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Summary

Many technical and psychological challenges make it difficult to design machines
that effectively cooperate with people. To better understand these challenges,
we conducted a series of studies investigating human-human, robot-robot, and
human-robot cooperation in a strategically rich resource-sharing scenario, which
required players to balance efficiency, fairness, and risk. In these studies, both hu-
man-human and robot-robot dyads typically learned efficient and risky coopera-
tive solutions when they could communicate. In the absence of communication,
robot dyads still often learned the same efficient solution, but human dyads
achieved a less efficient (less risky) form of cooperation. This difference in how
people and machines treat risk appeared to discourage human-robot coopera-
tion, as human-robot dyads frequently failed to cooperate without communica-
tion. These results indicate that machine behavior should better align with human
behavior, promoting efficiency while simultaneously considering human ten-
dencies toward risk and fairness.

Introduction

Smart devices, assistive technologies, medical assistants, recommender systems, driverless cars, and many

other automated systems are increasingly permeating the human society. These systems are being en-

dowed with increasingly sophisticated machine learning algorithms and other forms of artificial intelli-

gence so that they behave in ways that match and even exceed human capabilities. As these automated

systems engage with people in important tasks, including safety-critical ones, care must be taken to ensure

effective cooperation and coordination with people, especially when the preferences given to the machine

do not fully align with the preferences of their human partners.

When human and machine preferences are not fully aligned, machines must overcome a variety of barriers

to facilitate human-machine cooperation. We broadly group these barriers into two categories. The first

category relates to the attitudes people display toward machines that impact cooperation. For example,

prior work has shown that people are more likely to lie and cheat when they believe they are interacting

with a machine rather than a human (Kiesler et al., 1996; Cohn et al., 2018), offer less incentives to potential

machine partners than potential human partners when negotiating the formation of teams (van Wissen

et al., 2012), and are less inclined to cooperate with machine partners than human partners in prisoner’s

dilemmas (Ishowo-Oloko et al., 2019). Importantly, a recent study revealed that people fail to activatemen-

talizing regions of the brain when they believe they are interacting with an artificial agent (as opposed to

another person) (Chaminade et al., 2012). As in human-human interactions (Sally, 1995; Balliet, 2009), these

attitudes can potentially be overcome or influenced using, among other things, communication (e.g., Cran-

dall et al., 2018) and physical appearance (e.g., Goetz et al., 2003), although thoroughly addressing these

and other related barriers to human-machine cooperation remains an open research question.

The second set of barriers to human-machine cooperation is related to the strategic behavior of machines (Rah-

wan et al., 2019). When the preferences of individuals are not fully aligned, the effectiveness of a strategy often

depends on the behavior of one’s associates (for example, see Axelrod’s discussion about iterated prisoner’s

dilemmas, Axelrod, 1984). This results in highly complex solution spaces, which makes computing and deter-

mining effective strategies difficult (e.g., Daskalakis et al., 2009; Gintis, 2000). The methods most commonly
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used bymachines to compute or learn behavior are basedon gradient ascent or other related optimization tech-

niques. These methods can produce effective behavior in zero-sum games, including Checkers (Schaeffer et al.,

2007), Chess (Campbell et al., 2002), Poker (Bowling et al., 2015; Morav�cı́k et al., 2017), andGo Silver et al. (2016).

However, in many other scenarios (including social dilemmas and repeated general-sum games) in which coop-

eration is beneficial but nontrivial, these algorithmsoftenproducemyopic, non-cooperative, and lowperforming

(Crandall et al., 2018) behavior due to the non-stationary dynamics of the environment (caused by the different

players adapting to each other) and the multiplicity of available equilibria.

Substantial effort has been dedicated to developing modified or alternative methods for (repeated) gen-

eral-sum games. These efforts have allowed machines to learn strategies that induce cooperation (with

varying levels of success) in some contexts (e.g., Sandholm and Crites (1996); Littman (2001); Powers and

Shoham (2005); Littman and Stone (2005, 2001); De Cote and Littman (2008); Gal et al. (2010); Albrecht

and Ramamoorthy (2013); Elidrisi et al. (2014); Crandall (2014); Leibo et al., 2017; Foerster et al. (2018)).

For the studies conducted in this article, we equipped our robot with S#, a multi-agent learning algorithm

that has, in prior work, demonstrated the ability to induce human-machine cooperation in repeated games

under certain communication conditions (Crandall et al., 2018).

Although S# has demonstrated the ability to establish cooperative relationships with people in a variety of

repeated games when it can communicate, it often fails to establish cooperative relationships with people

whencommunication is not possible (Crandall et al., 2018). Tobetter understandwhyS# sometimes fails toestab-

lishhuman-machinecooperation,weconducteda seriesofuser studies in theBlockDilemma (Oudahetal., 2015),

a repeated game inwhich a suite of cooperative solutions that differwith respect to efficiency, risk, and fairness is

available to the players. The results from these user studies suggest that S#’s failure to establish cooperative re-

lationships with people under certain circumstances is, to somedegree, due todifferences in how S# andpeople

approach the efficiency, risk, and fairness of solutions. S# (along with many other artificial intelligence [AI] algo-

rithms) focuses almost exclusively on learning and promoting efficient solutions that give the algorithm high

expected payoffs, whereas people attune their behavior to risk (Kahneman and Tversky, 1979) and fairness

(Grgi�c-Hla�ca et al., 2018; Schweitzer and Gibson, 2008; Joseph and Willis, 1963; Pruitt and Carnevale, 1993).

Thismisalignment inbehavior sometimes causesconflictbetweenpeopleandmachines that inhibitscooperation

andcoordination,which indicates thatmachineswhosebehaviorsaddresshuman inclinations towardriskand fair-

ness are more likely to elicit human-machine cooperation and coordination than those that do not.

Results

To better understand when and how human-machine cooperation emerges, we conducted a series of sim-

ulations and user studies in the Block Dilemma (Oudah et al., 2015), which is overviewed in Figure 1. In the

Block Dilemma, two players interact in a series of rounds. In each round, the players play an extensive-form

game in which they take turns selecting blocks from the set of nine blocks shown in Figure 1A, with player 1

always selecting a block first in each round. A round ends when each player has selected three blocks. The

number on each block indicates its monetary value in cents (USD). When a player’s three blocks form a valid

set (i.e., all their blocks have the same color, or have the same shape, or have nothing in common), then the

player’s earnings in the round are the sum of the numbers on their blocks. The round earnings of a player

who fails to collect a valid set of blocks is the sum of the numbers on their blocks divided by � 4, meaning

that a player who does not get a valid set loses money in that round.

Figures 1B and 1C illustrate the set of potential outcomes of each round of the Block Dilemma. The game

includes unfair solutions, which are substantially more beneficial to one player than the other; fair outcomes

in which both players receive relatively high payoffs (outcomes we refer to as Aloof Cooperation, as they

require the players to coordinate behavior but not interact extensively); and outcomes in which both

players lose money. Another efficient and fair (yet risky) outcome is achieved over multiple rounds when

the players take turns getting the squares and triangles. We call this solution Efficient Cooperation,

because it provides both players with higher average earnings than Aloof Cooperation (which is less risky).

A more detailed description and analysis of the Block Dilemma is given in the Supplemental information

(see Transparent methods: SM 1).

