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In this unprecedented era of the overwhelming volume of medical data, machine learning can be a promising tool that may shed light 
on an individualized approach and a better understanding of the disease in the field of osteoporosis research, similar to that in other 
research fields. This review aimed to provide an overview of the latest studies using machine learning to address issues, mainly fo-
cusing on osteoporosis and fractures. Machine learning models for diagnosing and classifying osteoporosis and detecting fractures 
from images have shown promising performance. Fracture risk prediction is another promising field of research, and studies are be-
ing conducted using various data sources. However, these approaches may be biased due to the nature of the techniques or the quali-
ty of the data. Therefore, more studies based on the proposed guidelines are needed to improve the technical feasibility and general-
izability of artificial intelligence algorithms.
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INTRODUCTION 

In this aging society, osteoporosis and its clinical outcome, fra-
gility fracture, have become a growing social issue in both med-
ical and economic aspects. In South Korea, the total health care 
costs of osteoporotic fractures increased by approximately 30% 
from 2008 to 2011, and this trend has been continuously rising 
in the United States and Korea [1,2]. Therefore, preventing frac-
tures is a core purpose in the diagnosis and management of os-
teoporosis. The diagnosis of osteoporosis is based on assessing 
bone mineral density (BMD) using dual-energy X-ray absorpti-
ometry (DXA). In addition to BMD, the Fracture Risk Assess-
ment Tool (FRAX), incorporating additional clinical risk fac-
tors, is a well-validated and widely used tool for fracture predic-

tion [3]. However, there is an unmet need for tools with easier 
accessibility and better performance in classifying patients with 
osteoporosis and predicting the risk of fractures [4].

Machine learning (ML) methodologies are rapidly implement-
ed in various medical fields [5], such as bone and mineral re-
search, including diagnosis of osteoporosis and detection/predic-
tion of fractures using both clinical and imaging data. In the same 
context, studies of bone and mineral research using ML ap-
proaches have been explodingly published, as depicted in Fig. 1. 
The studies have become possible because of the combination 
of rapidly accumulating medical data [6] and advances in acces-
sible computing power [7]. Especially, studies of classification 
tasks—such as screening osteoporosis or detecting fractures—
have been increasing. It might be due to the relatively easier ac-
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cess to cross-sectional than survival datasets and the use of 
more widely distributed models than survival tasks. However, 
as the large-sized standardized datasets have become more 
widely available [8] and the attractive methodologies are con-
tinuously evolving at this very moment, it is expected to help 
solve the currently unmet needs of bone and mineral research. 

In this review, studies related to the use of ML methods related 
to bone and mineral research were reviewed from a medical per-
spective, focusing on osteoporosis screening, fracture detection, 
and prediction of the risks. The literature search was performed 
in PubMed, including studies published from 2016 January until 
March 2021. Furthermore, future perspectives for researchers 
and clinicians in the bone field have been summarized. 

A SHORT GUIDE FOR INTERPRETATION

Confusion metrics
Fig. 2 shows a cross table of the relationship between the results 

of the artificial intelligence (AI) algorithm and the reference 
standard. In the literature of AI, the cross-table is usually de-
scribed as a ‘confusion metrics.’ Sensitivity, also called ‘recall,’ 
refers to the fraction of cases in which AI determines to have 
disease among the reference cases with the disease. On the other 
hand, specificity refers to the fraction of cases in which AI de-
termines not to have disease among the reference cases without 
the disease. Sensitivity and specificity are the most basic indica-
tors of the accuracy of AI algorithms. For more intuitive mea-
sures, When the AI gives a positive (or negative) result, the 
probability that the disease actually exists (or does not exist) is 
called positive predictive value (PPV) (or negative predictive 
value [NPV]). PPV is also called ‘precision’ in AI literature. 
However, as prevalence is similar to the pretest probability in 
terms of individual patients, the algorithm’s accuracy signifi-
cantly varies by the prevalence of the disease even with the 
same AI algorithm. Therefore, physicians using AI algorithms 
should apply the results presented by AI considering the expect-
ed pretest probability of the population. 

