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Abstract
Toxoplasmosis is a zoonotic disease caused by the protozoan parasite Toxoplasma gondii. Infection in humans has usually 
been related to the consumption of raw, undercooked or cured meat. The aim of this study was to develop a droplet digital 
polymerase chain reaction (ddPCR)-based assay for the detection and quantification of T. gondii in meat samples. To optimize 
the ddPCR, T.gondii reference DNA aliquots at five known concentrations: 8000 cg/µl, 800 cg/µl, 80 cg/µl, 8 cg/µl were used. 
Moreover, results obtained by ddPCR and quantitative PCR (qPCR) were compared using 80 known samples (40 positive and 
40 negative), as well as 171 unknown diaphragm tissue samples collected at slaughterhouses. The ddPCR showed a sensitiv-
ity of 97.5% and a specificity of 100%, with a detection limit of 8 genomic copy/µl of T. gondii. A nearly perfect agreement 
(κ = 0.85) was found between results obtained by ddPCR and qPCR for both positive and negative known samples analysed. 
On the 171 diaphragm tissue samples from field, 7.6% resulted positive by ddPCR and only 1.2% by qPCR. Therefore, this 
innovative method could be very useful for the detection of T. gondii in meat samples, aiming to prevent human infections.
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Introduction

Toxoplasmosis, caused by the intracellular protozoan Toxo-
plasma gondii, is one of the most common parasitic infec-
tion in animals and humans worldwide (Almeira and Dubey, 
2021). Domestic and wild felids are the definitive hosts of 
this parasite and shed in the environment the oocysts that 
become infective after sporulation, representing a risk for 
other definitive or intermediate hosts (potentially all the 

warm-blooded animals, including birds, marine mammals 
and humans) (Dubey et al., 2020).

As reported by FAO/WHO (2014), toxoplasmosis is con-
sidered one of the most important food-, water- and soil-
borne diseases. It is estimated that approximately two billion 
of people are infected with T. gondii (Almeria and Dubey, 
2021). In a report on foodborne diseases by European Food 
Safety Authority (EFSA), T. gondii was ranked third in 
Europe (EFSA, 2018).

The main routes of infection are ingestion of: (i) food or 
water contaminated with sporulated oocysts (e.g. vegetables, 
fruit and molluscan shellfish); (ii) uncooked or undercooked 
meat containing tissue cysts (Ghozzi et al., 2017; Caradonna 
et al., 2017; EFSA, 2018). Moreover, tachyzoites excreted 
in milk could be a source of infection. Indeed, outbreaks of 
toxoplasmosis associated with consumption of unpasteurized 
goats’ milk have been reported (FAO/WHO, 2014; EFSA, 
2018; Almeria and Dubey, 2021). Tachyzoites can also be 
transmitted vertically from mother to foetus or via organ 
transplants (Smith et al., 2021).

Although in immunocompetent people toxoplasmosis can 
usually be asymptomatic or mild symptomatic, this parasite 
can cause severe consequences in immunocompromised 
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hosts, i.e. ophthalmitis, encephalitis, pneumonitis and myo-
carditis which can also be fatal (Smith et al., 2021). More-
over, an association between T. gondii infection and neu-
ropsychiatric disorders, as well as personality changes have 
been reported in several studies (Chaudhury and Ramana, 
2019; Almeria and Dubey, 2021). If women become infected 
during the pregnancy period, miscarriage, stillbirth or con-
genital defects may occur that can be immediately visible 
in the newborn or may develop during their lifetime (e.g. 
neurological problems, mental retardation, deafness and/or 
ocular lesions) (Almeria and Dubey, 2021).

In animals, symptoms may vary depending on the species. 
Tachyzoites can be transmitted vertically especially in sheep 
and goats. However, as in humans, abortion, stillbirth and 
neonatal death have been reported, mostly in small rumi-
nants, causing economic losses for farmers (Almeria and 
Dubey, 2021). No confirmed clinical toxoplasmosis reports 
have been reported in cattle (Lindsay and Dubey, 2020).

