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A B S T R A C T   

Cardiac magnetic resonance quantitative T1-mapping is increasingly used for advanced myocardial tissue 
characterisation. However, cardiac or respiratory motion can significantly affect the diagnostic utility of T1- 
maps, and thus motion artefact detection is critical for quality control and clinically-robust T1 measurements. 
Manual quality control of T1-maps may provide reassurance, but is laborious and prone to error. We present a 
deep learning approach with attention supervision for automated motion artefact detection in quality control of 
cardiac T1-mapping. Firstly, we customised a multi-stream Convolutional Neural Network (CNN) image classifier 
to streamline the process of automatic motion artefact detection. Secondly, we imposed attention supervision to 
guide the CNN to focus on targeted myocardial segments. Thirdly, when there was disagreement between the 
human operator and machine, a second human validator reviewed and rescored the cases for adjudication and to 
identify the source of disagreement. The multi-stream neural networks demonstrated 89.8% agreement, 87.4% 
ROC-AUC on motion artefact detection with the human operator in the 2568 T1 maps. Trained with additional 
supervision on attention, agreements and AUC significantly improved to 91.5% and 89.1%, respectively (p <
0.001). Rescoring of disagreed cases by the second human validator revealed that human operator error was the 
primary cause of disagreement. Deep learning with attention supervision provides a quick and high-quality 
assurance of clinical images, and outperforms human operators.   

1. Introduction 

T1-mapping using cardiovascular magnetic resonance (CMR) imag
ing is a novel approach for myocardial tissue characterisation with 
increasing utility in cardiac diagnostic imaging. Native and post- 
contrast T1-mapping offer quantitative, pixel-wise measures to detect 
changes in myocardial composition. Native T1-mapping reflects signals 
from the intracellular and extracellular compartments, whilst extracel
lular volume (ECV) mapping can indirectly quantify changes in the 
extracellular space, including the myocardium interstitium and coro
nary vascular compartments [1–5]. T1 and ECV mapping enable the 
detection of pathologically important processes related to excess water, 
for instance in oedema and inflammation [6–8], protein deposition [9], 
and other T1-altering substances such as fat [10], iron [11] and a range 
of commonly encountered cardiac conditions [12]. 

T1-mapping and CMR imaging in general are prone to a variety of 
artefacts, which can affect accurate diagnosis. Respiratory motion, for 

instance, poses significant challenges in T1 map reconstruction, and has 
been described as the main source of artefacts in the classic T1-mapping 
techniques based on the Modified Look-Locker Inversion Recovery 
(MOLLI) approach [13]. Respiratory motion can lead to incorrect dis
ease classification, particularly in cases where the myocardium is thin, 
such as healthy females but also in patients with dilated cardiomyopathy 
(DCM) [14]. Motion correction (MOCO) has been proposed to improve 
T1-mapping quality [15]; however, deploying MOCO unselectively 
without motion detection has been shown to introduce new artefacts 
[16,17]. Mis-registering extra-cardiac tissue (such as blood pool, peri
cardial effusion, or fat) into the myocardium can also lead to false di
agnoses. Thus, quality assessment by human operators of the original or 
MOCO data remain an essential part of image analysis, but is 
time-consuming and prone to human error due to subjectivity and fa
tigue. In contrast, a machine learning approach can automate the mo
tion artefact scoring process, prevent unnecessary MOCO on good 
quality T1 maps (which can introduce additional errors), and identify 
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poor quality T1 maps for human adjudication in clinically-robust diag
nostic applications of T1-mapping. 

Deep Convolutional Neural Networks (CNNs) have recently enabled 
unprecedented breakthroughs in image processing. Advanced CNN ar
chitectures such as AlexNet [18], VGG Network [19], Residual Network 
(ResNet) [20], Inception Network [21] have been developed with 
continuous improved accuracy and capacity in classification tasks. The 
utilisation of CNN in CMR image post-processing has become increas
ingly prevalent due to the time-intensive, laborious nature of manual 
methods [22,23]. Limited interpretability of CNN decision making has 
been a chief concern, particularly for clinical applications, to establish 
trust and confidence and to guide the training process. In CMR image 
quality control, if the neural networks focus on features outside of the 
myocardium of interest, such as the chest wall or gastrointestinal (GI) 
motion in artefact scoring of the left ventricle (LV), this could lead to 
false positives and over-fitting. 