Receiver operating characteristic curve and precision-
recall curve 
A widely-used way to demonstrate the performance of AI algo-
rithms is the area under the receiver operating characteristic 
curve (AUROC), or, in short, the area under the curve (AUC). 
The receiver operating characteristic (ROC) curve is a graph 
drawn with 1-specificity as an x-axis and sensitivity as a y-axis. 
The ROC curve can have a maximum value of 1, and the closer 
to 1, the higher the model’s accuracy. However, even if the AU-
ROC is high, the model can be used only with an appropriate 
threshold. Therefore, the threshold with sensitivity and specificity 
at the threshold should be presented along with AUROC values. 

Precision-recall curve (PRC) is another way to show the per-
formance of the model, which was drawn with recall (sensitivi-
ty) as an x-axis and precision (PPV) as a y-axis. Different from 
ROC, as a y-axis is PPV, PRC shows the results reflecting prev-
alence. Therefore, the shape and AUC of PRC can be changed 
by the prevalence of the disease, which makes PRC more suit-
able in an imbalanced dataset with a low prevalence.

Internal and external validation 
Among the processes of training, tuning, and testing in the de-
velopment of AI algorithms, testing is a process to check the 
performance of the developed algorithms. Mathematically com-
plex AI models, such as deep learning, are highly dependent on 
data itself. Therefore, it is crucial to evaluate the performance 

Fig. 1. The trend in the number and categories of machine learning-
related publications per year in the field of bone and mineral re-
search. The included publications were from PubMed until the 
search date (May 30th, 2021). Search strategies were (“Osteoporo-
sis”[Mesh] OR “Osteoporotic Fractures”[Mesh] OR “Hip Frac-
tures”[Mesh] OR “Spinal Fractures”[Mesh] OR “Humeral Frac-
tures”[Mesh] OR “Bone Density”[Mesh] OR Osteoporos*[tiab] 
OR “fragility fractur*”[tiab] OR (Fractur*[tiab] AND (spin*[tiab] 
OR vertebra*[tiab] OR hip[tiab] OR humer*[tiab])) OR “bone min-
eral densit*”[tiab]) AND (“Artificial Intelligence”[Mesh:noexp] 
OR “machine learning”[Mesh] OR “Neural Networks, Computer” 
[Mesh] OR “artificial Intelligence”[tiab] OR “machine learning” 
[tiab] OR “deep learning”[tiab] OR “neural network*”[tiab]) AND 
English[la]).
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using independent datasets not used for training and tuning, 
usually using datasets from other institutions, which is called 
external validation. On the other hand, evaluating performance 
with datasets used for training or tuning is called internal valida-
tion. However, it is likely to overestimate the performance due 
to overfitting. 

Split-sample validation uses a randomly selected subgroup of 
datasets, usually about 10% of the total dataset, only for testing. 
Although the testing process uses datasets not used for training 
and tuning, it is also regarded as internal validation. It is mainly 
because of the selection bias, which is often inevitable in col-
lecting a large amount of data. It leads to various discrepancies 
between the real-world data and the data collected for specific 
AI algorithms. Naturally, split data from the specific collected 
dataset inherits the limitation. 

Therefore, it is recommended to externally evaluate the perfor-
mance in an independent dataset that can reflect the actual clini-
cal situation. In specific, ideal external validation datasets are 
supposed to be prospectively collected with an accurate defini-
tion of clinical setting without bias as much as possible from in-
stitutions other than an institution that collected training dataset.

APPLICATIONS IN DIAGNOSIS

Screening osteoporosis 
In the era of AI, many researchers have focused their attention 
on developing practical screening tools for osteoporosis using 
this methodology. Easier-to-use and accurate diagnostic tools 
may improve the prognosis of individuals at high risk of frac-
tures by earlier intervention and aid the effective use of public 
health resources for individuals at low risk. Most studies have 
focused on predicting BMD or categorizing patients with osteo-
porosis using opportunistic imaging modalities such as comput-
ed tomography (CT) [9-13] and X-rays [14-18] or various clini-
cal parameters (Table 1) [19-22]. 