Several direct and indirect techniques have been used to 
detect T. gondii in intermediate hosts and in food products. 
Among direct techniques, cat and mouse bioassays are the 
reference methods for assessing viability of the parasite. 
However, these tests are not easy to use, considering the 
long time to obtain results and ethical issues, as well as costs 
(Guo et al., 2015; EFSA 2018; Almeria and Dubey, 2021). 
Cell cultures can be a valid alternative to bioassays, but they 
are limited used and protocols are described mainly for fluid 
samples, while meat homogenated samples gave variable 
results (Warnekulasuriya et al., 1998; EFSA 2018, Opsteegh 
et al., 2020; Almeria and Dubey, 2021).

Home-made or commercially available indirect serologi-
cal tests, e.g. immunofluorescence assay (IFAT), enzyme-
linked immunosorbent assay (ELISA), latex agglutination 
tests (LAT), modified agglutination tests (MAT) and hemag-
glutination assay (HA), are most commonly used to identify 
T.gondii positive farms and individual animals, especially 
for epidemiological surveys on a large number of samples 
(EFSA, 2018; Almeria and Dubey, 2021). Meat juice has 
been proven to be an excellent matrix for serological stud-
ies on T. gondii in different host species, i.e. sheep, pigs, 
wild boars, cattle and chickens (Meemken and Blaha, 2011; 
Basso et al., 2013; Meemken et al., 2014; Bacci et al., 2015; 
Vismarra et al., 2016, 2017; Slany et al., 2016; Felin et al., 
2017; Schares et al., 2018; Olsen et al., 2020; Gazzonis 
et al., 2020).

Moreover, new serological tools have been developed for 
the detection of T. gondii in chickens, using Luminex tech-
nology (Fabian et al., 2020), a luciferase-linked antibody 
capture assay (LACA) (Duong et al., 2020) or microarrays 
to detect antibodies in meat juice and serum (Loreck et al., 
2020).

The molecular biology methods are the most widely 
used direct techniques. Several PCR protocols have been 

described: end-point, nested PCR and real-time PCR (qPCR) 
to amplify the B1 gene or the 529 bp repeat element that 
are the most used targets (Reischl et al., 2003; EFSA, 2018; 
Almeria and Dubey, 2021). To increase the sensitivity of 
PCR-based diagnostic methods, a magnetic-capture-(MC-) 
real-time PCR for detection of T. gondii in meat was devel-
oped by Opsteegh et al. (2010), applied to sheep and chicken 
meat by Schares et al. (2018) and improved by Gisbert 
Algaba et al. (2017) for diagnosis in pork meat. Moreover, 
some loop-mediated isothermal amplification (LAMP) pro-
tocols have also been developed for the early detection of T. 
gondii as alternative method to the above-mentioned PCR 
methods, to increase the sensitivity of available diagnostic 
techniques (Zhang et al., 2009; Lin et al., 2012; Qu et al., 
2013; Zhuo et al., 2015). A commercialized LAMP assay 
is available for the diagnosis of toxoplasmosis in humans 
(Varlet-Marie et al., 2018). Moreover, an adaptation of the 
LAMP technique has been combined with a lateral flow dip-
stick chromatographic detection system for a rapid visualiza-
tion of results to detect oocysts in vegetable products (Lalle 
et al., 2018).

However, the development of new more sensitive and 
specific diagnostic tools is still ongoing. The droplet digital 
polymerase chain reaction (ddPCR) is a new PCR method 
that provides absolute and direct quantification of target 
DNA, without the need of a standard curve like the qPCR, 
with a higher sensitivity than other PCR methods (Hindson 
et al., 2011, 2013).

The ddPCR has been successfully used for detection of 
different parasites, e.g. Cryptosporidium in different ani-
mal hosts and in humans, Echinococcus multilocularis in 
meadow voles and deer mice, Dirofilaria immitis in dogs, 
Cytauxzoon felis in cats, gastrointestinal nematodes and 
Trichuris spp., in sheep and cattle, Eimeria spp. Ascaridia 
galli and Heterakis gallinarum in chickens, Babesia microti, 
Babesia duncani, Plasmodium spp., Strongyloides sterc-
oralis and Schistosoma japonicum in humans (Yang et al., 
2014; Wilson et al., 2015; Weerakoon et al., 2016; Srisutham 
et al., 2017; Baltrusis et al., 2019; Mahendran et al., 2020; 
Yu et al., 2020; Shang Kuan and Pichard, 2020; Kao et al., 
2021; Tarbiat et al., 2021; Snyder et al., 2021; Iamrod et al., 
2021; Massolo et al., 2021).