Visualisation techniques in CNN provide a way to reveal the atten
tion focus of the neural networks in decision making. Saliency mapping 
[24] and attention maps using class activation maps (CAM) [25] and 
Gradient-weighted CAM (Grad-CAM) [26] have been proposed to make 
the CNN models more transparent. Recent work on trainable [27,28] 
and transferable [29] attention mapping techniques enhance the 
training with additional supervision on the layer activations in natural 
image recognition. We hypothesise that providing additional supervi
sion on layer activation leads to more efficient and reliable training 
mechanisms of neural networks on CMR image analysis tasks. This 
process imitates the procedure of training a human operator by giving 
additional guidance to the neural networks on where to look in addition 
to plain classification scores. 

In this paper, we present a customised CNN instance for the task of 
motion artefact detection in CMR T1-mapping. We modify a multi- 
stream 3D Residual Network (ResNet) for scoring motion, and utilise 
the Grad-CAM [26] attention map technique to reveal which region in 
the image contributes to the scoring. With an ultimate aim for clinical 
applications, beyond observing the attention maps, we further present a 
method to supervise the neural networks to pay particular attention to 
myocardial segments, by introducing an attention supervision module 
and additional cost function. Agreement between scores by machine and 

human operator are compared to evaluate the performance of the neural 
network and the effectiveness of the guided attention technique. Cases 
of disagreement were adjudicated and scored by a second human vali
dator, to analyse whether the error lies with the human operator or the 
machine. 

Novel contributions of this work include a multi-stream CNN ResNet 
classifier customised for T1-mapping motion artefact detection, an 
attention supervision module to guide the training of CNN classifier, and 
a multiple human observer analysis of the scoring results to adjudicate 
human and machine performance. 

2. Methods 

2.1. Cardiac T1-mapping and motion artefact 

Cardiac T1-mapping, based on Look-Locker method, is calculated by 
fitting the T1 relaxation curve to a set of inversion recovery-weighted 
(IRW) images characterised by varying inversion time [30]. The Short
ened Modified Look-Locker Inversion Recovery (ShMOLLI) method ac
quires 7 IRW images within a short 9-heartbeat single breath-hold and 
reconstructs the T1 map accompanied by the map of coefficient of 
explained variance R2 [14] (Fig. 1). The quality of reconstruction hinges 
on perfect pixel-to-pixel correspondence between the constituent raw 
images, so they can be interpreted within the single Bloch 
equation-based relaxation formula. Due to breathing and poor ECG 
triggering, this is not always guaranteed. Thus, an R2 quality control 
map (Fig. 1c and f) is necessary to monitor that samples fit well to a 
mono-exponential T1 relaxation model, as displayed by a uniform white 
appearance of relevant regions of interest in the R2 map (Fig. 1c). 
Conversely, any displacement in IRW images (Fig. 1d) that shifts tissues 
with different relaxation into any pixel reduces the applicability of the 
mono-exponential T1 relaxation equation. This inevitably lowers the 
coefficient of explainable variation, evident in the R2 map as dark bands 
at the affected areas (Fig. 1f, arrowed). R2 is not specific to motion, and 
its reduction is sensitive to many artefact sources, including 
off-resonance, fat inclusion, mistriggering and other factors [31,32], 
usually requiring further investigation by a human operator. 