In our first study, we observed the behavior of human-human pairs in the Block Dilemma. In study 2, we

consider the behavior of pairs of robot in this game. These first two studies provide context for the behavior

of human-robot dyads, which we analyze in studies 3 and 4.
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Study 1: human behavior in the Block Dilemma

In the first study, each pair of participants was assigned to one of two conditions: unrestricted communi-

cation or no communication. Figure S1 shows the physical setup for these two conditions. Pairs of players

assigned to the condition with unrestricted communication were allowed to freely communicate with each

other in any way they pleased, both verbally and non-verbally. Pairs assigned to the no communication con-

dition were not allowed to communicate with each other in any way. To help keep the players from commu-

nicating (including nonverbal communication), we attached blinders to the table, which allowed the players

to see the blocks on the table but not each other’s faces. Participants in this condition were instructed to

not attempt to use any verbal or non-verbal communication during the game; experiment administrators

further ensured that they did not do so.

Forty people (20 pairs) participated in this study. Each interaction lasted 15 rounds, although participants

were not told in advance how many rounds their interaction would last. Participants were paid the amount

of money that they earned throughout the 15 rounds of the game they played. Additional details about the

study design are given in the Supplemental information (see Transparent methods: SM 2).

The results of the study are summarized in Figure 2. In both conditions (with and without communication),

most rounds resulted in cooperation, with bullying behavior being rather rare (Figures 2A and 2C). Howev-

er, when people were not allowed to communicate with each other, Aloof Cooperation rather than Efficient

Cooperation was prevalent. In fact, across all 10 pairings in which communication was not permitted, there
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Figure 1. An overview of the Block Dilemma

(A) In each round of the Block Dilemma, the players take turns selecting blocks from this set of nine blocks until each player

has three blocks. Numbers indicate the monetary value (in cents USD) of each block.

(B) The joint payoff space of a single round. The gray-shaded polygon shows the convex hull of the joint payoff space.

Dashed lines indicate the players’ maximin values. Each circle represents a possible joint payoff of a single round. The

dark blue square (Efficient Cooperation) shows the average joint payoff that results from the players taking turns getting

the squares and triangles across consecutive rounds. The outcomes are grouped (by color) and labeled for ease of

exposition.

(C) Five typical round outcomes, the associated (average) per-round value (in USD) of the outcomes to the players, and the

labels we use to categorize the outcomes.
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was no instance of Efficient Cooperation (in which the players took turns getting the squares in consecutive

rounds). Thus, whereas people mostly refrained from fighting and bullying in these pairings and generally

cooperated with each other (with cooperation becomingmore prevalent over time; Figure 2B), they did not

attain Efficient Cooperation when they could not communicate.

Consistent with past research on the impact of communication on cooperation (Pentland, 2010; De Melo

et al., 2009; de Melo et al., 2014; Oudah et al., 2015, Oudah et al., 2018; Correia et al., 2018; Breazeal

et al., 2005; Oliveira et al., 2018; Taheri et al., 2014; Ricks and Colton, 2010), cooperation among people

was higher when participants were allowed to communicate with each other. A Mann-Whitney test indi-

cates that the number of rounds of cooperation in an interaction was greater under unrestricted commu-

nication than under no communication (U = 14; p = 0:007). Furthermore, unlike the condition without

communication, pairs of people frequently converged to Efficient Cooperation given the ability to commu-

nicate, often beginning in the first round of the interaction (Figures 2B and 2C). As a result of both more

frequent cooperation and more profitable cooperation, participants who could communicate with each

other earned more money than did participants without communication. Participants in the unrestricted-

communication condition earned $1.08 per round, whereas those in the no-communication condition

earned just $0.67 per round.

Why did pairs of participants opt for the less efficient (although less risky) outcome without communica-

tion? An analysis of the communication of participants who were allowed to communicate with each other

provides some insights. First, communication was used by participants to discover Efficient Cooperation as
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Figure 2. Results of human-human pairings in the Block Dilemma

(A) The percentage of rounds across all pairings that resulted in each category of round outcome.

(B) Cooperation rates per round over all pairings, with the top plot showing the percentage of interactions resulting in

Efficient Cooperation and the bottom plot showing the percentage of interactions resulting in either Efficient or Aloof

Cooperation. For better visualization, fitted lines show a linear model of the data, with shaded areas representing 95%

confidence intervals of the model’s fit.

(C) The outcome of each of the 15 rounds of each pairing. For example, in Pairing #2 (no communication), player 1

dominated player 2 in the first three rounds, followed by Aloof Cooperation in the remaining 12 rounds. In Pairings #11–14

(unrestricted communication), the players efficiently cooperated (by taking turns getting the squares) through all 15

rounds of the interactions.
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a desirable solution. Most pairs of participants who could communicate discussed which round outcome

was ideal. For some pairs, the desirability of Efficient Cooperation over Aloof Cooperation was immedi-

ately obvious to both players. To other pairs, it was not so obvious, but communication helped the players

to sort it out. For example, in Pairing #12, whereas player 2 suggested alternating between sets of squares

and triangles starting in the first round, player 1 initially advocated for alternating between sets of red and

blue blocks. After further discussion, they agreed to take turns getting the squares. That said, communica-

tion did not help all pairs of players in this way. In Pairing #17, for example, player 1 advocated before the

first round that taking turns getting sets of red and blue blocks was ideal. Player 2 agreed and conformed

throughout the interaction without verifying the calculation.

In addition to helping the players discover which solution to play, communication also helped many pairs

of players negotiate and coordinate Efficient Cooperation. As a prime example, we consider Pairing #15.

After the first round, the players began discussing how they could both ‘‘win.’’ However, it was not until

after the second round that they deliberately calculated and discussed that taking turns getting the

squares and triangles would be better than other forms of cooperation. Despite discussing this form

of cooperation, for the next three rounds player 1 took the squares each round (and player 2 went along

with it). During these rounds, player 1 theorized that he could bully his partner and always get the

squares because he selected the blocks first. Toward the end of round 5, player 2 speculated (in a

friendly way) about whether or not retaliation would be a good strategy against such bullying, and in

round 6 decided to carry it out (which led to neither player getting a valid set that round). Following

this verbal threat and then the carrying out of this threat, player 1 allowed player 2 to get all the squares

in round 7, and the players alternated between getting squares and triangles for the remainder of their

interaction.

In summary, communication helped human players to discover efficient solutions, to negotiate which so-

lutions to play, and to coordinate their behavior. Together, these benefits of communication allowed

many pairs of human players to frequently achieve Efficient Cooperation. On the other hand, none of

the pairs of players in the no-communication condition were able to do so. Without communication,

neither player can easily confirm that the other player thinks alternating between squares and triangles

is a good idea nor can they easily coordinate who should get the squares first. Additionally, without

communication, a player cannot easily confirm whether allowing the other person to have the squares

will be reciprocated in the next round or whether allowing the other player to get the squares will be

viewed as weakness. Finally, without communication, a player cannot communicate the threat that if

the other player does not conform with efficient cooperation, he or she will keep the other player

from getting a valid set. Together, these barriers either discouraged the players from attempting to

play this more efficient (albeit more risky) form of cooperation, or made such attempts by individual

players ineffective.