The aim of this paper is to develop and validate a new 
ddPCR assay for detection and quantification of T. gondii 
DNA in meat of intermediate hosts.

Materials and methods

Preparation of DNA samples

To optimize the ddPCR, specific reference strains were 
obtained from the American Type Culture Collection 
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(ATCC). The stock solution of Toxoplasma gondii ATCC 
50174D contained ~ 2 ×  105 cg/µl genome equivalent.

Twenty-five grams of 80 negative samples of minced 
meat from cattle was homogenized by a stomacher, then 
total DNA was extracted, using a QIAamp DNA Mini kit 
(Qiagen, Hilden, Germany), according to the manufacturers’ 
instructions. The negativity of the samples used was evalu-
ated using the qPCR protocol suggested by the National Ref-
erence Centre for toxoplasmosis (Palermo, Italy).

DNA concentration was determined by a Biophotometer 
(Eppendorf, Hamburg, Germany), then samples were diluted 
to be analysed by ddPCR at five concentration levels: 8000 
cg/µl, 800 cg/µl, 80 cg/µl, 8 cg/µl, to evaluate the limit of 
detection at 95% of probability  (LOD95).

Sensitivity was determined using 40 DNA samples 
extracted from negative minced meat experimentally con-
taminated with DNA from the T. gondii ATCC. Ten repli-
cates were prepared for each concentration. Forty samples 
inoculated only with sterile water were used as negative 
controls.

Optimization of the ddPCR

Primers and probe (Applied Biosystems, Foster City, CA, 
USA) used to amplify the region Toxo-529 bp repeat ele-
ment of the parasite were: forward AF1 CAC AGA AGG GAC 
AGA AGT; reverse AF2 TCG CCT TCA TCT ACA GTC; probe 
FAM CTC TCC TCC AAG ACG GCT GG BHQ (Pepe et al., 
2021). Their specificity was evaluated in silico using the 
NCBI nucleotide BLAST tool and by ddPCR using positive 
samples for another abortive agent, Neospora caninum.

The annealing temperature for T. gondii was optimized 
using a thermal gradient (specifically, 56, 56.4, 57.2, 58.4, 
59.8, 61, 61.7, and 62 °C temperatures were tested) in a 
CFX96 (Bio-Rad, Hercules, CA, USA), before developing 
the ddPCR.

The ddPCR was performed using the QX200 system 
(Bio-Rad, Hercules, CA, USA). The mastermix was pre-
pared in a total volume of 20 μl, mixing 10 μl of ddPCR 
Supermix for probes (Bio-Rad, Hercules, CA, USA), 0.5 µM 
forward primer, 0.5 µM reverse primer, 0.25 µM probe and 
35–50 ng for reaction of DNA (Pepe et al., 2021). The reac-
tion mixture was transferred to the DG8 cartridge (Bio-Rad, 
Hercules, CA, USA). A volume of 70 μl of droplet genera-
tion oil was added into the oil well and droplets were formed 
in the droplet generator (Bio-Rad, Hercules, CA, USA). 
Then, 40 μl of droplet-partitioned samples were transferred 
to a 96-well plate and sealed with the specific device. The 
PCR amplification was carried out on a CFX96 instrument 
(Bio-Rad, Hercules, CA, USA) with the following thermal 
profile: 96 °C for 10 min followed by 45 cycles at 98 °C for 
30 s, 58.5 °C for 1 min and a final stage at 98 °C for 10 min. 
After thermal cycling, the 96-well plate was read in the 

QX200 Droplet Reader, based on positive droplets, accord-
ing to the Poisson distribution. QuantaSoft software was 
used to count the PCR-positive and PCR-negative droplets 
to provide absolute quantification of the target DNA. The 
quantification measurements of each target were expressed 
as the number of genomic copies per 1 µl of reaction.

