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Abstract

Large-scale genome-wide association studies (GWAS) have established chromosome
5q31.1 as a susceptibility locus for colorectal cancer (CRC), which was still lack of causal
genetic variants. We searched potentially regulatory single nucleotide polymorphisms
(SNPs) in the overlap region between linkage disequilibrium (LD) block of 5931.1 and regu-
latory elements predicted by histone modifications, then tested their association with CRC
via a case-control study. Among three candidate common variants, we found rs17716310
conferred significantly (heterozygous model: OR = 1.273, 95% confidence interval (95%Cl)
=1.016-1.595, P = 0.036) and marginally (dominant model: OR = 1.238, 95%CI = 1.000—
1.532, P =0.050) increase risk for CRC in a Chinese population including 695 cases and
709 controls. This variation was suggested to be regulatory altering the activity of enhancer
that control PITX1 expression. Using epigenetic information such as chromatin immunopre-
cipitation-sequencing (ChlP-seq) data might help researchers to interpret the results of
GWAS and locate causal variants for diseases in post-GWAS era.

Introduction

In China, colorectal cancer (CRC) is the fifth most commonly diagnosed cancer in males and
the third in females, with an estimated 310,244 new cases and 149,722 deaths occurring in
2011 [1]. Risk factors for CRC include diet, physical inactivity, obesity, smoking and drinking
[2, 3], and it’s well established that genetic factors also play an important role in the etiology of
CRC [4, 5]. By now, genome-wide association studies (GWAS) and fine mapping researches
have identified risk variants mapping to over 30 independent susceptibility loci of CRC in
Europeans and Asians [6-20]. However, vast majority of these variants reside in intergenic and
intronic regions, and the most likely biological mechanism that links them to disease is regula-
tory [21].
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Accumulating evidence showed that non-coding genetic variants of risk-associated loci
could exert an effect on gene expression by modulating the activity of regulatory elements [22],
including promoters, enhancers, insulators and silencers. And various histones in the flanking
nucleosomes of such genomic regions have been discovered to carry characteristic post-transla-
tional modifications [23, 24]. For example, promoters are usually marked by H3K4me3 (his-
tone H3 trimethylated at lysine 4) and enhancers by H3K4mel (histone H3 monomethylated
at lysine 4), and either is additionally marked by H3K27ac (histone H3 acetylated at lysine 27)
upon activation [25-28]. Today, genome-wide mapping of histone modifications accomplished
by chromatin immunoprecipitation-sequencing (ChIP—seq) is widely used to predict promot-
ers and enhancers [29-32].

5q31.1 was first mapped as a CRC susceptibility locus by Jia et al [17] in both East Asian
and European populations, further supported by another larger-scale genetic study by Zhang
etal [20] in East Asians. The most likely involved gene PITX1 (paired-like homeodomain 1)
has been considered to be a tumor suppressor gene relating to carcinogenesis of CRC [33, 34]
and other cancers [33, 35-38]. However, the reported strongest risk polymorphism rs647161 is
of unclear function and not in any known transcribed or regulatory sequences. So, we reasoned
that rs647161 is not the causal single nucleotide polymorphism (SNP) and the real functional
SNPs remain to be mined in this region. At the same time, identifying functional SNPs that
overlap tissue-specific regulatory elements predicted by chromatin status such as histone modi-
fications, have represented a powerful approach to progress from statistical association to func-
tionality and causality in post-GWAS genetic researches [39-42].

In this study, we analyzed ChIP-seq data of histone modifications from Encode project
[29], explored potentially regulatory variants within the susceptibility locus 5q31.1, and inves-
tigated candidate common SNPs’ association with CRC risk via a case-control study in Chi-
nese population.

Material and Methods
Study Participants

A total of 695 CRC cases and 709 cancer-free controls were recruited from Tongji Hospital of
Huazhong University of Science and Technology (HUST) between 2008 and 2011. All subjects
were unrelated ethnic Han Chinese living in Wuhan City and its surrounding areas. The inclu-
sion criteria for cases were histopathologically confirmed CRC without previous chemotherapy
or radiotherapy, and no restriction to gender and age. Controls were selected randomly from a
physical examination programs at the same hospital in the same time period as the patients
were enrolled, part of which were also involved in our pervious studies [43, 44], and were ade-
quately matched to cases in terms of gender and age (£5 years). Herein, smokers were defined
as those who had smoked at least one cigarette per day for 12 months or longer at any time

of their life, while non-smokers were defined as those who had not. At recruitment, 5-ml
peripheral venous blood was collected from each subject after a written informed consent was
obtained. This study was approved by ethnics committee of Tongji Hospital of Huazhong Uni-
versity of Science and Technology.

