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The most common human parasite as per the medical experts is the malarial disease, which is caused by a protozoan parasite, and
Plasmodium falciparum, a common parasite in humans. A microscopist with expertise in malaria diagnosis must conduct this
complex procedure to identify the stages of infection. This epidemic is an ongoing disease in some parts of the world, which is
commonly found. A Kaggle repository was used to upload the data collected from the NIH portal. The dataset contains 27558
samples, of which 13779 samples carry parasites and 13779 samples do not. This paper focuses on two of the most common deep
transfer learning methods. Unlike other feature extractors, VGG-19’s fine-tuning and pretraining made it an ideal feature
extractor. Several image classification models, including VGG-19, have been pretrained on larger datasets. Additionally, deep
learning strategies based on pretrained models are proposed for detecting malarial parasite cases in the early stages, in addition to

an accuracy rating of 98.34* 0.51%.

1. Introduction

The leading cause of infection in all parts of the world is
malaria, a deadly disease. The rapid consumption and high
mortality rate of this epidemic condition have been
documented throughout history. The global death toll
from malaria was estimated at 4,29,000. In 2015, there
were an estimated 3,03,000 children under the age of five
years, and prenatal women are the most at risk of death
[1]. By detecting this disease at an early stage, the death
rate can be reduced and prevented. Researchers face a
challenge in providing the most accurate parasite detec-
tion in the shortest amount of time, cost, and effort.
During the last few decades, this visual inspection has
played a vital role in being a tool in the health check field

for decision making. A thick blood smear can identify
malaria parasites in blood samples [2]. This shows that it is
close to eleven times more sensitive than a thin blood
smear for the rapid detection of parasites. It is often used
to test the development stages to create blood smears
placed on a microscope glass slide. To confirm malaria
infection, a pathologist uses a light microscope to identify
changes in the size, shape, and perception of various
RBCs. The pathologist’s understanding of the disease
depends on the accuracy of a plasmodium microscopic
report. This technique is arduous and inefficient due to
uncertainty, which can cause erroneous and contradictory
diagnoses, as well as inappropriate medication and, in rare
situations, the death of the patient and specimens of
infected and noninfected microbes.


mailto:sitesh@wollegauniversity.edu.et
https://orcid.org/0000-0003-4588-4105
https://orcid.org/0000-0001-6878-0224
https://orcid.org/0000-0002-7108-0808
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/9171343

A mechanism for detecting malaria infection has been
proposed using supervised learning. The methods for
detecting malaria parasites were demonstrated by using in
vitro culture image samples [3]. The samples developed in a
laboratory do not contain substances other than WBCs,
platelets, or parasites. When considering the severity of
malaria depending on the number of deaths caused by the
disease, it is reasonable to accept possible minor errors
caused by an automated method during execution [4, 5].
Since the advent of deep learning techniques, feature ex-
traction has been made far more efficient than traditional
methods. Because deep learning methods still require
trained experts and advanced techniques for calculating
disease prediction, most of these methods still require ef-
ficient feature extraction optimization. There are many
layers and levels of nonlinear mapping in CAD schemes
based on ANN architecture. As a result of the layer-wise
network of hidden layers, gradient-based optimization
produces poor results [6, 7]. Microscopic diagnosis requires
extensive training, experience, and skills. In rural areas
where malaria is prevalent, manual microscopy has not
proven to be an effective screening tool when performed by
nonexperts [8-10]. This model was intended to enhance the
model’s performance by modifying the network architecture
and hyper-tuning the features to achieve a better-performing
model. To determine the key features in the future, this paper
focuses on the network architecture. The basic VGG-19
model obtains 85% accuracy, but after fine-tuning the model
and applying the data augmentation technique to the
training dataset, it can attain 97.14%.

The following is the sequence under which this manu-
script is structured. Section 2 represents the related work and
data acquisition. Section 3 illustrates the proposed deep
transfer learning methodology. Section 4 discusses the
findings. Section 5 concludes the paper.