Intra-laboratory repeatability validation was performed 
by different operators to verify the robustness of the estab-
lished ddPCR method, calculating the coefficient of varia-
tion (CV%) between the assays. Serial dilutions of T. gondii 
ATCC 50174D genomic DNA from 2 ×  105 to 2 gc/µl were 
analysed.

To evaluate the performance of the ddPCR, the 80 pre-
pared samples (40 negative and 40 positive) were also ana-
lysed by qPCR, according to the protocol described in Pepe 
et al. (2021).

Validation of the developed ddPCR

Overall, 171 diaphragmatic tissue samples (60 cattle, 40 buf-
faloes, 34 sheep and 37 pigs) collected in slaughterhouses 
were used for ddPCR validation. An aliquot of 25 g of each 
sample was weighted and subjected to DNA extraction with 
the QIAamp DNA Mini commercial kit (Qiagen, Hilden, 
Germany).

DNA samples were analysed by qPCR (Pepe et al., 2021) 
and ddPCR (as described above) to compare the results 
obtained.

The Standards for Reporting of Diagnostic Accuracy 
Studies (STARD) checklist (https:// www. equat or- netwo rk. 
org/ repor ting- guide lines/ stard/) was used to report results 
on performances of techniques (Cohen et al., 2016).

Statistical analysis

The intra-assay CVs for each dilution level (8000, 800, 80 
and 8 cg/ml) and overall were calculated by dividing the 
standard deviation/the arithmetic mean concentration value 
[(CV% = standard deviation [SD]/mean value for each 
level) × 100].

Sensitivity, specificity, negative and positive predictive 
values (NPV and PPV) were calculated for ddPCR, consid-
ering the Rt-PCR as gold standard. The agreement between 
qPCR and ddPCR was calculated using Cohen’s κ statistic 
(Thrusfield, 2007).

The κ measure was interpreted as follows: 0, no agree-
ment; 0.01–0.20, poor agreement; 0.21–0.40, fair agreement; 
0.41–0.60, moderate agreement; 0.61–0.80, substantial 
agreement; and 0.81–1.0, nearly perfect agreement (Thrus-
field, 2007).

The 95% confidence interval (95% CI) was calculated 
using the free online software “Sample Size Calculator” 
(Creative Research Systems, CA, USA).

https://www.equator-network.org/reporting-guidelines/stard/
https://www.equator-network.org/reporting-guidelines/stard/
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Results

Optimization of the ddPCR

The optimal annealing temperature for ddPCR was 
58.5 °C. This temperature was chosen considering the 
best differentiation of fluorescence between positive and 
negative samples and avoiding unspecific amplification. 
No cross-reactions with other parasites, as N. caninum 
were found in silico and ddPCR assays.

The  LoD95 obtained for ddPCR was 8 gc/µl in 
ddPCR (Fig. 1). The sample was considered positive if 
showed ≥ two droplets. No positive droplets were detected 
in the samples used as negative controls. The number 
of droplets generated for reaction ranged from 8985 to 
13,940, with an average of 11,384 droplets. Reactions 
with more than 8000 accepted droplets for well were used 
for analysis. The ddPCR data revealed good separation 
between negative and positive droplets with few interface 
droplets supporting a high primer specificity and reaction 
efficiency. At high concentrations (> 10,000 gc/µl), drop-
lets were positively saturated, making the Poisson algo-
rithm invalid and resulting in a relative narrower dynamic 
range than qPCR.

The sensit ivi ty of ddPCR was 97.5% (95% 
CI = 85.3–99.9) and specificity 100%. The performance 
of ddPCR is reported in Table 1. An overall CV% = 9.4 was 
calculated for all the ddPCR positive replicates (8000 gc/
µl CV% = 3.9, 7800 cg/µl CV% = 2.7, 80 cg/µl CV% = 7.4, 
8 cg/µl CV% = 23.6). No significant intra-laboratory vari-
ation in results was reported (CV% < 0.1).