In general, CT has been used in studies predicting BMD [9-13]. 
A recent study by Fang et al. [9] using quantitative CT images 
from 1,499 patients reported that CT images could predict BMD 
using a convolutional neural network (CNN), such as DenseNet- 
121, with an excellent correlation of r>0.98. This result has clini-
cal significance in generalizability because CT images were ob-
tained using scanners from different vendors. The results from 
other types of CT, such as spinal or chest CT, have also shown 
excellent correlation to BMD values using CNN [11-13]. For the 
classification of patients with or without osteoporosis, studies us-
ing CT demonstrated outstanding performances, with an accuracy 
of 0.82 to 0.91 and an AUROC of 0.90 to 0.97 [11-13,23]. How-
ever, some studies had a critical limitation—BMD estimated 
from CT was used and not BMD estimated from DXA, which is 
the gold standard [9-12]. 

Studies using X-rays or dental radiography have usually fo-
cused on classifying tasks. Most studies used a CNN, especially 
DenseNet and ResNet, have shown excellent performances, 
with an AUROC of 0.81 to 0.94, accuracy of 0.85 to 0.92 [14-
18]; some studies have even reported an AUROC of 1.00 [24-
26]. In addition, studies have attempted to use clinical parame-
ters instead of images for categorizing osteoporosis, showing 
excellent performances, with correlation coefficients of 0.778 to 
0.978 for BMD and an AUROC of 0.74 to 1.00 [19-22]. The 
performance of the models using clinical parameters varies 
widely depending on the type and quality of the data. Some 
studies also reported precision and recall [12,16], but did not re-
ported PRC, which might be more appropriate in the imbal-
anced dataset, as mentioned above. 

On the other hand, in a complex model like CNN with numer-
ous parameters, it inevitably risks overfitting due to the vari-
ance-bias tradeoff [27]. Overfitting represents a model that 
learned the detail of the training set too well that it negatively 
impacts the performance of the data other than the training set. 
The most intuitive way to solve the problem in a ‘deep-learning’ 

Fig. 2. Cross table of the relationship between the results of the algorithm and reference standard. AI, artificial intelligence; TP, true positive; 
FP, false positive; FN, false negative; TN, true negative.

Reference 
standard:

Disease (+)

Reference 
standard:
Disease (-)

Results from AI:
Disease (+) TP FP

Results from AI:
Disease (-) FN TN

Sensitivity=recall=TP/(TP+FN)
Specificity=TN/(FP+TN)
Positive predictive value=precision=TP/(TP+FP)
Negative predictive value=TN/(FN+TN)
Accuracy=(TP+TN)/(TP+FP+FN+TN)
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Table 1. Characteristics and Results of Key Studies Using Machine Learning

Study Tasks Data 
type

Input data 
amount

Trained 
algorithm

Train/
validation/

test set
Main results Clinical significance

Shim et al. [22] Screening  
osteoporosis

DB 1,792 (34% 
OP)

ANN, RF, LR, 
SVM, KNN, 
DT, GBM

76%/5-fold 
CV/24%

AUROC 
ANN 0.742, RF 

0.727, LR 0.726, 
SVM 0.724, 
KNN 0.712, DT 
0.684, GBM 
0.652

Demonstrated performances of 7 ML models to 
accurately classify osteoporosis, and found 
ANN as most accurate methods

Yamamoto  
et al. [16]

Screening  
osteoporosis

X-ray 1,131 (53% 
OP)

ResNet-18, 
resNet-34, 
GoogleNet, 
EfficientNet 
b3, Effi-
cientNet b4

80%/10%/10% EfficientNet b3, 
accuracy 0.885, 
recall 0.887, 
NPV 0.865, F1 
score 0.894, AU-
ROC 0.937

Addition of clinical covariates increased almost 
all performance metrics in CNN networks over 
the analysis of hip radiographs alone

CNN models can diagnose osteoporosis from hip 
radiographs with high accuracy

Yasaka et al. 
[11]