2. Related Work

There are several methods of identifying parasite RBCs.
Purwar et al. preprocessed by utilizing local histograms [11].
The Hough transform and morphological operations are used
for segmentation and classification of diseased and clean cells.
Di Ruberto et al. employed a statistical k-means clustering
algorithm [12]. Using thresholding, Ritter and Cooper [13]
have segmented cells, separated overlaps, and modified di-
vision lines according to Dijkstra’s algorithm. Diaz et al. [14]
applied efficiency to develop templates from parasite-stained
images, which would then be used to classify each cell’s in-
fection life stages. RBCs can be segmented from the back-
ground in blood images using a variety of techniques. Diaz
et al. [15] determined whether the RBCs were infected by the
parasite from the host or not by separating them. Savkare et al.
[16] and Ross et al. [17] analyzed grayscale images using
k-means and k-medians to define the overall clusters into two
parts. The significance of supervised learning is to identify
classes of sample data. These disease stages were identified
with a blend of ML algorithms. Krizhevsky et al. [18] built a
well-known CNN architecture, that is, the ALEX net, to
compete with ImageNet and bagged awards. Quinn et al. [19]
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compared the CNN with a classifier using trees, and the
accuracy rate was determined by analyzing the middle of the
operating region. To identify blood cells on blood smear
images, Chowdhury et al. [20] adopted a CNN approach to
detect infections that were affected by the blood smears.
Raviraja et al. [6] analyzed pretrained CNN models for
malaria detection in blood cell images, namely, DenseNet121,
VGG-16, Alexnet, ResNet50, FastAl, and ResNet101, Meng
et al. [21]. With a high precision of 97.5%, ResNet50 excelled
over the other CNN models [22]. To conclude, many deep
learning algorithms for detecting malaria using cell images
have been presented by Yue [23]. Many of them used large
pre-trained CNN models to enhance the accuracy of classi-
fication, whereas others used customized CNNs to minimize
the computational time [24].

The implications of substantial quantities of improperly
classified data in medical image classification are catastrophic,
and the objective of proposing a medical diagnosis tool is
wrecked. In addition to efficiency, additional parameters such
as F1 score [25, 26], area under the curve (AUC) [27, 28],
sensitivity [29, 30], and specificity [31-33] are vital in ana-
lyzing various approaches. A random sample of cell images
infected/not infected with malaria is shown in Figure 1.

2.1. Data Acquisition. The data was obtained from the
National Institutes of Health portal and uploaded to a Kaggle
repository. There are 27558 cell images in the dataset, out of
which 13779 are malaria-infected cell images and another
13779 are malaria-free cell images. The random samples
were collected and separated into three sets: training, testing,
and validation. Next, 8000 images were deployed for training
and 3000 images for validation for each class. These 11000
images have been used to train models. Subsequently, these
were used along with the remaining 2779 images for each
class as test data to evaluate the proposed models to perform
on images that have never been seen before, because the
original dataset included images with different dimensions,
and it was scaled to equal dimensions before splitting the
data. Most of the images were scaled to 128 x 128 pixels with
three channels of RGB. Having all images equal will allow the
neural networks to learn more quickly and with minimal
mistakes in the future. The outcomes obtained excelled all
existing methods, so data augmentation was used to improve
the results. A few of the images in the class folders at the
beginning are significantly different than the ones at the end.
As a result, this was used to sample the data at random, as
this will allow the proposed models to learn more diversified
features from both classes, which will reduce overfitting and
make our model more extensible to data.

3. Proposed Model

Morphological image processing is used to eliminate noise
and recreate object features (see Figure 2). To achieve deep
feature extraction and transfer learning, the convolutional
layers are frozen. To classify RBCs, a fine-tuned pretrained
CNN model with image augmentation is proposed (see
Figure 3).
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FIGURE 1: A random sample of cell images infected/not infected with malaria [2].
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FIGURE 2: Morphological filters applied to malaria cells.

3.1. Transfer Learning. The paths, according to
K. Fukushima, are the beginning of a deep convolutional
neural network architecture. The idea has been around for a
while, but due to the lack of efficient high computational
power, it has yet to gain momentum. In recent times,
graphics processing units have advanced significantly to-
ward high-performance computing technologies. Compu-
tational intelligence techniques have gained prominence as a
result of their high possibility. CNN is the most popular type
of this approach, which is composed of the layers described
below.