Selection of Candidate SNPs

Candidate SNPs in this study are identified as common (minor allele frequency, MAF>0.05)
genetic variants locating in the overlap region between the 5q31.1 locus and CRC-specific regu-
latory elements marked by proper epigenetic marks. Firstly, we downloaded the genotype
information of Han Chinese in Beijing, China (CHB) that was 500kb upstream and down-
stream of the tagSNP rs647161 from HapMap database, and input that data into the software
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HaploView to obtain the linkage disequilibrium (LD) block of rs647161 with the criteria of
r*>0.8, which was defined as the boundary of GWAS locus 5q31.1. Secondly, we acquired
ChIP-seq data of different histone modifications produced in two CRC cell lines HCT116 and
Caco2 from UCSC database integrating with Encode data (S1 Table), then extracted the
extent of their signal peaks standing for regulatory elements, where we intersected two repli-
cation versions of the same data set (intersection) and united all different data sets (union).
Thirdly, basing on dbSNP database, we picked out the SNPs with MAF>0.05 in CHB that lie
in the overlapping region between aforementioned LD block and peaks. Finally, three SNPs,
rs2193941, rs17716310 and rs7703385 were chosen as candidate SNPs for the next-step

genotyping.

Genotyping

Genomic DNA was extracted from peripheral blood leukocytes using RelaxGene Blood System
DP319-02 (Tiangen, Beijing, China) by reference to the manufacturer’s instructions. All SNPs
were genotyped with the TagMan SNP Genotyping Assay (Applied Biosystems, Foster City,
CA, USA) on a 7900HT Fast Real-Time PCR System (Applied Biosystems, Foster City, CA,
USA). 5% duplicated samples were randomly selected to assess the reproducibility for quality
control, with a concordance rate of 100%.

Statistical Analysis

The t test and y” test was applied to estimate differences in variables and distributions of geno-
types between cases and controls. Hardy-Weinberg equilibrium (HWE) was evaluated by
applying the goodness-of-fit 5* test in controls. The strength of association between each SNP
and CRC risk was measured by the odds ratio (OR) and its corresponding 95% confidence
interval (95%CI). In order to avoid the assumption of genetic models, heterozygous, homozy-
gous, dominant, recessive and additive models were analyzed. The statistical test power of each
SNP was calculated by POWER v3.0 (http://www.mds.qmw.ac.uk/stat-gen/dcurtis/software.
html). And ORs and corresponding 95%ClIs, adjusted by gender, age and smoking status were
calculated by unconditional multivariate logistic regression. Statistical analyses were performed
using SPSS Software v20.0 (SPSS, Chicago, Illinois, USA). The potential gene-environment and
SNP-SNP interactions were evaluated by a pair-wise analysis under multiplicative [45] and
additive interaction models [46]. The P values for multiplicative interaction were calculated
using a multiplicative interaction term under the multivariate logistic regression model in SPSS
software. And the P values for additive interaction were assessed by a bootstrapping test of
goodness-of-fit using Stata v11.0 (Stata Corporation, College Station, TX). All P values were
two sided with the statistical significance criteria of P < 0.05.

Results
Selection of Candidate SNPs

The area of GWAS susceptibility loci 5q31.1 we defined by LD was chromosome 5:
134467220-134518445. After a three-step bioinformatics analysis, three common polymor-
phisms, rs2193941, rs17716310 and rs7703385 that situated within the peaks of histone
modification ChIP-Seq data generated from HCT116 or Caco2, were found in the above loci
(Table 1).
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Table 1. Candidate regulatory SNPs in GWAS locus 5g31.1.

SNP Position (hg19)
rs2193941 134469594
rs17716310 134476759
rs7703385 134478074

Major/Minor Allele CHB MAF Overlapping Peaks Histone Modification Cell Line
A/G 0.28 134469520-134469630 H3k4me3 Caco2

A/C 0.31 134475122—-134478405 H3k4me1 HCT116

134475349-134477528 H3k27ac HCT116

C/G 0.28 134475122—-134478405 H3k4me1 HCT116

Abbreviations: CHB, Han Chinese in Beijing, China; MAF, minor allele frequency.

doi:10.1371/journal.pone.0138478.t001

Population Characteristics

695 incident cases and 709 frequency-matched controls were enrolled in this study. As shown
in Table 2, the proportion of males was 58.42% in cases compared with 56.42% in controls

(P = 0.449, Pearson y” = 0.570). Mean age and corresponding standard deviation was 60.16
+12.26 years for cases and 59.80+13.18 years for controls (P = 0.598 by t test), and there was no
statistically significant differences between cases and controls in terms of age distribution

(P =0.305, Pearson XZ = 3.625) among four categories (<50, 51-60, 61-70 and >71). As
expected, more smokers were presented in the cases than in the controls (35.25% versus
29.62%; P = 0.022, Pearson ) = 5.257), considering that cigarette smoking was a well-estab-
lished risk factor for CRC (2).