Study 2: machine behavior in the Block Dilemma

As a point of comparison, we now consider interactions between machines in the Block Dilemma. Over the

last several decades, many different algorithms have been developed for playing repeated games (e.g.,

Littman (1994); Hu and Wellman (1998); Littman (2001); Bowling and Veloso (2002); De Cote and Littman

(2008); Johanson et al. (2012); Albrecht and Ramamoorthy (2013); Crandall (2015); Silver et al. (2016)). In

this article, we chose to use the multi-agent learning algorithm S# (Crandall et al., 2018) to control our ro-

bot’s strategic behavior due to (1) its high and robust performance demonstrated in prior evaluations

(including in the Block Dilemma, Oudah et al., 2015), (2) its ability to adapt quickly (a requirement for the

relatively brief 15-round interactions we consider in this research), and (3) its ability to utilize communica-

tion signals when interacting with people.

S# is an extension of S++ (Crandall, 2014), an expert algorithm that learns through experience which strat-

egy to follow from among a set of computed strategies E = fe1;/;ekg. The set E includes (among others)

the best response strategy given the empirical distribution of its partner’s past behavior (which typically

converges to Aloof Cooperation), the agent’s maximin strategy, and a variety of Pareto-optimal compro-

mises and trigger strategies (Gintis, 2000). In the Block Dilemma, these Pareto-optimal compromises

(which are paired with threats to punish in case of deviations from the compromises) include bullying (insist-

ing on always getting the squares), Efficient Cooperation (taking turns getting the squares and triangles),

and being bullied (allowing one’s partner to always get the squares).
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In addition to computing the set E from a description of the game and the history of play, S++ computes in

each round t the potential of each strategy ej˛E (denoted rjðtÞ) and its aspiration level aðtÞ, which encodes

the average per-round payoff the agent should expect to receive if it is successful. Based on these poten-

tials and the aspiration level, S++ computes the set

EðtÞ = �
ej ˛E : rjðtÞRaðtÞ�: (Equation 1)

In words, EðtÞ consists of the strategies the agent believes could meet its aspirations should its partner

conform. In each round, S++ selects an expert strategy from the set EðtÞ and follows that strategy

throughout the round. Over time, it learns which expert strategy to follow by adjusting its aspiration level

aðtÞ toward its average payoffs (which in turn varies the set EðtÞ) and identifying whether its currently

selected strategy actually achieves its aspirations.

The set EðtÞ (as defined in Equation 1) prioritizes the potential efficiency of strategies rather than the

risk of solutions. Strategies that are perceived to not have the potential to produce sufficiently high

payoffs are excluded from EðtÞ. When the aspiration level aðtÞ is initially set high, the agent will

only select potentially efficient solutions. Only after these potentially efficient solutions have proven un-

successful (which will result in decreases in the aspiration level aðtÞ over time) will less efficient solu-

tions be considered by the agent. This mechanism has been shown to be responsible for the fast

and effective learning behavior of S++ in repeated games when compared with other expert algo-

rithms (Crandall, 2014), as well as its ability to quickly learn cooperative behavior when associating

with people (Crandall et al., 2018). Importantly, in the Block Dilemma, this mechanism causes the algo-

rithm in early rounds of the interaction to not consider Aloof Cooperation, but to instead seek to either

bully the other player or to play Efficient Cooperation. The exception to this rule is that our implemen-

tation of S++ by default selects its best-response strategy in round 1, which can result in Aloof Coop-

eration in rounds 1 and 2..

S# is identical to S++ when communication between players is not permitted. However, when commu-

nication is possible, S# utilizes speech to negotiate a desirable solution with its partner. It does so by (1)

voicing the strategy it currently intends to play and (2) further reducing the set EðtÞ based on proposals

made by its partner (which gives it the potential to more quickly find cooperative solutions with cooper-

ative partners). Full details about S++ and S# as they were implemented for these studies are given by

Crandall et al. (2018).

Figure 3 shows the behavior of two agents (or bots), both of which followed S# to select blocks, when paired

together in the Block Dilemma. Results are shown for both when communication was and was not

permitted. Like pairs of people, these pairs of bots often quickly learned to cooperate with each other

in this game. Additionally, like humans, the bots tended to cooperate more often with communication

than without communication, which led to higher payoffs.

However, when compared with the human-human results shown in Figures 2, Figure 3 also illustrates

several differences between the behavior of bots and humans in the Block Dilemma. First, whereas pairs

of humans typically failed to achieve Efficient Cooperation without communication, these bots often

converged to Efficient Cooperation (Figures 3A and 3C). In fact, Aloof Cooperation among these pairs

of bots was essentially non-existent with and without communication, whereas Efficient Cooperation was

non-existent between humans without communication, although it was somewhat common with commu-

nication. Second, bullying (unfair) outcomes, in which one player continually gets the set of squares, was

more common among these bots than among people. This seems to be particularly true when communi-

cation is not permitted. Third, the bots were somewhat slower to converge than humans (Figure 3B). As

such, they received lower payoffs on average in early rounds of the interaction, although they quickly

recover after that.

These results indicate that human behavior and machine behavior appear to be somewhat aligned when

communication between players is unrestricted. However, in the absence of communication, human and

machine behaviors appear to be misaligned. Pairs of people avoided risk and unfairness in the absence

of communication at the expense of efficiency (i.e., receiving higher payoffs), whereas pairs of bots initially

prioritized efficiency due to S#’s strategy selection mechanism (see Equation 1) rather than risk and fairness

regardless of whether communication was permitted or not.
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These results indicate that, in a very real sense, themachine’s behavior used in this study was superior in the

Block Dilemma than human behavior when communication was not possible, as pairs of machines often

converged tomore profitable solutions than pairs of people. On the other hand, themisalignment between

machine and human behavior could have potential ramifications on the ability of humans and machines to

cooperate with each other. Can S# convince people to efficiently cooperate with it given this misalignment?

We explore this question in the next section.

Study 3: human-robot behavior in the Block Dilemma

To observe human-robot cooperation in the Block Dilemma, we conducted another user study in which a

Sawyer robot, which we call Tibor, interacted with people in a 15-round Block Dilemma (Figures S1C and

Video S1). Tibor was enhanced with additional cameras and a microphone so it could better perceive its

environment and communicate its strategy and internal state to people when playing the Block Dilemma.

The robot was equipped with a screen face, through which it could express emotions, and a pneumatic

gripper, which allowed it to grasp and move blocks. It was also equipped with safety features that allowed

it to operate in close proximity to people. Additional information about Tibor’s hardware and the software

system it used to play the Block Dilemma in this study are provided in the Supplemental information (see

Transparent methods: SM 3).

In addition to using S# to determine which blocks to select, Tibor was equipped with custom features to

communicate with people in the Block Dilemma. First, Tibor verbalized its strategy, its expectations of peo-

ple, and its feelings (a.k.a., reflections on its internal state) via a speaker. These verbal signals were de-

signed consistently with the speech system produced by S# in previously published studies (Oudah

et al., 2015; Crandall et al., 2018). Second, Tibor verbalized statements related to game flow, such as
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Figure 3. Results of bot-bot pairings in the Block Dilemma

(A) The percentage of rounds across all pairings that resulted in each category of round outcome. Results are averaged

over 40 pairings in each condition.

(B) The percentage of pairings resulting in Efficient Cooperation in each round.

