
Commentary
What does indirect calorimetry really tell us?
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Accurate and sensitive assessments of energy expenditure (EE) in mice changes in the balance of gut microbial species could differentially

are essential given their importance to research on the molecular
mechanisms of energy homeostasis [1]. EE phenotyping in mice is
widely available using state-of-the-art equipment in many laboratories,
including those in regional centers in the United States of America
(http://www.mmpc.org/, http://www.niddk.nih.gov/research-funding/
research-programs/Pages/nutrition-obesity-centers.aspx) and Europe
(http://www.eumodic.org/, http://www.mouseclinic.de/). These and
many other laboratories worldwide employ respirometric indirect
calorimetry, which estimates EE based on mathematical relationships
[2] that link respiratory oxygen and carbon dioxide exchange to
metabolic heat production. Direct calorimetry, the ‘gold standard’
method for quantifying metabolic rate [2], measures the heat gener-
ated by the test subject, and was the method employed in the research
using pre-1940s technology that validated respirometry based on
studies involving humans and a limited number of other species [3].
Surprisingly, despite myriad studies using respirometry in mouse
models, this technique does not appear to have been validated against
direct measurements of EE in mice until recent work by Burnett and
Grobe [4]. Now a second study by these authors in the current issue of
Molecular Metabolism [5] indicates that while the two methods
generate similar values (probably indistinguishable if measured using
the old technology), respirometry may promote erroneous conclusions
regarding the impact of diet on EE.
In this work [5], respirometry was employed in conjunction with
simultaneous direct calorimetry to quantify resting EE (REE) in C57BL/
6J mice, the most commonly used mouse strain for metabolic
research. The findings confirm and extend previous work [3,4] ques-
tioning our reliance on the indirect method. Specifically, respirometry
underestimated REE by w7% when the mice were maintained on a
standard chow diet, consistent with previous work in which respi-
rometry underestimated REE by w10% in chow-fed C57BL/6J mice
[4]. When the mice were switched to a high-fat diet, however, respi-
rometry indicated a significant increase of REE in comparison with the
chow-fed state, whereas direct calorimetry did not [5]. To further
complicate matters, when the mice were switched back to the chow
diet, both methods indicated a reduction of REE [5].
Discrepancies between direct and indirect measures of EE can reflect
several sources. Two likely explanations are 1) measurement error and
2) erroneous assumptions about the mathematical relationships be-
tween metabolic rate and respiratory gas exchange. A potential
explanation for 2) involves the gut microbiota comprised of trillions of
microbes dominated by anaerobic bacterial species [6]. The aggregate
metabolic rate of anaerobic species cannot be measured by respi-
rometry, but is captured by direct calorimetry [1e3]. Accordingly,
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affect EE as measured by direct and indirect calorimetry. Studies to
test this hypothesis are needed.
Additional variables include nitrogen turnover and microbial methane
production, factors that can affect respirometric REE calculations [7].
These measures are rarely employed, and methane production has
long been assumed to represent a minor component of energy flux in
monogastric mammals. Combined with potential complications
involving other intestinal gasses (principally hydrogen, hydrogen sul-
fide, and carbon dioxide) generated by enteric bacterial fermentation of
unabsorbed carbohydrates [8], the gut microbiota may indeed have
effects on indirect measures of EE that are both significant and
complex. In addition to the potential role of gut flora, uncontrolled
diabetes and other models of disordered energy homeostasis can
cause serious violations of key assumptions of respirometry [1,2,9].
These considerations indicate that the mathematical relationships
between whole body oxygen uptake, carbon dioxide release, and
metabolic heat production may be more complex and less predictable
than generally assumed by practitioners of respirometric indirect
calorimetry. Indeed, technically rigorous research [3] disclosed large
errors in respirometric EE estimates in non-standard laboratory spe-
cies (dove, quail, and Kangaroo rats).
Burnett and Grobe [4,5] measured REE to preclude the need for food,
water, and waste management, factors that impact the evaporative
heat loss component of direct calorimetry [2]. Studies that obviate this
problem will be necessary to test the validity of respirometry as it
pertains to total 24-h EE. This need will require development of “live
in” direct/indirect calorimeter systems.
The current study [5] raises important concerns for murine EE phe-
notyping. The existence of brown adipose tissue in adult humans and
the discovery of inducible thermogenic adipose tissue (beige fat) have
stimulated interest in the potential value of drugs that increase EE as
targets for obesity drug development [10], and mice will play a pivotal
role in this effort. Because even small differences of energy balance
can have a marked impact on energy storage if they are sustained over
time, it is imperative to use methods that accurately measure EE within
groups of mice having different characteristics while also detecting
small within-group changes due to pharmacological or other inducible
interventions. These challenges also require valid methods to adjust EE
for differences in body mass/composition [1] and http://www.mmpc.
org/shared/regression.aspx. The finding that respirometry may be
subject to systematic errors that vary with diet [5] indicates that the
mouse metabolic phenotyping field should be mindful of the peril of the
“streetlight effect”, the tendency to search for one’s lost keys based on
where the light is best [11].
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