Association Analysis

All three SNPs, 152193941, rs17716310 and rs7703385, were in HWE (Pgwg = 0.55, 0.17 and
0.55), and the statistical test power was 95.9%, 95.3% and 95.5% respectively. The genotype dis-
tributions of investigated polymorphisms were shown in Table 3. In association analysis, only
rs17716310 showed significant association with CRC under heterozygote model, while the
other two SNPs rs2193941 and rs7703385 presented no statistical evidence of relation to CRC

risk.

Table 2. The characteristics of the study population.

Cases Controls
No. (%) No. (%) %2 P
Total 695 709
Gender 0.570 0.449
Male 406 (58.42) 400 (56.42)
Female 289 (41.58) 309 (43.58)
Age (meanzSD) 60.16+12.26 59.80+13.18 0.598%
Agegroup 3.625 0.305
=50 150 (21.58) 154 (21.72)
51-60 207 (29,78) 181 (25.53)
61-70 184 (26.47) 209 (29.48)
=71 154 (22.16) 165 (23.27)
Smoking Status
Non-Smoker 448(64.65) 499(70.38) 5.257 0.022
Smoker 245(35.35) 210(29.62)
Abbreviations: SD, standard deviation.
8P value was calculated by the t test.
doi:10.1371/journal.pone.0138478.t002
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Table 3. Association between individual SNP and colorectal cancer risk.

Genotype

rs2193941
AA
AG
GG
Dominant model
Recessive model
Additive model
rs17716310
AA
AC
CC
Dominant model
Recessive model
Additive model
rs7703385
CcC
CG
GG
Dominant model
Recessive model
Additive model

Controls (%)

310(44.4)
305(43.7)
83(11.9)

337(48.4)
284(40.7)
76(10.9)

324(47.2)
290(42.3)
72(10.5)

Cases (%) P? OR (95%CI)° P®
277(41.3) 0.516 1.000
310(46.3) 1.142 (0.909-1.434) 0.253
83(12.4) 1.102 (0.779-1.560) 0.583
1.131(0.912-1.403) 0.263
1.040(0.750—1.442) 0.813
1.078(0.921-1.263) 0.350
294(43.1) 0.117 1.000
314(46.0) 1.273 (1.016-1.595) 0.036
74(10.9) 1.104 (0.771-1.581) 0.589
1.238(1.000-1.532) 0.050
0.987(0.702—1.388) 0.939
1.123(0.958-1.318) 0.153
294(43.2) 0.310 1.000
313(45.9) 1.194 (0.952-1.497) 0.125
74(10.9) 1.117 (0.776-1.606) 0.553
1.176(0.949-1.458) 0.138
1.031(0.730-1.457) 0.862
1.103(0.939-1.296) 0.232

Abbreviations: OR, Odds ratio; 95%Cl, 95% confidence interval.

2 P values were calculated by the Pearson Chi-Square test

P Data were calculated by logistic regression model after adjusting for sex, age group and smoking status.
The nominal significant and marginal results were in bold.

doi:10.1371/journal.pone.0138478.1003

Under multivariate logistic regression model adjusted for gender and age, individuals with
AC genotype of rs17716310 had a significantly increased risk of CRC (OR = 1.273, 95%
CI=1.016-1.595, P = 0.036) compared to those with AA homozygote. A dominant model was
performed to improve statistical power by combining the AC with CC into a C-carrier group
(AC plus CC), and it showed that the allele C carriers got a marginal effect on CRC susceptibil-
ity (OR =1.238, 95%CI = 1.000-1.532, P = 0.050). However, no significant risk of the variant C
allele was seen in homozygous, recessive or additive model. As for rs2193941 and rs7703385,
there were no positive results under all genetic models we studied.

Analysis of Linkage Disequilibrium

Shown in Fig 1, three investigated SNPs were in high LD with each other (rs2193941 and
rs17716310, ¥ = 0.89; rs17716310 and rs7703385, r* = 0.97; 1s2193941 and rs7703385, 1* =
0.90) in our study. On the other hand, rs2193941, rs17716310 and rs7703385 were discovered
to be in high LD with the tagSNP rs647161 (° = 0.83, ° = 0.88, r° = 0.88, respectively) in CHB
population of 1000 Genomes Project Phase 3.