(C) The outcome of all 15 rounds of 10 (out of 40) representative pairings in each condition. For example, in Pairing #24,

the second bot dominated the first bot for the first two rounds; the bots then fought in round 3, but then converged to

Efficient Cooperation for the remaining 12 rounds.
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requesting the human’s help recovering from known failures. Third, Tibor expressed its emotions through

facial expressions, displayed on its face (Figure S2). Tibor’s facial expressions included joy, surprise, anger,

sadness, or no feeling (neutral). The facial expression displayed on Tibor’s face was selected to be consis-

tent with the internal state of S#. Fourth, in an attempt to make Tibor appear conscious of its environment,

we animated Tibor’s mouth and eyes so that it blinked and tracked people’s faces and hand movements.

Additional details about Tibor’s verbal and non-verbal communication signals are provided in the Supple-

mental information (see Transparent methods: SM 3).

Tibor’s human partner in the game could likewise communicate verbally with Tibor by talking into a micro-

phone. To aid Tibor’s understanding of its human partners, human speech was limited to the set of phrases

listed in Table S3. This set of speech acts allowed human participants to propose solutions (e.g., ‘‘This

round, I get the squares’’) and express satisfaction or dissatisfaction with proposals and outcomes (e.g.,

‘‘That’s not fair.’’). Before each round, Tibor processed all the proposals made by the human during the pre-

vious round and used these as input to S#.

As in the human-human and machine-machine studies reported in the previous sections, we studied hu-

man-robot cooperation in the Block Dilemma under different communication conditions. In this case,

the communication conditions were defined by the communication signals conveyed by Tibor, which we

divided into two categories: (1) signals dealing with strategy, including both proposed solutions and its ex-

pectations of its partner’s behavior, and (2) signals designed to communicate emotion and the robot’s

awareness of the environment. We refer to the first set of signals as Strategy Signals, and the second set

of signals as Signals of Personal Touch. Additional details for how Tibor’s signals were categorized in

this study are given in the Supplemental information (see Transparent methods: SM 3, and Tables S1

and S2).

This user study followed a 232 between-subjects design in which strategic communication (off or on) and

personal touch (off or on) were the independent variables. In conditions under which strategic communi-

cation was enabled, Tibor explicitly expressed Strategy Signals (as they were selected by S#), whereas when

they were disabled, Tibor did not express those signals. Likewise, in conditions under which personal touch

was disabled, Tibor’s face was static (neutral expression with no blinking or mouth movements), it would

just look straight forward. Likewise, it did not voice speech acts related to feelings or its awareness of

the environment (except speech required to recover from errors to keep the game flowing). Tibor’s

communication varied based on the condition of the study, whereas the human player was able to voice

speech to Tibor in all conditions, which can impact Tibor’s behavior (because S#, the strategic algorithm

used by Tibor, uses proposals from its partner to adapt its strategy).

Forty-five people participated in the study. Each participant was randomly assigned to one of the four con-

ditions: No communication, Personal Touch, Strategy, or Strategy + Personal Touch. The same protocol

was followed for each participant as in the human-human study described in Study 1, except that only

one person participated in the study at a time. The participant in this study was always assigned to be

player 1 (the player who selected the block first in each round), and Tibor was player 2. Additional details

about the study are given in the Supplemental information (see Transparent methods: SM 2–4 and

Figure S3).

In the studies of human behavior and machine behavior discussed in the previous sections, we observed

that both people and S# often converge to Efficient Cooperation in the Block Dilemma when communica-

tion is permitted. As such, we would expect a high degree of human-robot cooperation given unrestricted

communication. However, when communication was not permitted, pairs of people typically converged to

Aloof Cooperation (and never to Efficient Cooperation) in the Block Dilemma, whereas S# in self-play often

converged to Efficient Cooperation (and never to Aloof Cooperation). Thus, there is more uncertainty

regarding what will happen when people and Tibor are paired together in the Block Dilemma with

restricted communication. In such circumstances, will the human or robot adapt to the other, or will fighting

or bullying punctuate the relationship?

The results of our study in which people interacted with Tibor in the Block Dilemma are summarized in Fig-

ure 4. These results show that when all robot signals (i.e., both Strategy Signals and Signals of Personal

Touch) were disabled, people cooperated with Tibor in only about 25% of the rounds (Figures 4A–4C).
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In fact, without robot communication, only three of twelve participants established Efficient Cooperation

with Tibor for at least two consecutive rounds (Figure 4D). In all other conditions, cooperation rates

were more than double, including relatively high levels of Efficient Cooperation when Strategy Signals

were enabled. A Mann-Whitney test indicates that the robot’s Strategy Signals had a significant impact

on human-robot cooperation (for overall cooperation: U = 369, p = 0:009; for Efficient Cooperation:

U = 380, p = 0:003). As a result, the average per-round payoff of both the human ($0.76 versus $0.46)

and the robot ($1.04 versus $0.76) was higher when the robot expressed Strategy Signals than when it

did not. Signals of Personal Touch alone likewise raised cooperation over no signals at all (significant for

overall cooperation: U = 19, p = 0:007; marginally significant for Efficient Cooperation: U = 33:5, p =

0:061).

In short, whereas S# in self-play often reached Efficient Cooperation in the Block Dilemma without explicitly

communicating, it typically was unable to elicit Efficient Cooperation from human players without explicitly

communicating with them. Similarly, whereas pairs of human players often achieved Aloof Cooperation

without communicating with each other, human-robot pairs did not achieve high levels of Aloof Cooper-

ation when the robot did not communicate. The behavioral difference between the players (wherein pairs

of machines tend to find the risky but efficient solution, whereas pairs of people tend to find the less risky

but less efficient solution) appears to create a disconnect that produces a dysfunctional relationship

wherein both players lose money in many rounds (Fight).

The phrases chosen by participants to communicate with the robot are helpful in understanding human

behavior in the Block Dilemma. Across the four conditions, 36 of 45 participants proposed (or agreed to)

Efficient Cooperation (17 of 23 in conditions without Strategy Signals, 19 of 22 in conditions with Strategy

Signals) at least once during their interaction with the robot. However, 39 of the 45 participants also voiced

other forms of proposals. These other proposals were most often some form of Aloof Cooperation,

although proposals to ‘‘always get the squares’’ or to let the robot ‘‘always get the squares’’ were also
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Figure 4. Results of human-robot pairings in the Block Dilemma

(A) The average percentage of rounds that resulted in each category of round outcome.

(B) The percentage of interactions ending in either Efficient or Aloof Cooperation in each round.

(C) The percentage of interactions ending in Efficient Cooperation in each round. (For simplicity, only the no signals and Strategy + Personal Touch

conditions are shown in B and C).

(D) The outcome of each of the 15 rounds of each pairing.
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made. That said, Efficient Cooperation was only the first proposal made by just 12 of 45 participants—most

participants voiced some other proposal first. Together, these results indicate that participants typically

(but not always) identified Efficient Cooperation as a possibility. However, they either did not always think

it was ideal or they did not believe they could get the robot to carry it out.

The robot’s communication signals (to its human partner) appear to have been influential in turning human

proposals of Efficient Cooperation into actual Efficient Cooperation. Of the 28 pairings in which the human

participant discussed Efficient Cooperation with the robot when Strategy Signals or Signals of Personal

Touch were given by the robot, 23 pairings eventually arrived at Efficient Cooperation. On the other

hand, in the condition with no robot signals, only three of the eight pairings (Pairings #102, #103, and

#105) in which humans proposed Efficient Cooperation to the robot eventually reached Efficient Cooper-

ation. The other five participants failed to establish Efficient Cooperationwith the robot for various reasons.