T1 maps were analysed using a dedicated software MC-ROI 

Fig. 1. Example cases of T1 maps with good quality breath-hold (top row) and affected by motion artefact (bottom row). Selected inversion recovery weighted (IRW) 
images (a, d; only 3 of 7 acquired IRW images shown) are used to calculated T1 maps (b, e), with R2 maps (c, f; R2 - coefficient of explained variance) indicating the 
quality of T1 fitting. Identical myocardial outlines are overlaid to help identify displacements. Mid-ventricular 6 segments based on the American Heart Association 
(AHA) model are plotted on T1 maps. In the good quality case, all IRW images (a) have good pixel-to-pixel correspondence, and the R2 map (c) shows ‘all white’ 
across the left ventricular myocardium and cavity. In the bottom case, motion artefact is evident by the misaligned IRW images (d) (arrowed), and the dark bands in 
R2 map (f) at myocardial region (arrowed). In this case, segments 1, 4, 5, 6 (red text) are rejected by an image analyst. 
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(MyoCardial Regions Of Interest; programmed by SKP in Interactive 
Data Language, version 6.1, Exelis Visual Information Solutions, 
Boulder, Colorado, USA) in accordance to internal guidelines at OCMR 
[7,33]. A trained human operator was instructed to inspect the T1 map, 
R2 map, and the seven IRW images for scoring each myocardial segment 
according to American Heart Association (AHA) segmental model [34] 
for quality and CMR artefacts, including motion, based on the experi
ence in CMR image analysis. Binary per-segment motion artefact labels 
were then extracted from analysed dataset for training and validating 
the neural networks for motion detection. 

2.2. Automated artefact detection with multi-stream CNN image classifier 

To simulate the human procedures in automating the motion artefact 
detection, we customised a CNN to integrate the information in the 7 
IRW images, as well as the T1 and R2 greyscale maps (Fig. 2). The 
original IRW images carry direct information on relative movement with 
added variability introduced by inversion recovery imaging; T1 and R2 
maps display strong but non-specific artificial features of motion. All 
images were cropped centred at the centroid of LV contours based on 
manual user input with a size of 160 × 160 pixels. A typical convolu
tional neural network for classification applied convolution and down- 
sampling on the input images, to learn information ranging from local 
to more global scales and extract high-level features for decision mak
ing. We adopted a 34-layer 3D ResNet [35] architecture and replaced the 
first convolutional layer with three streams, i.e., two 2D convolution 
streams on T1 and R2 maps, and a 3D convolution on the stack of 7 IRW 
images, respectively (Fig. 2a). Kernels in the first convolution layer are 
of a size of 3 × 3x3 with a stride of 1 instead of 7 × 7x7 as used in the 
original ResNet due to the smaller image size. The output features were 
fused into a size of 160 × 160 × 9 and passed to the successive ResNet 
blocks. Each convolution was followed by batch normalisation and 
rectified linear unit (ReLU). The feature maps were down-sampled by 
using a convolutional stride of 2 (Fig. 2) after a few convolutions, to 
learn features at a more global scale. The convolution was changed to 2D 
when the third dimension was exhausted due to down-sampling 
(Fig. 2a). The average pooling was applied following the last convolu
tional layer to produce compact high-level features, which were passed 
to the classification layer - a fully connected layer with sigmoid acti
vations to predict the 6 segmental motion scores. Detailed configuration 

of the network is shown in Table 1 in Appendix A. 

2.3. Attention visualisation and supervision of CNN classifier 

In this section, we describe two attention mapping techniques - sa
liency map [24] and Grad-CAM [26] - and apply them in motion artefact 
detection CNN for monitoring whether the machine pays attention to the 
desired myocardial areas. We further describe the method to guide the 
machine’s attention towards desired features during the training. 

2.3.1. Attention Visualisation 

2.3.1.1. Saliency maps. Saliency maps, first introduced in [24], visu
alise attention by computing the gradient of the output category with 
respect to input image. This informs how an output category value 
changes with respect to a small change in input image pixels, therefore 
the importance of the information the pixel contains in making the de
cision. The visualisation of these gradients, which are the same shape as 
the image, should therefore provide some intuition of attention. 

Specifically, in our application, given a trained neural network, an 
input I = [IT1, IR2, IIRW] and a target class score l (e.g., motion artefact 
score by the human observer), the influence weights WT1 of pixels from a 
particular input image (e.g. IT1) can be calculated by the derivative 
WT1 = ∂l/∂IT1, as described in [24]. The overall saliency map is then 
calculated by summarising individual WT1, WR2 and Wraw pixelwise. 

2.3.1.2. Grad-CAM. Gradient-Weighted Class activation maps (Grad- 
CAM) is another way of visualising attention over input [26]. Grad-CAM 
visualises the nearest convolutional layer to the fully connected layers. 
The idea is that the last convolutional layer of the CNN contains the 
spatial information indicating discriminative regions to make classifi
cations. To visualise these parts, Grad-CAM creates a spatial heatmap 
out of the activations from the last convolutional layer. 