Interaction Analysis

Table 4 detailed the results of interaction analysis between the promising SNP rs17716310 and
smoking, where we observed a significant interaction (P = 0.013) in multiplicative terms.
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Fig 1. The LD block constructed by rs2193941, rs17716310 and rs7703385.
doi:10.1371/journal.pone.0138478.g001

Table 4. Interaction analysis between smoking and rs17716310 associated with CRC risk.

Smoking stusus Genotype Case/Control OR (95%Cl)? P’ Paga
Non-smoker AA 189/232 1.000 0.013 0.238
AC+CC 250/257 1.192 (0.919-1.547)
Smoker AA 104/105 1.281 (0.886—1.853)
AC+CC 137/103 1.712 (1.196-2.451)

Put Was calculated using the multiplicative interaction term.

P.qq Was calculated using the additive interaction model.

@ Data were calculated by logistic regression model after adjusting for gender and age group.
The nominal significant results were in bold.

doi:10.1371/journal.pone.0138478.t004
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When we examined the pair-wise interactions among three candidate variations, we found no
positive outcomes under both multiplicative and additive model (S2 Table).

Discussion

In post-GWAS era, identifying specific functional genetic variants that actually accounts for
phenotype is the major purpose and challenge, and regulatory elements of genome can help.
Using epigenetic marks obtained from relevant cell types, we searched potentially functional
SNPs that were situated in putatively regulatory elements, and validated their association with
CRC in an independent population.

In this study, through combining GWAS locus 5q31.1 and promising regulatory regions
predicted by histone modifications in CRC cell lines, we screened out three common variants,
rs2193941, rs17716310 and rs7703385, in their overlap. After we conducted an association
study in a Chinese population containing 695 CRC cases and 709 health controls, we found sig-
nificant and marginal effect of rs17716310, which was in LD with tagSNP rs647161 and might
interacted with smoking.

The findings led us to assume rs17716310 influenced CRC risk by altering the activity of
regulatory elements that control PITX1 expression. Lying within a region of the genome exhib-
iting chromatin modifications H3k4mel and H3k27ac, rs17716310 is highly suggested to be a
regulatory variants belonging to an active enhancer [47, 48]. It is approximately 107 kb
upstream of the closest gene PITX1, which has been reported as a tumor suppressor downregu-
lating the RAS pathway [33], activating TP53 [49] and tuning telomerase activity [50]. In addi-
tion, lower PITXI expression has been found in human cancer tissue samples and cell lines
[35-37], and associated with poor survival in CRC patients [51]. On the other side, in a online
database HaploReg [52], rs17716310 was indicated to change the binding motif of p300 that
functions as a transcriptional coactivator and histone acetyltransferase regulating gene expres-
sion by remodeling chromatin [53]. The variant might alter the binding site of some transcrip-
tion factor(s), and impact on interaction between this active enhancer and the downstream
promoter of PITX1, therefore impair transcription and expression of the suppressive gene, and
consequently facilitate CRC tumorigenicity and susceptibility. As for the interaction with
smoking found in multiplicative model, it might be due to the relations between smoke status
and RAS pathway, TP53 and telomerase activity [54-57] in which PITX1 was involved. How-
ever, the assumption needs further functional experiments to be verified.

The application of epigenetic biofeature information such as histone modification ChIP-seq
data to identify candidate enhancers have represented a useful tool to identify candidate func-
tional SNPs in regulatory regions [58, 59], and databases such as UCSC and Encode have pro-
vided easy access to massive amounts of relevant data. Integrating newly arisen epigentics and
traditional molecular epidemiology could be an effective approach to help interpreting GWAS
resluts and discover causal variants for diseases in post-GWAS studies. Applying similar strat-
egy to other CRC GWAS regions should assist in deeper understanding of CRC risk.

Still, several limitations should be acknowledged here. First, the strategy of retrieving candi-
date polymorphisms depended on the prediction from ChIP-seq data of two CRC cell lines,
which was not rigorous enough to define exact regulatory elements, and not comprehensive
enough to discover all functional SNPs inside. Second, the sample size of our case-control
study was relatively small. Third, insufficient environmental and clinical information restricted
us to further investigate the interactions between gene and other factors. Forth, lacking of func-
tional experiments, biological reality beneath the statistically significant association we
reported is uncertain.
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In summary, we discovered a probably regulatory SNP in high LD with the GWAS tagSNP
that is associated with CRC risk in Chinese population. Systematic researches on more suscep-
tibility loci with greater sample sizes and follow-up functional analyses are warranted to iden-
tify causal variants and elaborate the biological mechanism of genetic etiology.
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