A nearly perfect agreement (κ = 0.85; p < 0.0001) was 
found between results obtained by ddPCR and qPCR for 
positive and negative samples analysed in the development 
phase. In Table 2, there are reported concentration values 
obtained by ddPCR and Ct values obtained by qPCR for 
each level tested.

Validation of ddPCR

Of the 171 samples examined, the qPCR reference 
method detected T. gondii in only two samples (1.2%; 
95% CI = 0.2–4.6) while ddPCR detected 13 positive sam-
ples (7.6%; 95% CI = 4.3–12.9). The positive samples not 
detected by qPCR showed concentrations ranging from 0.3 
to 17.1 gc/µl. None of the samples examined, showed an 
inhibitory effect on PCR, as evidenced by the results of the 
Internal Amplification Control (IAC).

Discussion

The European Food Safety Authority (EFSA) has sug-
gested that meat-borne transmission accounts for around 
60% of human T. gondii infections (EFSA, 2018; Almeira 
and Dubey, 2021). The main sources of contaminated meat 
are pork and mutton (Almeira and Dubey, 2021). Although 
different PCR protocols (i.e. PCR end-point, nested, semi-
nested and qPCR) have been developed to detect T. gondii 
DNA in meat, many published studies have shown that this 
molecular approach is not very sensitive, due to the inhomo-
geneous distribution of T. gondii tissue cysts and the small 
size of the sample used for the analysis (Opsheegh et al., 
2010; EFSA, 2018).

For these reasons, more innovative and alternative meth-
ods have been developed to increase sensitivity, e.g. the 
magnetic capture-PCR (mcPCR) and LAMP (Herrmann 
et al., 2012; Dubey et al., 2021).

In this study, promising results were obtained by ddPCR 
(7.6% of positive samples to T. gondii vs 1.2% obtained 
by qPCR). This innovative approach, like qPCR, does not 
require sequencing of amplified products, because fluores-
cent-labelled, target-specific probes are used to recognize a 
desired target.Fig. 1  Amplification plot obtained to evaluate the  LOD95 in ddPCR

Table 1  Performances of 
ddPCR for T. gondii detection 
and quantification

Performance ddPCR
(%; 95% CI)

Sensitivity 97.5; 85.3–99.9
Specificity 100; 89.1–99.8
NPV 97.6; 85.6–99.9
PPV 100; 89.1–99.8
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The main advantage of the ddPCR technique is based 
on water–oil droplet emulsion technology to distribute the 
sample solution into ~ 20,000 partitions, increasing the 
sensitivity, accuracy and precision to detect and quantify 
also small quantity of the target to amplify (Kao et al., 
2021). Moreover, no standard curve is necessary to quan-
tify DNA, indeed droplets contain more target copies and 
the absolute count can be calculated using Poisson statis-
tics, permitting to evaluate also small differences in target 
DNA copy numbers among samples (Hindson et al., 2011). 
Therefore, the ddPCR is more reproducible than qPCR, 
indeed it is less operator or laboratory dependent, because 
there is a lower possibility of errors related to pipetting 
steps to prepare serial dilutions or misinterpretation due 
to incorrect preparation of standard curve, so a reliable 
comparison of quantification of target DNA copies can be 
performed in different laboratories (Huggett et al., 2008). 
Moreover, the ddPCR is relatively insensitive to potential 
PCR inhibitors, such as providing lower variation between 
replicates; therefore, ddPCR is more repeatable than qPCR 
(Campomenosi et al., 2016).

Further studies will be needed to confirm our prelimi-
nary results and to analyse other matrices. Indeed, a limi-
tation of this study is the small number of the positive 
samples found during the validation phase under “field 
conditions”.

However, this innovative approach could be very useful 
for a rapid detection of small amounts of T. gondii in meat, 
as well as in other food matrices, e.g. milk, cheese, vegeta-
bles and molluscs, so to perform valid control strategies, 
aimed to reduce the risks of toxoplasmosis infection in ani-
mals and humans, according to the One Health approach.
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