Screening  
osteoporosis

CT 2,045 (% not 
reported)

CNN (4-layer) 81%/9%/10% 
(external  
validation)

AUROC 0.97 By applying a deep learning technique, the BMD 
of lumbar vertebrae can be estimated from  
noncontrast abdominal CT

Strong correlation was observed between the  
estimated BMD from CT and the BMD  
obtained with DXA

The study was externally validated in an  
independent dataset

Superior performance of the CNN was more 
marked in complex types of humerus fractures

Chung et al. 
[32]

Fracture  
detection 
(humerus)

X-ray 1,891 (69% 
fracture)

Resnet-152 90%/-/10% AUROC 1.00,  
sensitivity 0.99, 
specificity 0.97

CNN showed superior performance to that of 
physicians and orthopedists

Tomita et al. 
[29]

Fracture  
detection 
(vertebra)

CT 1,432 (50% 
fracture)

Resnet-LSTM 80%/10%/10% Accuracy 0.892, 
F1 score 0.908

Accuracy and F1 score of CNN were similar to 
the radiologists’ performance in detecting  
fracture

Visualization by color maps showed that the 
learning was based on appropriate target lesion

Mutasa et al. 
[37]

Fracture  
detection 
(hip)

X-ray 1,063 (69% 
fracture)

CNN (21- 
layer)

72%/18%/10% AUROC 0.920,  
accuracy 0.923, 
sensitivity 0.910, 
specificity 0.930, 
PPV 0.960, NPV 
0.860

Data augmentation techniques of generative  
adversarial networks and digitally reconstructed 
radiographs showed better performances than 
those without augmentation

Su et al. [53] Fracture  
prediction 
(hip)

DB 5,977 (3% 
fracture)

CART 10-fold CV AUROC 0.73 Classification of a high-risk group for hip  
fractures using a classic ML method of CARTs 
showed a discrimination power similar to that 
of FRAX ≥3%

Almog et al. 
[57]

Fracture  
prediction 
(osteoporotic, 
hip, vertebra)

DB 630,445 (7% 
fracture)

Word2Vec, 
Doc2Vec, 
LSTM, XG-
Boost, en-
semble

70%/3-fold 
CV/30%

AUROC 0.82 Development of a short-term incident fracture 
prediction model based on natural language 
processing methods

Suggested the possibility of using the unique 
medical history data of the patients over time to 
predict the risk of fractures

Muehlematter 
et al. [56] 

Fracture  
prediction 
(vertebra)

CT 120 (50% 
fracture)

ANN, RF, 
SVM

67%/10-fold 
CV/33%

AUROC 0.97 Bone texture analysis combined with ML allows 
to identify patients at risk for vertebral fractures 
on CT scans with high accuracy

Compared to Hounsfield unit measurements on 
CT scans, application of bone texture analysis 
combined with ML may improve fracture risk 
prediction

DB, database; OP, osteoporosis; ANN, artificial neural network; RF, random forest; LR, logistic regression; SVM, support vector machine; KNN, k-nearest neigh-
bors; DT, decision tree; GBM, gradient boosting machine; CV, cross validation; AUROC, area under the receiver operating characteristic curve; ML, machine 
learning; NPV, negative predictive value; CNN, convolutional neural network; CT, computed tomography; BMD, bone mineral density; DXA, dual X-ray absorp-
tiometry; LSTM, long short-term memory; PPV, positive predictive value; CART, classification and regression tree; FRAX, Fracture Risk Assessment Tool.
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way is to secure enough data to train models. However, secur-
ing sufficient data is not always possible considering the preva-
lence of osteoporosis or fractures [28]. Therefore, some studies 
have attempted to control overfitting by feature selection [19], 
data augmentation [11], and transfer learning [9], while other 
studies have mentioned the limitation of bias in selecting pa-
tients, models, or the testing dataset.