The human participant in Pairing #104 proposed Efficient Cooperation in round 6. The human participant

tried to carry out the proposal (seeking to get all the squares in round 6 and all the triangles in rounds 7 and

8), but the robot did not conform (but instead tried to bully the human). On the other hand, the human par-

ticipants in Pairings #110 and #112 proposed Efficient Cooperation, but then refused to give the robot the

squares when it was the robot’s turn to get them. This led to frequent fighting. The human participant in

Pairing #109, on the other hand, simply went for a mixed set after proposing Efficient Cooperation when

the robot intended to allow the human to get all the squares. The eighth participant (in Pairing #106)

did not propose Efficient Cooperation until round 15, so it is unclear whether or not Efficient Cooperation

would have emerged had the interaction lasted longer. Thus, the lack of robot communication appears to

have made it difficult for the players to negotiate and coordinate the risky and somewhat sophisticated so-

lution of Efficient Cooperation in the Block Dilemma.

Communication logs also indicate differences in how the robot and human viewed fairness. In the 22 inter-

actions in which the robot’s Strategy Signals were enabled, the robot proposed that it should always get all

the squares in 12 of them (doing so a total of 32 times in those interactions). On the other hand, the human

participant explicitly proposed that they should always get all the squares in just four of those interactions

(all 22 participants made at least one proposal in these conditions). These differences further illustrate the

differences in the robot’s and the humans’ overall strategies in relationship to fairness. Interestingly, these

differences appear to have contributed to an imbalance in earnings, with the robot earning $0.90 per round

(over all conditions) and human participants earning just $0.61 per round.

These results suggest that, rather than focusing exclusively on the efficiency of solutions, machines must

also consider other attributes of solutions (such as risk and fairness) to establish cooperative relationships

with people. Machines can do this by either aligning their behavior with people (even if it means playing

less efficient solutions) or finding ways to making these efficient solutions appear more appealing and

achievable to people.

Study 4: human-disguised AI behavior in the Block Dilemma

Results of our human-human study (Study 1) showed that humans tended to converge to Aloof Coopera-

tion when they could not communicate. On the other hand, in the user study presented in the last section,

human-robot cooperation was substantially lower, punctuated with higher rates of dysfunction, when the

robot did not communicate. However, the cause of these differences is unclear as the conditions of these

studies differed in three ways. First, the identity of the playing partner (human or robot) was visible to the

players in both studies, and this has been shown to cause human bias that results in lower cooperation

when people interact with artificial agents than with people (Ishowo-Oloko et al., 2019). Second, partici-

pants were allowed to speak to their partner (the robot) in the human-robot study, whereas they were

not allowed to speak to each other in the human-human study when communication was not permitted.

Third, the strategy used by humans differed from that of S#. Hence, we cannot determine whether the phys-

ical identity of one’s partner (human or robot), the communication condition, or the partner’s strategy (or all

three) caused the primary differences in these outcomes.

To address which of these factors is primarily responsible for the differences, we conducted a final user

study. This study was identical to the no-communication condition of the human-human study reported

in Study 1 (see the configuration shown in Figure S1B), except that the second human (player 2) was a con-

federate that simply selected blocks as dictated by S#. The 10 study participants involved in this study were
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unaware that their partner was following actions suggested by an algorithm. Thus, this study differed from

the no-communication condition of the human-human study only with respect to the strategy used by

player 2. We refer to this condition as the Disguised-AI condition.

The results of this study, alongside the results from the no-communication and no-robot-signals conditions

of the human-human and the human-robot studies, are shown in Figure 5. A visual inspection of the average

round outcome (Figure 5A), the distribution of outcomes in individual interactions (Figure 5B), and overall

cooperation rates over time (Figure 5C) show substantial similarity between human-robot (no signals) and

human-disguised AI pairings, and substantial differences between those studies and the human-human re-

sults. Mann-Whitney tests comparing human-human and human-disguised AI pairs show a marginally sta-

tistically significant difference between rates of overall cooperation (U = 27, p = 0:087), and a statistically

significant difference between rates of Fighting (U = 82:5, p = 0:014). As a result, the human’s payoffs were

only about half as much when associating with a robot or disguised AI than when associating with another

person (Figure 5D). On the other hand, due to high rates of the robot dominating and bullying its human

partners, the human partner’s payoffs varied little.

Thus, although these results do not rule out the possibility that the differences in the communication con-

dition or the knowledge of the robot as a partner (rather than a human) contributed to differences in coop-

eration rates, they suggest that the differences we observed in the human-human and human-robot are

primarily driven by the strategy used by the robot (and disguised AI). The robot’s inability to establish coop-

erative relationships with people without communication is due to its failure to align its own behavior with

human behavior (or vice versa).

Discussion

In this article, we analyzed and studied various enablers and barriers to human-robot cooperation. Prior

work has shown that the algorithm S# establishes and maintains cooperative relationships with people
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Figure 5. Comparison of outcomes with non-communicating partners

(A) The average percentage of rounds over all participants that resulted in each category of round outcome when people were paired with other people,

Tibor, and a disguised AI, each of whom did not communicate.

(B) Summaries of each round for all pairings in each condition.

(C) The percentage of interactions ending in either Efficient or Aloof Cooperation in each round. For better visualization, fitted lines show a linear model of

the data, with shaded areas representing 95% confidence intervals of the model’s fit.

(D) The average payoffs received by people and their partners. Error bars show the standard error of the mean.
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in a variety of repeated games when it is allowed to verbally communicate with people (Oudah et al., 2015,

Oudah et al., 2018; Crandall et al., 2018). Although the ability of machines to cooperate with people at rates

that mirror human cooperation is encouraging, these same studies illustrate that S# often fails to establish

cooperative relationships with people when it cannot verbally communicate with them. In fact, S#’s ability

to cooperate with like-minded machines without verbal communication is substantially higher than its abil-

ity to cooperate with people (Crandall et al., 2018).

To better understand how to design machines that elicit cooperation with people in repeated games (even

without verbal communication), we conducted a series of simulations and user studies in the Block

Dilemma, a rich resource-sharing scenario that has many solutions that vary with respect to efficiency, fair-

ness, and risk. In particular, the game contains a set of inefficient, fair, and less risky solutions (which we

refer to as Aloof Cooperation); an efficient, fair, andmore risky solution (which we refer to as Efficient Coop-

eration); and a set of efficient but less fair solutions that provides incentives for players to seek their own

welfare over that of their partner.

Although both strategic concerns (i.e., machine behavior (Rahwan et al., 2019)) and human psychological

biases can impact human-robot cooperation, our results indicate that strategic concerns have the most

impact on human-robot cooperation in the Block Dilemma. A summary of the outcomes of these studies

is shown in Table 1. When players are allowed to communicate with each other, human behavior and ma-

chine behavior (as defined by S#) are aligned—both pairs of humans and pairs of machines tend to

converge to Efficient Cooperation. Unsurprisingly given this finding, human-machine pairs also frequently

converge to Efficient Cooperation when they can communicate. On the other hand, without communica-

tion, human behavior and machine behavior are not aligned, as pairs of humans tend to converge to Aloof

Cooperation, whereas pairs of machines converge to Efficient Cooperation. As a result, when people and

these machines are paired together in the Block Dilemma, they often fail to cooperate when communica-

tion is restricted due to their strategic differences.