Specifically, given a trained neural network with an input, a target 
class and feature maps Ak ∈ A, k ∈ [1,2,…, N], the neuron importance 
weights αk of each feature map Ak is calculated by global average 
pooling. The weights wk represent a partial linearisation of the deep 
network downstream from the last convolutional layer, and captures the 
‘importance’ of feature map Ak for this target class. The attention map by 
Grad-CAM WGrad− CAM is then calculated by a combination of forward 

Fig. 2. (a) Network structure. The network takes multi-stream input: 7 IRW images, T1 map and R2 map (like human operator, Fig. 1), concatenating them after three 
streams of convolution. 3D convolution is marked in cyan colour. The residual network blocks follow to produce high-level features which are passed to a global 
average pooling and a fully connected layer for scoring the motion. 3D convolutions are used in the first few blocks. The convolutions are changed to 2D when the 
third dimension is exhausted. (b) Residual building blocks in the network. The filter size is 3 × 3x3 for 3D and 3 × 3 for 2D. (c) Residual building blocks with a 
convolutional stride of 2 for down-sampling. 
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activation maps Ak with weights wk, followed by a ReLU to mute the 
negative values. The final attention map is upsampled to the same size as 
input images to achieve spatial correspondence. 

2.3.2. Attention supervision 
In CMR, shimming is often applied before image acquisition, a pro

cess to address the B0 inhomogeneity of the scanner. While shimming is 
designed to homogenise the myocardial region of the image, the un
derlying bSSFP bands can remain close to the myocardial region, in 
which case related off-resonance effects could cause T1 estimation er
rors and related mapping artefacts [36] (Fig. 3c). Gastrointestinal and 
lung displacements are often present in the T1-weighted images. These 
aspects of motion carry no clinical relevance for myocardial T1 analysis 
but could introduce distraction for automated motion artefact detection 
algorithm as revealed by attention mapping (Fig. 3). We propose to feed 
the CNN with direct additional supervision on attention, by guiding the 
networks to focus on relevant parts of the image. In this way, the net
work’s prediction for the task of interest, e.g. quality score of a specific 
myocardial segment, is based on the relevant areas rather than other 
parts of the heart or organs. We achieve this process by imposing an 
attention supervision module (Fig. 4b) on the original CNN classifier 
(Fig. 4a), which generates an additional term for the cost function as 
described below. 

Following the CNN classifier outputs in section 2.2, to reveal the 
CNN activation of the last layer activation maps A when predicting the 
score ls of s − th myocardial segment (s ∈ [1, 2, …, 6]), we computed the 
gradient of the score with respect to the activation maps [27], ∂ls/∂A. 
The gradients then passed through a global average pooling layer to 
obtain the neural importance weights ws. The neuron weights repre
sented the contribution of layers A in decision making of the artefact 
score of the specific segment s. We then calculated the weighted com
bination of the feature maps A using ws as the weights, followed by a 
ReLU operation to output the attention map Ws, 

Ws = ReLU(
∑

wsA )

To guide the machine to pay attention to a specific myocardial 
segment, a loss function Latt is imposed on Ws computing the cross en
tropies between Ws and the segment masks Is, for all 6 segments, 

Latt =
∑

s=[1,2,…,6]

Crossentropy(Ws, Is)

The attention supervision was imposed on the CNN classifier through 
shared parameters among the feature maps A in all 6 attention super
vision modules and the classifier module (Fig. 4, purple lines). 

Classification loss Lcl was calculated as the cross-entropy between the 
segmental scores by the neural networks and the human operator. The 
final loss function for training the neural network is therefore defined as 
L = Latt + αLcl with α set to one in our experiments. 

In the testing phase, the attention supervision module was not used, 
and ground truth segment masks were not required, while the CNN 

classifier was kept the same. A standard Grad-CAM module [26] was 
plugged in to visualise the attention map and compare it with the CNN 
trained with no attention supervision. 