Three main CNN layers were used in this algorithm,
namely, “convolution,” “pooling,” and “fully connected
layers.” Figure 3 exhibits a schematic representation of a
model with one conventional layer and one maximum layer.
In the feature map, activation functions are used to increase
the nonlinearity of the network ReLU. A neuron with the
sigmoid activation function appears in the output layer of
the model. When all negative values in the activation map
are replaced with zero, ReLU activation completely cancels
out all negative values. A binary classification model is built
using sigmoid activation with a loss of function of binary
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FIGURE 3: Proposed CNN-model.
cross-entropy. It has a learning rate of 0.01. In this case, the Accuracy
function gives a value between 0 and 1. Following the 1.000
compilation of the dataset, the model will be trained based 0.975 |
on the inputs received from the training samples, which will .
map the inputs to the outputs. It is a matter of choosing a set u 0:950 1 /\M\—/\/v
of weights that is best suited for resolving these problems. =2 0925 -
&
£ 0.900
3.2. Predictable Method. The initial model is trained by this 3 0.875 4
network model using traditional methods of training for a
given number of epochs. Model accuracies of 99.80% during 0.850 4
training and 95.60% during validation were unchanged. 0.825
Figures 4 and 5 show the exactness and failure graphs of the ' ' ' ' '
model. AUC score, specificity, sensitivity, and test accuracy 1 6 1 16 21
Epoch

were used to evaluate the performance. Table 1 depicts an
implementation of the test set, whereas Table 2 exhibits CNN
model architecture. The input layer a =il and output layer
iol =3 and p1 =0, input layer c2d, output layer col =32 and
p1=2896, max input layer mp2d and output layer mo2 =32,
and p1 = 0. The input layer c2d1, output layer c2dol = 64 and
p2=18496, and the input layer mp2dl and output layer
mpol =64 and p2=0. The input layer c2d2, output layer
€202 =128, and p3 =73856. The input layer = m2d2, output
layer = m2do2 =128, and p4=0. The input layer flattened
layer = Fl, output layer flo=28800, and p4=0. Input the
dense layer dl, output layer det5=512, and p5=14746112.
The input layer dropout = dot, output layer dot5 =512, and
p5=0. The input layer dns_1 and output layer dnst5=>512
and p6 = 262656.

3.3. Pretrained CNN Model. Figures 6 and 7, respectively,
demonstrate the accuracy model and performance for the
VGG-19 pretrained model and weights as displayed in
Table 3. The convolutional layers are divided into sixteen
layers, and there are 3 * 3 convolutional filters. The input
layer bl-cl, output layer 1 =64 and parameter pl=1792,
the input layer bl-c2, output layer t1 =64 and parameter
p1=3698, and bl_pool and output t1 =64 and parameter
pl=0. The input layer b2-c1, the output layer 12 =128, and
the parameter p2 =73856. The input layer b2-c2, the output
layer t1 =128, and parameters pl = 147584 and b2_pool and

Training Accuracy
—— Validation Accuracy

FIGURE 4: Model accuracy performance of CNN model.
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FIGURE 5: Model loss performance of CNN model.

output 2 = 1284 and parameter p2 = 0. The input layer b3-c1,
output layer £3=256, and parameters p3=295168, b3_c2
output layer t3=256, and p3=590080, b3-c3 and b3-c4



Contrast Media & Molecular Imaging

TABLE 1: Performance test.

Metrics Performance (%)
Testing-accuracy 95.56
F1 Score 96.45
AUC score 95.45
Sensitivity 96.65
Specificity 95.25

TaBLE 2: Convolution neural network model.