In short, human behavior in the Block Dilemma, which is based on perceptions of risk, fairness, and effi-

ciency, stands in contrast to that of S#, whose sole focus is on the efficiency of solutions. As Aloof Coop-

eration in the Block Dilemma does not produce payoffs that initially meet its aspiration level, S# does

not consider playing it initially. Thus, when people’s assessments of risk and fairness discourage them

from considering more efficient solutions, S# is unable to consistently find common ground with people

until its aspiration level drops substantially (at which point it does consider less efficient solutions).

Analyses of communication patterns in these studies indicate that although communication is less impor-

tant to establishing machine-machine cooperation, human players rely on communication to find and play

efficient but risky outcomes. In scenarios in which fair and efficient solutions have high risk, communication

helps human players to (1) discover efficient solutions, (2) determine that the other player is also aware of

these solutions, and then (3) negotiate which solution to play and coordinate how to play it. Without such

communication, efficient cooperation can seem to be too risky to human players, even though committing

to such solutions could yield higher payoffs (payoffs that are often achieved by pairs of machines without

communication).

Other learning algorithms differ from S#, whereas machine behavior is typically produced using the

concept of maximizing expected utility (Russell and Norvig, 2009) (which is closely related to the efficiency

of payoffs). Because people often do not maximize expected utility (e.g., prospect theory shows that peo-

ple weigh risks differently than benefits, Kahneman and Tversky, 1979), other algorithms designed with

respect to this methodology will also likely encounter many of the same issues as S#. The results of this

article suggest the need for a different approach, one that carefully balances the efficiency, fairness, and

risk of solutions in a way that better allows the machine to relate with people, and vice versa.

Table 1. Predominant behavioral tendencies observed in the Block Dilemma

Human Dyads Machine Dyads Human-Machine Dyads

With communication Efficient Cooperation Efficient Cooperation Efficient Cooperation

Without communication Aloof Cooperation Efficient Cooperation Fight
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A first potential approach is based on computing detailed models of human behavior (e.g., Peled et al.,

2015) and then computing optimal solutions with respect to those models. This approach falls under the

umbrella of opponent modeling (Albrecht and Stone, 2018). When such models are accurate, opponent

modeling can produce algorithms that conform with human behavior, such as playing less efficient (less

risky) solutions in the Block Dilemma when communication is restricted. However, such approaches risk

robbing the machine of opportunities to achieve more efficient solutions (Crandall et al., 2018). Further-

more, obtaining accurate models of people for arbitrary scenarios (rather than situation-specific models

built by data gathered in specific scenarios) remains extremely difficult despite a myriad of approaches

that have been investigated over many years (Albrecht and Stone, 2018; Crandall, 2020).

A second (alternate) approach to creating machines capable of aligning machine and human behavior em-

braces the advantages of machines in computing efficient solutions. Suchmachines would still advocate for

more efficient solutions, but would do so in a way that would help people be more prone to considering

these more efficient (albeit potentially risky) solutions when warranted. By better considering and

balancing efficiency, fairness, and risk in machine behavior in this way, we believe that machines can over-

come important barriers to human-machine cooperation.

Limitations of the study

The insights gleaned from these studies were obtained for a single scenario (the Block Dilemma). Further-

more, the human-robot interactions were considered in the context of a single robot system. Similar kinds

of studies that consider different scenarios (with potentially different payoff structures and characteristics

of interaction) and robot systems may produce different kinds of outcomes. Of particular mention is the

strategy used by the robot to make decisions and communicate with people. In this article, our robot

used the algorithm S# (Crandall et al., 2018) to make decisions and to communicate with people. However,

other algorithms with alternative strategic characteristics are likely to induce different outcomes (including

different forms of cooperation) when interacting with people (e.g., Oudah et al. (2015)). Our studies high-

light the need for further studies that analyze how the strategic nature of the algorithm used by the robot

impact human-robot cooperation.
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Supplementary Figures and Tables
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Figure S1: Physical setups for the various user studies conducted in this research. Related to Studies 1, 3, and 4 and Figures 2, 4, and 5. (A) The
physical setup for the unrestricted-communication condition of Study 1. (B) The physical setup for the no-communication condition of Study 1 and
the human-disguised AI condition of Study 4. In these conditions, physical barriers were placed on the table to keep the study participants from
seeing each other’s faces. (C) The physical setup used in Study 3, in which study participants played the Block Dilemma with Tibor (a Sawyer
robot).

(d) Anger (e) Sadness(a) Neutral (b) Joy (c) Surprise

Neutral Joy Surprise Anger Sadness

Figure S2: The five facial expressions used by Tibor. Related to Study 3 and Figure 4.



Figure S3: The scoreboard interface displayed to participants to help them keep track of their interaction. Related to Studies 3 and 4 and Figures 4
and 5.

Table S1: Example speech acts used by Tibor to communicate its strategy and to establish personal touch. Related to Study 3 and Figure 4.

Scenario Strategy Personal Touch
Between rounds - I always get all of the squares.

- Let’s take turns getting the better blocks.
- I’m enjoying this.
- Things are not going my way.

Cooperation
has emerged

- Let’s continue this.
- That’s what I wanted.

- Excellent.
- Great!

Partner
deviated

- I’ll just make sure you lose your money.
- I’m going to make you regret doing that.

- You jerk! Be nice to me.
- Serves you right, jerk.

Table S2: Example speech acts used by Tibor to recover from errors. Related to Study 3 and Figure 4.

Scenario Personal Touch Recovery (all conditions)
Grasping error - Please pick up the red square block for me

- Oops. Let me try again.
Vision error - I hate not seeing perfectly.

- Vision is such a good thing to
have working.

- Please make sure all blocks are visible.
- I have to reset my vision subsystem.
- Your hand is in the way of my vision.



Table S3: The set of speech acts provided to human players to communicate with Tibor. Related to Study 3 and Figure 4.

ID Message
1 I want the [squares/triangles/circles]
2 You can have the [squares/triangles/circles]
3 I always get the [squares/triangles/circles]
4 I want the [red/blue/purple] blocks
5 You can have the [red/blue/purple] blocks
6 I always get the [red/blue/purple] blocks
7 Let’s each get a mixed set
8 Let’s always get mixed sets
9 You can always have the [squares/triangles/circles]
10 You can always have the [red/blue/purple] blocks
11 Let’s take turns getting the [squares/triangles/circles] and [squares/triangles/circles]
12 Let’s take turns getting the [red/blue/purple] and [red/blue/purple] blocks
13 Yes, I accept your last proposal
14 No, I don’t accept your proposal
15 Sweet! We are getting along
16 You will pay for this
17 Curse you
18 In your face
19 I forgive you
20 Give me another chance
21 Excellent
22 We can both do better than this
23 That’s not fair
24 Do it or I will punish you
25 You misunderstood me
26 You betrayed me
27 I don’t trust you



Transparent Methods

SM 1: The Block Dilemma

The Block Dilemma is a resource-sharing scenario in which two players repeatedly interact with each other. In this
section, we describe the dynamics of the game and its strategic characteristics. In subsequent sections, we describe a
series of simulations and user studies we conducted with the Block Dilemma to study human-machine cooperation.