Taken together, increasing attempts have been made to diag-
nose osteoporosis using various data sources and ML methods, 
and performance has improved over time, especially when us-
ing images with CNN methods. Although studies reporting AU-
ROCs of almost 1.00 can have a risk of overfitting and need ex-
ternal validation of the model [24-26], the practical use of op-
portunistically taken images in screening osteoporosis may be 
realized in the future. 

Screening fractures
Many studies have reported the application of ML in fracture 
detection [29-43], and some of them have become the basis of 
commercially available programs—such as OsteoDetect (Ima-
gen Technologies, New York, NY, USA; 2018, the U.S. Food 
and Drug Administration [FDA]-approved), Aidoc BriefCase-
CSF triage (Aidoc Medical Ltd., Tel Aviv, Israel; 2019, FDA-
approved), HealthVCF (Zebra Medical Vision Ltd., Shefayim, 
Israel; 2020, FDA-approved), FractureDetect (Imagen Technol-
ogies, 2020, FDA-approved) [44], and DEEP-SPINE-CF-01 
(Deepnoid Inc., Seoul, Korea; 2019, Korean FDA-approved).

Several earlier studies used X-ray images to detect fractures, 
and studies using CT images to detect fractures have been in-
creasing recently. As the basis for the OsteoDetect program, 
Lindsey et al. [30] used wrist radiographs to detect wrist frac-
tures using a CNN and showed performances in AUROC of 
0.96 and 0.97 in two internal test datasets. Also, they showed 
that the when aided with the program, misinterpretation rate of 
average clinician was significantly reduced by 47.0% [30]. An-
other study which used X-ray to detect wrist fracture using 
CNN showed excellent performances in external test of AU-
ROC of 0.95, a specificity of 0.90, and a sensitivity of 0.88, 
which surpassed the performance of the previous computational 
methods [31]. A similar study by Chung et al. [32] used shoul-
der radiographs to detect humerus fractures using a CNN mod-
el. In the study, the model demonstrated superior performance 
to general orthopedic surgeons in distinguishing fractures [32]. 
For detecting vertebral and femoral neck fractures, many stud-
ies have reported AUROCs as high as 0.91 to 0.99 using spine 
and hip X-rays with CNN methods, consistent with other stud-

ies [35-43]. Another interesting study conducted by Badgeley et 
al. [45] reported that imaging features from hip X-rays could be 
used to discriminate fractures using a CNN (AUROC of 0.78) 
and that patient data with hospital process variables, such as 
scanner model, scanner manufacturer, and order date, showed 
better performance for fracture detection (AUROC of 0.91) than 
images. In a subgroup analysis of selected radiographs matched 
with patient data and hospital process variables, X-ray could not 
detect hip fractures [45]. This result implied that the model de-
tected fractures indirectly through the associated clinical vari-
ables rather than directly utilizing the image features of the frac-
ture. Also, it was partly because of the model imbalance that the 
PRC, which is dependent on the disease prevalence, was signifi-
cantly higher for case-control cohorts (hip fracture prevalence 
of 50% than in original population (the prevalence of 3%) [45]. 

In terms of studies using CT images, Tomita et al. [29] detect-
ed osteoporotic vertebral fractures from 1,432 pelvic CT scans 
in 2018. They used multiple methods combined, the CNN-
based model for feature extraction, and the ResNet long short-
term memory model for aggregating the extracted features. 
Along with other studies using random forest or support vector 
machines [46,47], the study demonstrated an acceptable accura-
cy of 0.89. While the number of studies for predicting the hip 
and any osteoporotic fractures is relatively smaller than that for 
predicting vertebral fractures, they also showed a possibility of 
ML models as a diagnostic tool for the fractures, using diverse 
methods of deep CNN, ElasticNet, and others [48-50]. Howev-
er, studies using CT images are usually based on a small number 
of cases; hence, there is a need for larger studies with external 
validation.