Layer Output Parameter
i1 [(N, 125, 125, iol)] Po
c2d (N, 125, 125, col) Pl
mp2d (N, 62, 62, mpo2) POl
c2d 1 (N, 62, 62, c2dol) P2
mp2d _1 (N, 31, 31, mp2o01) p02
c2d2 (N, 31, 31, c202) P3
m2d_2 (N, 15, 15, m2do) P03

Fl (N, flo) P4

DI (N, det5) 14746112
Dt (N, dot5) p05
dns_1 (N, dnst5) 262656
Dot (N, dot5) dos
dense_2 (N, 1) 513
Total — 15,102,529
Trainable — 15,102,529
Non-trainable — 0

Note: _1=“inputl”, c2d =“convolutional2d”, mp2d =" max_poolint2d”,
c2d_1="“convolutional2d1”, mp2d _1="max_poolint2d1”,
c2d2 =“convolutional2d2 “, m2d_2=“max_poolint2d2 , fI =“Flatten
Layers”, dl=%  dropout”, dt=“ densel”, dns_1="dense2”,
dot=“dropoutl”. iol=“3", col=“  mpo2=° 327, c2dol="“64
mp20l =64 , c202="128 “, m2do =" 128”,flo=" 288007, det5="“512
dot5 =512 %, dnst5 = “ 5127, p0 = “0”, pl = 896”, p01 =“0”, p2 = 18496”,
p02=07, p3 =" 73856", p03 =0, p4=* 0, p05="“0", d05="0".
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FIGURE 6: Accuracy performance of modified CNN model.

output layer t3 =256, and output layer p4 =590080. The b3-
pool and output t3 =256 and p3 =0. The input layer b4-cl,
the output layer t4 =512, and p4=1180160. The input layer
b4-c2, b4-c3, b4-c4 =512 and p4 =2359808. The input layer

5
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FIGURE 7: Loss performance of modified CNN model.

b4-pool and #4 =512 and the output layer p4 =0. The input
layer b5-c1, b5-c2, b5-c3, b5-c4, and ¢5 = 512, and the output
layer p5 =2359808. The input layer fla-1 and the output layer
t5=4608 and p5=0. The input layer dse3 and output layer
dset=512 and p5=2359808. The input layer dtt2 and the
output layer dtt5 =512 and p5=0. The input layer dse4 and
output layer dset5 =512 and p5 =262656. In addition to that,
there are max pooling filters for downscaling and two fully
connected hidden layers with 4096 units each. The
remaining dense layer consists of one thousand units, each
representing one of the image categories in ImageNet. The
dense layer is fully connected, so the last three layers are
skipped, and the five layers are concentrated to use the vggl9
model for feature extraction. This model was built from
scratch using the original datasets that include all 19
trainable layers. The ReLU served as the activation function
for the network. The Adam optimization was used to create
the loss function. The model was built using transfer learning
and using pre-trained frozen layers. Later, this model was
used to generate the output of the images. This was
implemented using the sigmoid activation function as a
simple feature extractor by freezing all five convolutional
blocks to prevent the weights from moving across epochs.
This third model is fine-tuned and is built by freezing the
first three blocks from the image net and then training blocks
four and five from the malarial datasets. To fine-tune the
VGG-model, blocks 4 and 5 were changed so that their
weights are updated each time the model is evaluated. These
preprocessing strategies were applied to this model, which
includes normalization, data augmentation, and standard-
ization. A sigmoid activation function with two methods was
applied to solve the classification problem to gain an output
of 1 for infected and 0 for healthy.