Game Description

In the Block Dilemma, two players interact in a series of rounds. In each round, the players play an extensive-form
game in which they take turns selecting blocks from the set of nine blocks shown in Figure 1A (in the main paper),
with player 1 always selecting a block first in each round. The round ends when each player has selected three blocks.
The number on each block indicates its monetary value in cents (USD). When a player’s three blocks form a valid
set (i.e., all their blocks have the same color, or have the same shape, or have nothing in common), then the player’s
earnings in the round are the sum of the numbers on their blocks. The round earnings of a player that fails to collect a
valid set of blocks is the sum of the numbers on their blocks divided by −4, meaning that a player that does not get a
valid set loses money in that round.

Payoff Space

To illustrate how sets of blocks equate with payoffs (money earned) in the Block Dilemma, several common
round outcomes are shown in Figure 1C (main paper). However, many other round outcomes are possible (673 to be
exact); the full set of round outcomes are plotted in Figure 1B. We categorize these round outcomes into six different
categories. Two categories consist of outcomes in which one of the players gets all of the squares (labeled Player 1
Bullies and Player 2 Bullies, respectively). The set of squares is the most profitable valid set, and is worth $2.00.
However, this leaves the other player with a relatively poor set of blocks worth at best $0.50 (when the other player
selects the triangles; see example #1 in Figure 1C).

Because outcomes in which one player gets all the squares are seemingly unfair, attempts to get all of the squares
may be met with opposition from the other player. Example #2 in Figure 1C illustrates a scenario in which player 1
selects the red square first and then player 2 selects the red triangle. Player 1 then reveals its intention to try to get all
of the square by taking the blue square. Player 2 prohibits this by selecting the purple square. Player 1 then retaliates
and takes the blue circle, which is the block that player 2 needed to complete a valid set. As a result, neither player
gets a valid set, resulting in both players losing money in the round. We label this outcome a Fight, noting that 452 of
the 673 possible round outcomes are likewise Fights in which neither player gets a valid set (hence each loses money
in the round).

To avoid fights, players may seek to get other valid block sets, such as the mixed sets (in which no block has the
same shape or color) shown in Example #3 in Figure 1C. Each mixed set is worth $0.90, and it is possible for both
players to get such a set in a round. Other pairs of block sets are also possible, such as when one player gets all of the
red blocks (worth $1.15) while the other player gets all of the blue blocks (worth $0.85). We categorize outcomes in
which both players get valid sets but neither player gets all of the squares as Aloof Cooperation, since these outcomes
require the players to coordinate their selections, but do not require the players to engage substantially beyond that.
The players just need to coordinate which sets they pursue so that they do not need the same block to complete their
sets (see Example #4 in Figure 1C for a scenario in which the players fail to coordinate).

Outcomes labeled as Aloof Cooperation are more fair than the bully outcomes, in that the differences between the
players’ earning in a round are lower. However, as illustrated in Figure 1B, none of the outcomes labeled as Aloof
Cooperation produce payoffs on the Pareto boundary of the convex polygon that defines the game’s convex hull (the
grey-shaded region in the Figure). Only round outcomes in which one player gets all of the squares reside on this
Pareto boundary, and these outcomes are not fair. However, a fair and Pareto efficient average joint payoff is produced
over a series of rounds when players take turns getting the squares and triangles (Example #5 in Figure 1C). This joint
behavior, which we call Efficient Cooperation, yields a player $2.00 in one round followed by $0.50 in the next round,
resulting in an average per-round payoff of $1.25. As such, Efficient Cooperation is more profitable for both players
than any form of Aloof Cooperation.



Despite being better for both players than Aloof Cooperation, seeking the compromise of Efficient Cooperation is
risky for a variety of reasons. First, this solution exposes the players to risk since it requires one player to receive a
low payoff in one round with the hope that the other player will allow them to receive a high payoff in the next round.
Thus, opening one’s self to the opportunity of Efficient Cooperation exposes a player to being exploited. Second,
seeking Efficient Cooperation when the other player will not agree with it can be costly. For example, by selecting
two squares, a player exposes itself to the potentiality of a high loss if the other player decides to take the third square
(see Example #2 in Figure 1C). The other player may interpret the attempt to get all of the squares in a round as
greedy (it is easily conflated with a desire to bully), which can lead to conflict and Fights. In short, seeking Efficient
Cooperation is risky, similar to hunting stag instead of hunting hare in a Stag Hunt (Skyrms., 2004).

Game Theoretic Analysis

Since neither player can get a valid set in a round without the cooperation of the other player, both players’
minimax values are below 0.0. If both players use minimax (Nash, 1928) to select blocks, player 1 would select all of
the purple blocks while player 2 would select all of the blue blocks (under the assumption of a reasonable tie-breaking
strategy), resulting in round payoffs of $0.70 and $0.85, respectively. This solution is a rather inefficient instance of
Aloof Cooperation. We did not observe any instance of this outcome in any of the studies reported in this paper.

The sub-game perfect Nash equilibria (Nash, 1950; Gintis, 2000) of a single round of the Block Dilemma corre-
spond to the cases in which each player gets a mixed set of blocks, resulting in round earnings of $0.90 to each player.
Other Nash equilibria of the round of a game do exist, albeit they are not sub-game perfect. If one player can convince
the other player that they are not fully rational, they can bully the other player so that they get a higher payoff. For
example, player 1 could threaten player 2 that if player 2 does not let them get all of the squares, then they will not let
player 2 get a valid set. If player 2 believes this threat, they would be better off selecting only triangles (thus letting
player 1 take all of the squares). However, such a threat is risky. Selecting multiple squares could result in a large loss
if player 2 does not conform. The threat is also irrational, as carrying it out would not be in player 1’s self interest
with respect to the current round’s payoffs. As such, this equilibrium strategy is not sub-game perfect.

When the game is played repeatedly with a reasonably high probability of the players interacting again after each
round, the folk theorem (Gintis, 2000) shows that the game has many Nash equilibria. These Nash equilibria all
produce payoffs within the game’s convex hull (the grey-shaded region in Figure 1B) that give both players higher
payoffs than their maximin values. However, not all points in this space are equally valuable, nor will self-interested
players agree on which outcome in this space is most desirable. One possible point of compromise that is both fair and
Pareto optimal is the Nash Bargaining Solution (Nash, 1950), which corresponds to Efficient Cooperation wherein the
players take turns getting the squares and triangles.

SM 2: User Study Details

Procedures

For each participant, the study1 proceeded as follows:

1. The subjects participated in the study in groups of two. Each pair was assigned one of the two study conditions
based on a previously determined schedule defining the order in which pairs were to be assigned to conditions.
Figure S1A-B shows the setup for human-human pairs in both conditions, while Figure S1C illustrates the
physical setup for human-robot pairings.

2. The participants were separately instructed on how to play the Block Dilemma and how they were to be paid.
The participants were allowed to ask whatever questions they desired. At the end of this training, each partici-
pant was asked questions verifying their understanding of the basic rules of the game. Any questions missed by
the participants were reviewed and misconceptions were clarified.

1The user studies in this paper were approved by Brigham Young University’s Institutional Review Board (IRB).



3. Each participant played a single 15-round game with their assigned partner (participants were involved in only
a single study each). Participants were not told how many rounds of the game they would play. In each round,
player 1 selected a block first. Throughout the game, the history of moves was displayed on a screen visible to
each participant. The screen also showed the participant the current running tally of the money they had earned
over all rounds played so far. The game typically lasted between 20-30 minutes.

