic analysis.

5. DISCUSSION

Despite impressive advances in NLU using deep learning
techniques, human-like semantic abilities in AI remain out of
reach. The brittleness of deep learning systems is revealed in
their inability to generalize to new domains and their reliance
on massive amounts of data—much more than human beings
need—to become fluent in a language. The idea of directly
incorporating linguistic knowledge into these systems is being
explored in several ways. Our effort to contribute to this goal
has been to supply a large repository of semantic representations
linked to the syntactic structures and classes of verbs in VerbNet.
Although VerbNet has been successfully used in NLP in many
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ways, its original semantic representations had rarely been
incorporated into NLP systems (Zaenen et al., 2008; Narayan-
Chen et al., 2017). We have described here our extensive
revisions of those representations using the Dynamic Event
Model of the Generative Lexicon, which we believe has made
them more expressive and potentially more useful for natural
language understanding.

As in any area where theory meets practice, we were
forced to stretch our initial formulations to accommodate
many variations we had not first anticipated. VerbNet is a
large, domain-independent resource of English verbs. Although
its coverage of English vocabulary is not complete, it does
include over 6,600 verb senses. We were not allowed to
cherry-pick examples for our semantic patterns; they had
to apply to every verb and every syntactic variation in all
VerbNet classes.

We strove to be as explicit in the semantic designations as
possible while still ensuring that any entailments asserted by
the representations applied to all verbs in a class. Occasionally
this meant omitting nuances from the representation that would
have reflected the meaning of most verbs in a class. It also
meant that classes with a clear semantic characteristic, such
as the type of emotion of the Experiencer in the admire-
31.2 class, could only generically refer to this characteristic,
leaving unexpressed the specific value of that characteristic for
each verb.

Recently, Kazeminejad et al. (2022) has added verb-
specific features to many of the VerbNet classes, offering
an opportunity to capture this information in the semantic
representations. These features, which attach specific
values to verbs in a class, essentially subdivide the classes
into more specific, semantically coherent subclasses. For
example, verbs in the admire-31.2 class, which range
from loathe and dread to adore and exalt, have been
assigned a +negative_feeling or +positive_feeling attribute,
as applicable.

We have begun experimenting with incorporating the
features into our semantic representations to further
increase their expressive power. The admire-31.2 class, for
example, includes the predicate has_emotional_state(E,
Experiencer, V_Emotion), in which the feature value for
a specific verb can replace V_Emotion when instantiating
the representation from actual text. Likewise, in the
calibratable_cos-45.6.1 class, the predicate change_value

includes the argument V_Direction, whose value can be
found in context from a particular verb’s verb-specific
feature: either increase (e.g., rise), decrease (e.g., fall) or
fluctuate (e.g., vary).

(29) GL-Verbnet representation

The price of oil rose by 500% from $5 to $25.

has_attribute(E, oil_Patient, price_Attribute)

has_val(e1, oil_Patient, $5_Initial_State)

change_value(e2, INCREASE_V_DIRECTION, 500%_Extent,

price_Attribute, oil_Patient)

has_val(e3, oil_Patient, $25_Result)

We are exploring how to add slots for other new features
in a class’s representations. Some already have roles or
constants that could accommodate feature values, such as the
admire class did with its Emotion constant. We are also
working in the opposite direction, using our representations
as inspiration for additional features for some classes. The
compel-59.1 class, for example, now has a manner predicate,
with a V_Manner role that could be replaced with a verb-
specific value. The verbs of the class split primarily between
verbs with a compel connotation of compelling (e.g., oblige,
impel) and verbs with connotation of persuasion (e.g., sway,
convince) These verbs could be assigned a +compel or +persuade
value, respectively.

The true test of this resource will be in its usefulness
to the field. We are encouraged by the efficacy of the
semantic representations in tracking entity changes in state
and location. We would like to see if the use of specific
predicates or the whole representations can be integrated with
deep-learning techniques to improve tasks that require rich
semantic interpretations.
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