2.4. Performance Evaluation 

2.4.1. Dataset 
We trained and validated the CNN classifiers on 2568 short-axis view 

basal and mid-ventricular T1 maps from the HCMR study [37], origi
nally contoured and scored by an experienced operator (AB). The data 
were acquired from multinational centres within the HCMR study using 
a single T1-mapping method (ShMOLLI). All patients had clinically 
diagnosed HCM, with unexplained left ventricular hypertrophy (>15 
mm), and the dataset contains varied phenotypic manifestations of 
HCM. The data used for training and validating CNN classifiers (n =
2568) consists of 73% 1.5 T and 27% 3 T T1 maps, and has 321 T1 maps 
and 1536 segments scored as presence of motion artefact. Motion arte
fact scores on a six-segment model were extracted from the analysed 
dataset. We evaluated the performance of automated motion artefact 
detection with 5-fold cross validation, by randomly partitioning the data 
into five subsamples, training on three, validating on one and testing on 
one. The process was repeated five times to obtain the quality scores of 
the whole data by machine. The performance was assessed by the 
agreement with human scores, as well as Receiver Operating Charac
teristics (ROC) curves calculated by thresholding the machine’s classi
fication scores between 0 and 1. The ROC-AUC (Area Under the Curve) 
were compared using the DeLong test. 

To evaluate the performance of motion detection and improvement 
by the attention supervision on cases in the presence of other CMR ar
tefacts, we also tested the trained CNN classifier on a subset of 163 T1 
maps. All these T1 maps were scored to have at least one other artefact 
besides motion, such as mistriggering, off-resonance, phase irregular
ities or poor planning. 

2.4.2. Implementation specification 
We employed on-the-fly augmentation on the training dataset, 

introducing uniformly distributed random rotation within ±5 degrees 
and translation within ±10 pixels around the manually annotated centre 
of LV cavity. The specifications of training CNN were: input size 160 ×
160 × 9; batch size 16; initial learning rate 0.001, which was lowered by 
a factor of 10 at the validation loss plateaus with a patience of 30 epoch. 
Adam [38] was used as the optimiser. The networks were trained using a 
NVIDIA TITAN XP GPU. Training was stopped when the validation loss 
did not decrease for 50 epochs. 

2.4.3. Cross-validation of machine and human score disagreements 
To analyse the source of disagreement between human and neural 

network, a subset of T1 maps with at least one disagreed segment was 
identified for rescoring by a second human validator (CW) who was 
aware of the disagreement but blinded to the prior scores. Scores of the 
subset by two human operators and machine were compared for inter- 

Fig. 3. Examples of Grad-CAM attention maps. Distraction of CNN by motion at (a) lung, (b) stomach, and (c) bSSFP banding away from the target segment. (d) 
Desired attention mapping in which the neural network pays attention to the corresponding myocardial segment. The AHA segment model is overlaid on the first 
image for reference. 
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Fig. 4. Training a CNN with supervision on attention. (a) The CNN classifier consists of a group of convolutional blocks producing feature maps A, followed by max 
pooling and fully connected layers to produce per-segment motion scores. (b) For each segmental score ls, we compute the neural importance weights ws of feature 
maps A in the final convolutional layer. The weighted sum of the feature maps is computed, followed by a ReLU operation, to produce the trainable attention map. 
The respective loss function is imposed on the attention map to encourage attention within the myocardial segment and penalise attention outside. The supervision is 
passed to the CNN classifier through iterative updates to the parameters of the feature maps A, which are shared between (a) and (b) in this figure. In testing, only the 
CNN classifier is used, without the attention supervision module. 

Fig. 5. Two examples of attention mapping of the CNN classifier. Traditionally trained CNN classifier for detecting motion shows attention to the relevant myocardial 
segments, but with distractions (red arrows) and less accuracy, revealed by (a, d) Saliency mapping and (b, e) Grad-CAM techniques. Grad-CAM of CNN classifier 
trained with the attention supervision module shows accurate focus on the relevant segments, see (c, f). AHA segmental model is overlaid on the first image 
for reference. 
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observer variability and identification of machine and human 
mislabelling. 