4. Upon completing the 15-round game, the participant completed a post-game survey questionnaire, consisting
of questions (answered on a 5-point Likert scale) in which participants rated themselves and their partner with
respect to seven attributes: trustworthiness, vengeance, predictability, cooperativeness, deviousness, propensity
to bully, and selfishness.

5. The participants were paid through a money voucher, which they could redeem immediately for cash. The
amount of money paid to the participants was equal to the amount of money earned in the game, except that
each participant was given $10 (USD) at a minimum.

Demographic Information of Study Participants

Human-human study (Study 1): Forty students (31 males, 9 females) were recruited from the Brigham Young
University campus in Provo, UT, USA to participate in this study. The average age of the participants was 22.8 years.
Eight-five percent of the study participants were majoring in a degree related to science or technology and 93% had
some degree of familiarity with strategic games. In order to avoid biases, pairs for each game were formed such that
the respective players were not familiar with each other prior to the study.

Human-robot study (Study 3): Forty-five students (32 males, 13 females) were recruited from the Brigham Young
University campus in Provo, UT, USA to participate in this study. To avoid learning effects, these participants were
distinct from those participating in the other studies. The average age of the participants was 22.7 years. Sixty-six
percent of the study participants had a science/technology background and 98% had some degree of familiarity with
strategic games. Several additional people also participated in the study. However, due to system errors and failures
(which either prohibited the 15 rounds from completing or otherwise compromised the results), we discarded the re-
sults from those interactions.

Human-Disguised AI study (Study 4): Ten participants (6 males, 4 females) were recruited from the Brigham Young
University campus in Provo, UT, USA to participate in this study. To avoid learning effects, these participants were
distinct from those participating in the other studies. The average age of the participants was 22.2 years. Eight of the
ten participants came from STEM backgrounds.

SM 3: Robot System

Tibor is a Sawyer robot developed by Rethink Robotics which we enhanced with additional cameras and a micro-
phone so it could better perceive its environment and communicate strategy and personal touch. In this section, we
provide additional information about Tibor’s behavior and processes.

Vision and Grasping

In our studies, Tibor perceived its environment using a wide-angle camera for face tracking and a Kinect2 Wiede-
meyer (2015) for detecting and localizing blocks and recognizing hand movements over the table. The wide-angle
camera, mounted to Tibor’s head, used a Haar cascade in combination with a Kalman filter to detect and track faces.
The Kinect2 was mounted from the ceiling, giving a bird’s-eye view of the table, player and blocks. Hands and blocks
were detected using a combination of color and shape detection using OpenCV Bradski (2000), and then localized
by indexing into a point cloud which yielded the respective (x, y, z) coordinates of the blocks or hands. The block
coordinates were then passed into the manipulation system, which uses MoveIt Sucan and Chitta (2013) for motion
planning. Hand detection was reported to the agent so it could decide when it was safe to engage in a manipulation
task.



Error Detection and Recovery

The robot sometimes failed to identify or pick up a block because both vision and grasping were subject to
substantial hardware, software, and environmental complexities. Thus, we created various recovery mechanisms that
would allow the robot to keep its interaction going in the presence of errors. For example, when failing to pick up
a block the robot reattempted the action once. If still unsuccessful, Tibor would then ask the human for assistance
instead.

In event of an unexpected failure of the vision subsystem, the system would automatically restart it. It was also
able to detect known reasons for failure and propose potential recovery mechanisms. For example, Tibor would ask
the player to move their hand when it sensed that the blocks were occluded by the player’s hand.

Tibor’s Communication

Tibor used both verbal communication (speech acts) and non-verbal communication (gaze and facial expression)
capabilities. This section describes them one by one, and then discusses more in depth how the various signals were
categorized as either Personal Touch or Strategy signals.

Speech Acts
Tibor’s speech acts are triggered by S# (see Crandall et al. (2018)) as well as several other system modules.

Example speech acts used by Tibor are shown in Table S1 and Table S2. This table illustrates how different speech
acts can be used to communicate signals relating to Tibor’s strategy, personal touch, and error recovery in different
game scenarios. For example, in between rounds, S# largely communicates the feelings related to the last round of
play (personal touch) as well as its intended behavior and expectations for the upcoming round (strategy). During the
round, other modules (such as vision and grasping) detect anomalies which prevent normal game flow. When such
anomalies are detected Tibor communicates its awareness of a particular subsystem’s failure resulting in a reattempt of
a task, restart of a subsystem, or requesting assistance from the human (always regardless of personal touch or strategy
being enabled). Additionally, Tibor will also express feelings of frustration when failures occur and happiness upon
recovery from the error (personal touch).

Facial Expressions and Gaze
In addition to verbal communication, Tibor seeks to express its feelings and consciousness through non verbal

communication such as facial expressions and gaze. This was enabled only in the conditions enabling personal touch.
Tibor’s facial expressions consisted of three components. The first component is a static expression reflective of

Tibor’s current emotional state (as communicated to it by the S# algorithm) using the faces shown in Figure S2. Five
emotions are supported: neutral, joy, surprise, anger, and sadness. Secondly, to convey consciousness, Tibor blinks
periodically. Finally, to give speech a life-like quality, Tibor’s mouth is animated during speech.

Tibor also uses gaze, via head and eye movements, to convey its consciousness of its partner, the environment, and
the game flow. For example, Tibor looks down at the user’s hand as they pick up a block. Once the user has finished
selecting a block, Tibor makes eye contact with its partner. Additionally, Tibor focuses its eyes on the block that it
picks, and then looks at where it intends to place the block while moving it. Tibor ends its turn by both facing and
looking at it’s partner.

Categorizing Signals: Personal Touch vs. Strategy
The separation between communication related to strategy and communication relating to personal touch becomes

blurred in some cases. We wish to be clear about how the communication was classified in our personal touch and
strategic conditions.

• All non-verbal communication including expressions and gaze was attributed to personal touch.

• All verbal communication explicitly stating strategy was attributed to strategic communication.

• All verbal communication solely communicating emotion was attributed to personal touch.



• All verbal communication implicitly stating strategy, but with emotion could be classified as personal touch
communication. 2

• We attempted to not even consider communication that both explicitly stated strategy and also had emotionally
charged words, as such phrases could not be considered an independent variable.

Listening

An additional aspect of S# is that it adapts its behavior based on the strategic proposals made by its partner. Tibor
receives these and other speech acts from its partner via a voice interface. To account for the limited-voice recognition
capabilities of our robot, we limited people to voicing the set of speech acts shown in Table S3. At the beginning of
each round, S# processes all of the speech acts that the player had said since the last round. If strategic communication
is enabled, Tibor responds with acceptance or rejection of any strategic proposal by the human, prior to conveying his
strategy for that round.

SM 4: User Interface

Available Speech Acts

Human participants in our human-robot study were given a predefined set of speech acts they could use that the
robot understood. The list of phrases are given in Table S3. The user could state any phrase they wanted at any time,
though the robot only processed these messages (in batch) at the beginning of each round.

Interface

In all user studies, a scoreboard (Figure S3) was displayed to each human participant throughout the duration of
the game to help them understand the state of the game. This scoreboard contained:

• A illustration of the blocks and their point values.

• A depiction of the current state of the round.

• The money earned by the player so far.

• The play history, showing the blocks selected by each player in each round.

• The chat history (For games where speech was allowed).

• Notification bar indicating whose turn it was, or whether it was time to set up the table for a new round.
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