3.4. Image Augmentation with a Fine-Tuned Pretrained
Model. In Figure 8, the existing images from the training
samples were reworked and transformed to create a new,
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TABLE 3: Pretrained convolution neural network model (VGG-19).
Layer Output Parameter
input_2 [(N, 125, 125,3)] 0
bl-cl (N, 125, 125, t1) P1
bl-c2 (N, 125, 125, t1) P1
b1-pool (N, 62, 62, t1) 0
b2-cl (N, 62, 62, 12) P2
b2-c2 (N, 62, 62, 12) P2
b2-pool (N, 31, 31, t3) 0
b3-cl (N, 31, 31, t4) P3
b3-c2 (N, 31, 31, t4) P3
b3-c3 (N, 31, 31, t4) P3
b3_c4 (N, 31, 31, t4) P3
b3-pool (N, 15, 15, t4) 0
b4-cl (N, 15, 15, t5) P4
b4-c2 (N, 15, 15, t5) P4
bd-c3 (N, 15, 15, t5) P4
b4-c4 (N, 15, 15, t5) P4
b4-pool (N, 7, 7, t5) 0
b5-cl (N, 7, 7, t5) p5
b5-c2 (N, 7, 7, t5) P5
b5-c3 (N, 7, 7, t5) p5
b5-c4 (N, 7, 7, t5) P
b5-pool (N, 3, 3, t5) 0
fla_1 (N, t5) 0
Dse-3 (N, dset5) P5
Dt-2 (N, dttt5) 0
Dse-4 (N, dset5) 262656
Dt-3 (N, dt5) 0
Dse-5 (N, 1) 513
Total params: 22,647,361
Trainable params: 2,622,977
Nontrainable: 20,024,384

Note: bl-cl and b1-c2 = “ blockl_convl and blockl_conv2”, b2-c1 and b2-c2 = “ block2_conv1 and block2_conv2”, b3-c1 and b3-c2 and b3-c3 and b3-c4="
block3_convl and block3_conv2 and block3_conv3 and block3_conv4”, b5-c1 and b5-c2 and b5-c3 and b5-c4 and b5-c5 = block5_convl and block5_conv2
and block5_conv3 and block5_conv4”. flal = flatten_1” t5=4608. dse3, dse4, dse5=" dense_3, dense_4, dense_5", dt2=" droupout_2.
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FIGURE 8: Sample augmented images.

modified version of the originals because of rotation,
shearing, translation, zooming, and so on. Figures 6 and 7
illustrate how the random transformation, model accuracy,
and loss of the model are what are required to obtain the
same images every time. The augmentation of the model
accuracy is shown in Figures 9 and 10.

The confusion matrix (FN) is used to evaluate the
number of positive and negative predictions as shown in
Figure 11. The confusion matrix is used to determine
whether a prediction is a truly positive or true negative.

4, Discussion

Individual red blood cell smear images are investigated to
evaluate if they are infected or healthy. The study comprises
a range of pretrained convolutional neural networks with
transfer learning that are fine-tuned and registered on the
malaria dataset. On VGG-19 and Transfer Learning, re-
search shows that different preprocessing approaches like
normalization and scaling do not affect model performance,
however, the data augmentation technique has shown
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FIGURE 9: Augmentation accuracy results.
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FIGURE 10: Augmentation loss results.
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Ficure 11: Confusion matrix results.

encouraging outcomes. The basic VGG-19 model obtains
85% accuracy, but after fine-tuning the model and applying
the data augmentation technique to the training dataset, it
can attain 97.14%, as shown in Table 4. Transfer learning is a

Models Accuracy FI score Precision Recall

Basic
CNN
VGG-19
frozen
VGG-19
fine-tuned

0.9397£0.23 0.9397+0.13 0.9397+£0.19 0.9397 +£0.27

0.9486+£0.13 0.9482+0.12 0.9456+0.15 0.9480+0.12

0.9704£0.06 0.9640+0.06 0.9740+0.07 0.9700 +0.03

TaBLE 5: The performance report of the model classification.

Precision  Recall  Fl score  Support

Healthy sample 0.97 0.96 0.96 4085
Malaria-sample 0.96 0.96 0.95 4173
Micro-average 0.97 0.97 0.97 8158
Macro-average 0.97 0.97 0.97 8158
Weighted-average 0.97 0.97 0.97 8158

wonderful strategy that can be used to create promising
results, according to the research and the performance
analyses depicted in Table 5.

5. Conclusion

The deep learning neural network model was applied to
improve the model’s performance. It was shown that
standardization and normalization had less impact on
classification. The use of data augmentation improved the
model performance and yielded positive results. Models of
VGG-19 and ImageNet were derived from the initial concept
using the combination of transfer learning and parameter
tuning. To determine the key features, this paper has focused
on the network architecture. This was intended to enhance
the model’s performance by modifying the network archi-
tecture and hyper-tuning the features to achieve a better-
performing model.
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