3. Results 

3.1. Mapping of attention visualisation and supervision effects 

As expected, we found that the CNN classifier trained for predicting 
segmental motion artefact scores learns to automatically pay attention 
to the corresponding segmental regions when scoring each of the 6 
segments, revealed by saliency maps (Fig. 5a, d) and Grad-CAM tech
niques (Fig. 5b, e). Saliency maps appeared sharp but noisy as they 
calculate the pixel-wise derivatives at image resolution. Grad-CAM 
produced visibly smoother maps due to the low resolution of the last 
convolutional layer. In the meantime, both visualisation techniques 
evidenced that the neural networks can be distracted and extend far 
outside the desired myocardial segments. For example, in (a, b, d, e), 
segment #2, although the attention map highlighted the septal 
myocardium, it did not accurately cover the anteroseptal and infer
oseptal segments. This was possibly due to the fact that the anteroseptal 
and inferoseptal motion artefacts often occurred together, making it 
more difficult for the machine to learn which segment to pay attention to 
without more specific guidance. In example 1, clear instances of dis
tractions by the gastric motility were seen in all segments, and by the 
right ventricle in segment #1. In both examples, distractions by other 
myocardial region were seen in all segments. 

In comparison, The CNN classifier with attention supervision pays 
attention to the desired segment more accurately and specifically 
(Fig. 5c, f), with no distraction by other myocardial segments, right 
ventricle or gastrointestinal motion compared to the panels directly 
above in Fig. 5. 

3.2. Automatic motion artefact scoring 

The customised ResNet scores the motion artefact with an average 
90.7% agreement with the human operator (AB) on all segments, and 
89.8% agreement on a whole-image basis (labelled as motion if at least 
one segment was scored as having motion artefact) (Table 1). Attention 
supervision improves the scoring accuracy for all segments, their aver
ages and the whole myocardial motion. Attention supervision signifi
cantly improved motion artefact scoring performance, as measured by 
ROC-AUC of the neural network, from 88.5% to 89.7% (per-segment; 
p = 0.004) and 87.4% to 89.1% (whole-image; p < 0.001) (Fig. 6). We 
found no statistically significant differences between results on basal 
and mid-ventricular slices, as provided in Table 1. 

Accuracy of scores by CNN classifiers trained without and with 
attention supervision technique on 2568 T1 maps from the HCMR 
dataset, trained and tested human scores as the gold standard. Attention 
supervision provided significantly better average accuracy for all seg
ments and accuracy on a whole-image basis (p < 0.001). 

On the subset of T1 maps with other artefacts, CNN classifier with no 
attention supervision module scored the motion with 83.2 ± 4.3% 
agreement on average with human operators, 7.5% lower than on all T1 

maps (90.7%, Table 1). In comparison, CNN classifier with guided 
attention achieved 90.6 ± 3.0% agreement with human scores, repre
senting a 7.4% improvement over CNN without guided attention, and 
only 1.1% lower than on all T1 maps (91.7%, Table 1). This demon
strates the robustness of the guided attention module, even in the 
presence of other artefacts in addition to motion. Examples are given in 
Fig. 7, which show that CNN classifiers trained without attention su
pervision were distracted by other artefacts. In comparison, CNN trained 
with attention supervision focused on the corresponding myocardial 
segments. 

As a supplementary experiment, we tested the stability and sensi
tivity of the attention supervision module to training data, by replacing 
the contours in the training data with automated contours generated 
using a U-net modlifed in our group and trained on in-house datasets for 
T1-mapping segmentation [40]. The results showed no statistically 
significant differences between the models trained on manual and 
automated contours, largely because the automated segmentation neu
ral networks can already achieve human-level performance in accuracy 
and outperform humans in consistency [40–42]. Two examples of 
manual and automated contours are provided in Supplementary Fig. 1 
for illustration. 