In particular, in imbalanced tasks such as detecting fractures, 
data augmentation was attempted in some studies to control the 
overfitting problem [31,37,39,41]. Some studies have used sam-
pling methods to handle class imbalance [51,52]. In a recent 
study, images with data augmentation techniques of generative 
adversarial networks and digitally reconstructed radiographs 
from CT showed better performances than those without aug-
mentation (AUROC of 0.92 vs. 0.80, accuracy 86.0%, sensitivi-
ty 0.79, specificity 0.90, PPV 0.80, NPV 0.90) [37]. Another re-
cent study reported that the accuracy of fracture detection in-
creased with larger training dataset sizes and mildly improved 
with augmentation [35]. Consequently, larger studies with opti-
mal augmentation techniques are needed for real-world applica-
tion of automatic ML-driven detection systems, which may re-
duce the time and burden of radiologists.
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APPLICATIONS IN RISK PREDICTION

As in other fields of medical research, accurate prediction of 
musculoskeletal outcomes enables an individualized approach 
for initiating and monitoring treatments. A few studies have 
evaluated the risks of fractures, falls, or bone loss in patients 
with osteoporosis. In terms of predicting fracture, most studies 
used a database to build prediction models. In men, Su et al. [53] 
reported that the classification of a high-risk group for hip frac-
tures using a classic ML method of classification and regression 
trees showed a discrimination power similar to that of FRAX ≥
3%. Total hip BMD was the most robust discriminator, followed 
by age and femoral neck BMD [53]. In postmenopausal women, 
fracture classification using the CatBoost method, a recently de-
veloped ML method, outperformed the FRAX score for fracture 
prediction (AUROC of 0.69 vs. 0.66) [54]. The top predicting 
factors were total hip, lumbar spine, and femur neck BMD, fol-
lowed by subjective arthralgia score, serum creatinine level, and 
homocysteine level [54]. The latter factors were listed higher 
than conventional predictors, such as age [54]. The results im-
plied that ML could be used to build prediction models and 
identify novel risk factors. Based on claims data of more than 
280,000 individuals, Engels et al. [55] developed a hip fracture 
prediction model with an AUROC of 0.65 to 0.70 using a super-
learner algorithm that considered both regression and ML algo-
rithms, such as support vector machines and RUSBoost. Inter-
estingly, image-based fracture prediction model was tried re-
cently by Muehlematter et al. [56]. They showed that the bone 
texture analysis from CT scan combined with ML methods may 
identify patients at high risk of vertebral fractures with high ac-
curacy. 

Moreover, considering the sequential characteristics of elec-
tronic health records, Almog et al. [57] developed a short-term 
incident fracture prediction model based on natural language 
processing methods. These findings indicate the possibility of 
using the unique medical history data of the patients over time 
to predict the risk of fractures. Contrarily, studies using unsu-
pervised learning to identify fractures were also conducted 
[58,59]. Kruse et al. [58] found nine different fracture risk clus-
ters based on BMD, clinical risk factors, and medications using 
simple unsupervised hierarchical agglomerative clustering anal-
ysis. Clusters based on BMD could discriminate between pa-
tients with poor and good treatment compliance to antiresorp-
tives in the future.

With regard to predicting outcomes other than fracture, few 
studies have attempted to predict bone loss and falls [60-62]. 

The rate of bone loss over 10 years could be predicted better 
with the artificial neural network than with multiple regression 
analysis using conventional parameters, such as age, body mass 
index, menopause, fat and lean body mass, and BMD values 
[60]. Falls were also accurately predicted using XGBoost, re-
porting the following top predictors: cognitive disorders, abnor-
malities of gait and balance, and Parkinson’s disease [61]. The 
most common problem encountered in learning tasks is a class 
imbalance because of the low incidence of positive events. 
Model calibration has been attempted in some studies by adjust-
ing the predicted and observed probabilities to attenuate class 
imbalance [61,63]. Although further validation studies are need-
ed, efforts are being made to identify patients at risk and provide 
individualized treatment.