3.3. Quality check of human and machine scores 

The human operator and the network provided identical scores for 
all six segments in 79% of the T1 maps including basal and mid- 
ventricular slices. To adjudicate between human or machine mis
labelling, the remaining 21% of T1 maps with disagreement of one or 
more segments were rescored by a second human validator, blinded to 
prior results but aware of the disagreement. This material represented 
cases that were difficult to score, or have been mislabelled by either the 
machine or the first human observer. The overall agreement between the 
first human operator and the machine was only 47.1% (Fig. 8, column 
2). The validator scores agreed more with both the human operator and 
machine (Fig. 8, columns 3 and 4), with a stark difference showing 
preference towards automatic machine scores (83.0%), compared to 
only 61.2% overall agreement between the validator and the human 
operator. The results revealed that human operator errors were the 
primary cause of disagreements. The clear errors were possibly due to 
momentary loss in attention span in performing this long-term repetitive 
task, for which the Validator had two advantages, with a relatively 
smaller dataset to score, and advanced knowledge that these were 
problem cases. 

4. Discussion 

4.1. CNN attention visualisation 

We have applied visualisation techniques to allow human operators 
additional insight into the deep learning ‘black box’ in diagnostic 
medical imaging. Attention heat maps provide a traceable record of the 
perception process of the machine, offering additional control measures 
for the accountability required for clinical applications. We showed that 

Table 1 
Agreement of CNN classifiers with the human operator.  

Segment 
CNN CNN with guided attention 

Basal slice Mid-ventricular slice Basal and mid-ventricular slice Basal slice Mid-ventricular slice Basal and mid-ventricular slice 

1 (anterior) 92.6% 91.0% 91.8 ± 0.9% 93.4% 91.0% 92.1±0.7% 
2 (anteroseptal) 91.3% 89.8% 90.4 ± 1.0% 92.4% 90.8% 91.5±0.9% 
3 (inferoseptal) 91.3% 90.4% 90.7 ± 0.3% 92.3% 91.6% 91.9±0.4% 
4 (inferior) 89.7% 90.8% 90.3 ± 0.9% 90.9% 91.5% 91.2±0.6% 
5 (inferolateral) 90.8% 89.6% 90.1 ± 0.6% 91.8% 91.0% 91.4±0.4% 
6 (anterolateral) 91.5% 90.3% 91.0 ± 0.8% 92.5% 91.3% 91.9±0.7% 
Average all segments 91.2% 90.3% 90.7 ± 0.6% 92.2% 91.2% 91.7±0.4% 
Whole-image basis 89.7% 90.0% 89.8 ± 1.0% 91.5% 91.6% 91.5±0.8%  
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traditionally trained networks naturally tend to pay attention to relevant 
myocardial segments regions when predicting their motion scores. This 
naturally acquired attention is not uniform and is subject to distractions 
by other image features outside of the target organ of interest. Attention 
heat maps helped to explain the source of disagreement in this material, 
and could provide valuable insights into the accuracy of any machine 
classification of health and disease for clinical applications in future. 

4.2. CNN attention supervision 

At the cost of providing additional image annotations for the training 
process, we demonstrated that training the CNN classifier with attention 
supervision significantly improved the overall classification agreement 
with the reference human operator across all target structures. CNN 
classifiers trained without information on segment location have 

implicitly learnt to locate the corresponding segments for predicting the 
scores. Attention guidance has made this learning explicit and more 
specific, and therefore improved the classification accuracy, which may 
be in future traded for smaller size requirements for the training 
datasets. 

Attention visualisation links this improvement to nearly perfect focus 
on the myocardial segments in question, and robustness to common 
extra-cardiac distractors affecting the judgement of the traditionally 
trained CCN. We also demonstrated that the improvement in any 
agreement was actually limited by the quality of the human manual 
annotations; this could affect the analysis of large datasets where the 
ground truth arises from human labour, which is prone to errors due to 
fatigue, inattention and inconsistencies. 

Fig. 6. ROC curves for machine performance in the identification of motion artefacts on cardiac T1 maps using a single human operator as the gold standard. Guided 
attention (GA) technique improves the per-segment (n = 15408) and per-case (n = 2568) ROC-AUC of the CNN classifier in motion detection (p-value = 0.004, 
<0.001, respectively, DeLong). 

Fig. 7. Attention maps on a subset of data with other artefacts. In each panel, LEFT: distractions of CNN classifiers by other artefacts (arrowed). RIGHT: in com
parison, CNN classifiers trained with attention supervision focused on the myocardial segments being scored. 