FUTURE DIRECTIONS

Overall, many studies have consistently shown that ML models 
can detect fractures better than clinicians [32,39,41], expanding 
the limits of human performance. Recently, FDA and Korea 
FDA approved some fracture detection algorithms to support 
clinicians, which makes AI-guided tools within reach. However, 
AI models exceedingly better than conventional models have 
not been suggested for the task of predicting fractures. One of 
the main reasons for the phenomenon could be that the conven-
tional models are well-designed and already have excellent per-
formances in fracture risk prediction, which leaves small room 
for the improvement. Also, especially for the AI models with 
images, although CNN showed excellent performance in dis-
criminating existing fractures, the information included in the 
image of the bone may not have enough information to predict 
future fractures. Therefore, more AI models conjoining images 
of bone and muscle with clinical informations are needed in the 
near future. It could be considered in designing the models 
whether input images can provide high-quality information to 
predict fractures, as there is a significant difference in the quali-
ty and amount of included information included depending on 
the image type. 

In addition to the above applications, AI can be used to pre-
dict treatment responses. For example, treatment response can 
be accurately predicted based on anthropometric, biochemical, 
and imaging features of patients with acromegaly using a gradi-
ent boosting decision tree method [64]. Further, in the Action to 
Control Cardiovascular Risk in Diabetes (ACCORD) trial, 
among patients with diabetes, a subgroup of patients with sur-
vival benefit from intensive treatment was newly identified in 
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post hoc analysis using the gradient forest method [65]. These 
results provide insights into the utilization of ML methods to 
predict treatment responses, leading to an individualized ap-
proach in designing treatment regimens and targets. 

Moreover, AI methods can be effectively used in translational 
research, especially for evaluating large data, such as genetic, 
epigenetic, proteomic, and other molecular profiling data. In the 
field of cancer immunology, researchers have used ML to pre-
dict the treatment response to immunotherapy with a rich datas-
et of gene expression of tumor and immune cells and their clini-
cal characteristics [66,67]. A recent study tried to identify plas-
ma protein patterns for various health outcomes using ML tech-
niques [68]. The authors found novel predictive proteins and 
built models using ML techniques. However, the findings of 
these studies require further validation in more extensive and 
different populations. 

However, despite the enthusiasm about the use of AI for med-
icine, the lack of sufficient and appropriate validation of the al-
gorithms has been a concern, and it is called ‘digital exception-
alism’ [69,70]. A recent meta-analysis that evaluated AI algo-
rithms for the diagnostic analysis of medical images reported 
that only 6% of them performed external validation. None of 
these studies had a diagnostic cohort design and were prospec-
tively collected for external validation [71]. To improve the 
technical feasibility and generalizability of current AI studies, 
there are some methodologic guides for various study designs—
Standard Protocol Items: Recommendations for Interventional 
Trials–Artificial Intelligence (SPIRIT-AI) and Consolidated 
Standards of Reporting Trials–Artificial Intelligence (CON-
SORT-AI) guidelines for intervention studies [72], Standards 
for Reporting of Diagnostic Accuracy Studies–Artificial Intelli-
gence (STARD-AI) guidelines for diagnostic accuracy [73], and 
others [74,75]. In the near future, only studies with appropriate 
validation can be accepted and utilized in clinical practice. Also, 
beyond the AI models’ performance, other principles, such as 
data privacy and safety, need proper attention before imple-
mented in clinical practice.

CONCLUSIONS 

In this era of the overwhelming volume of medical data, AI is a 
promising tool that may shed light on an individualized ap-
proach and a better understanding of the disease in the field of 
bone and mineral research. The present review aimed to provide 
an overview of the latest studies using ML to address the issues 
in the field, focusing on osteoporosis and fragility fractures. ML 

models for diagnosing and classifying osteoporosis and detect-
ing fractures from images have shown promising performance 
and have improved over time. Fracture risk prediction is another 
promising field of research, and studies are being conducted us-
ing various data sources.

On the verge of this methodological turning point, endocri-
nologists as domain experts will continue to serve as a key per-
son for finding unmet clinical needs to initiate the research and 
find clinical meanings from converging the vast outcomes from 
the analyses to aid patients with musculoskeletal diseases. We 
believe that the data presented in this review may help clinicians 
and researchers understand the current progress of ML to date 
and its strengths and limitations. 
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