Fig. 8. Inter-observer agreement (%) of motion artefacts between the human operator and machine, the human validator and human operator, and human validator 
and machine on a segmental (AHA model) and case basis. Values are highlighted in colour from the lowest (red) to the highest agreement (green). 
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4.3. Quality of human scores in large dataset 

Clinical adoption of machine learning for automated diagnostic 
image analysis has been partly impeded by the long-standing notion that 
human operators are the gold standard for training automatic algo
rithms, a belief that current advances in the field seek to challenge. Here, 
we provide evidence that scores from human operators fall short of a 
gold standard, due to mislabelling, especially in the context of extremely 
tedious processing of very large data sets, which require sustained 
human concentration and consistency over very long periods of time. 

We have shown that deep learning trained with noisy labels can 
provide high accuracy that is comparable to human operators working 
attentively on a small data sample. This demonstrated that the neural 
networks can learn the overriding rules and yet avoid reproducing oc
casional human deviations from these rules. Identifying human mis
labelling usually requires a significant amount of work, especially in 
large-scale studies. Deep learning has the potential to flag potential 
mislabelling for reinvestigation and correction, and therefore speed up 
data cleaning. 

4.4. Limitations and future work 

This work limits analysis to the identification of motion artefacts 
only, rather than addressing all artefacts such as off-resonance, poor 
planning, phase irregularities, extra-myocardial fat inclusion and other 
pathology. This is because motion is a prevalent factor affecting a sig
nificant proportion of CMR T1 map data and is relatively consistent in 
detection by human operators, thus subject to the type of analysis per
formed here. Further work will be required for image assessments to 
identify rarer and more elusive artefact sources. This paper focused on 
developing the method and validating it in a single patient cohort 
dataset, although with a wide range of HCM phenotypes and LV shapes. 
Current work is underway to extend the training and validation datasets 
to include other commonly encountered cardiac diseases, for eventual 
general clinical applications. We also plan in future work to publish or 
release the source code. 

In this work, we used human ground truth to locate and trim the 
images around the heart. The attention supervision was also trained 
using manual myocardial segmentation. Automated segmentation al
gorithms in CMR have been developed and validated, with continual 
improvements in accuracy and robustness [41–44]. For future work, we 
aim to integrate the trained motion detection neural networks with 
robust LV segmentation models for a fully automated pipeline for CMR 
T1-mapping quality control and processing. 

The motion detection CNN classifier, especially when trained with 
attention supervision, could be used to automatically locate the AHA 
myocardial segments with a standard Grad-CAM method. This could 
result in simultaneous automatic segmental localisation and motion 
artefact scoring, which are two important steps to form an automated 
pipeline of cardiac T1-mapping analysis. The accuracy of localisation, 
however, remains to be validated. 

This work was validated on short-axis basal and mid-ventricular 
slices. Apical slices were excluded because the RV and insertion points 
are often absent in many apical slices; this precluded fair comparisons 
between machine (who sees slices independently) and human (who sees 
slices in the context of the whole patient dataset sharing a similar 
orientation). When scaling up the proposed methods in the future, RV 
insertion points can be inferred from neighbouring slices and relative 
slice orientations. 

Further work also includes implementing the modules inline on the 
MR scanner, and applying them offline for a T1-mapping post-process
ing pipeline. For inline motion detection on the scanner, the radiogra
phers will be notified of any motion at the time of scan, allowing to 
repeat the breath-holding instruction and data acquisition. In post
processing, T1 maps with motion artefacts will be detected and motion 
correction attempted, subject to quality check and potential data 

exclusion. Impacts of a fully automated pipeline on clinical decision- 
making and cost-effectiveness need to be assessed in future, with the 
potential for healthcare cost savings. 

5. Conclusions 

We have demonstrated that the addition of attention maps to deep 
learning approaches provide useful insights into how neural networks 
operate, to monitor the training and explain pitfalls. Attention super
vision gives additional guidance to neural networks on where to pay 
attention, leading to significantly improved performance, and exceeded 
the levels achieved by human operators. We provided evidence that 
human operators, when processing very large datasets, fall short of a 
gold standard, and can limit machine learning and performance as
sessments. Machines can eventually overtake and automate the labo
rious tasks of image analysis and quality assurance in diagnostic medical 
imaging. 
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