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Manufacturability evaluation is an effective way to shorten the development period, optimize 
manufacturing processes, and reduce product costs. The manufacturability of a product depends 
on the processing ability of specific manufacturing resources. The development of a manufacturing 
resources model serves as the foundation for manufacturability evaluation. To better utilize the 
information on manufacturing resources, this study adopted a hybrid approach by integrating the 
fuzzy c-means clustering algorithm and the genetic algorithm to group manufacturing resources based 
on manufacturing and geometric features. The information model of manufacturing resources was 
built by using the object-oriented method. Subsequently, the framework to evaluate manufacturing 
capability based on manufacturing resources was defined. Further, an application sample was 
exploited and its results were analyzed. The results of the subgroup showed that the hybrid 
algorithm was reliable and valid and helped improve the overall performance of the company chosen 
for this study. The proposed approach enhanced feasibility in decision-making and facilitated the 
management to make more informed decisions.

In Industry 4.0, smart manufacturing has become the development direction in manufacturing industries 
globally1. The increasingly fierce global competition has posed challenges to the manufacturing industry, the 
most significant of which is the problem of unbalanced data sets. Leng et al. (2021) developed a loosely coupled 
integration model based on deep learning and reinforcement learning techniques in the context of Industry 
4.02 and employed granularity-based computing3 and deep learning4 innovative models to successfully refine 
unbalanced datasets in manufacturing.

To design it right the very first time, designers must ensure that their products are both functional and easy 
to manufacture. A manufacturability analysis system5–7 can be used to evaluate various manufacturability aspects 
in the design phase, thereby reducing the cost and time to market of the designed product and promoting the 
development of virtual manufacturing. The manufacturability evaluation of a proposed design involves deter-
mining whether or not a product can be manufactured by using the available manufacturing resources and, if so, 
finding the associated manufacturing efficiency. A product can be manufactured quickly by ensuring low cost and 
high quality in some manufacturing settings; however, in other facilities, the manufacturing costs can be high, 
even leading to situations where the product cannot be manufactured. In such manufacturing environments, by 
using the existing resources, a product can be manufactured with low cost and high efficiency by using different 
equipment. Manufacturing resources not only aid production design, process design, and manufacturing but 
also impose restrictions. Thus, it is crucial to build a robust manufacturing resources model for manufactur-
ability evaluation. The process of building this model comprises two parts: grouping of processing equipment 
and information modeling of manufacturing resources.

The concept of manufacturing resources can be viewed from both narrow and broad senses. From a broad 
viewpoint, manufacturing resources involve all the elements required that are connected with the design, process-
ing, maintenance, and other processes in the entire product life cycle; from a narrow sense, however, manufac-
turing resources involve the equipment, cutting tools, materials, fixtures, measures, and other implements that 
are only connected with processing. Information about manufacturing resources not only provides support for 
product design, process design, and manufacturing but also places constraints on these processes. Clustering of 
processing equipment reduces the searching space and time taken for manufacturability evaluation. Manufac-
turing resources can thus be utilized more efficiently. The aim of the clustering method is to organize a group 
of objects into classes or clusters such that objects belonging to the same cluster are similar enough to infer that 
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they are of the same type; meanwhile, objects belonging to different clusters will be similar enough to infer that 
they are of different types8.

With the rapid pace of industrial development, many new intelligent manufacturing techniques have emerged, 
such as digital twin technology9,10, which uses a computer program to achieve interaction between virtual and 
actual processing, whereby the virtual control of the actual processes can reduce costs and improve produc-
tion efficiency. However, the application of digital twin technology to actual production processes calls for the 
selection of manufacturing features that depend on the processing equipment. As the processing capabilities of 
modern equipment become larger, the processing capacity between different equipment becomes increasingly 
fuzzy. Thus, to improve the actual production efficiency, this paper proposes a hybrid algorithm, combining the 
genetic algorithm (GA) and fuzzy c-mean (FCM) clustering algorithm based on GA, to group manufacturing 
resources according to their processable characteristics. The hybrid algorithm possesses both the global searching 
ability of GA and the local searching ability of the fuzzy clustering algorithm. This way, the optimum number 
of clusters and optimum partitions can be obtained simultaneously, which reduces the searching time and 
searching space for proper processing equipment. The information model of manufacturing resources was built 
by using the object-oriented method on the basis of analyzing the related information required for processing 
manufacturing resources. This study also incorporated features such as hole, plane, and step in the manufactur-
ing resources model. Finally, a framework for evaluating manufacturability based on manufacturing resources 
constraints was devised.

Feature‑based grouping of processing equipment
Manufacturability evaluation11,12 is directly linked to manufacturing resources. A product can be manufactured 
quickly by ensuring low cost and high quality in some manufacturing settings; however, in other facilities, the 
manufacturing costs can be high, even leading to situations where the product cannot be manufactured. In such 
manufacturing environments, by using the existing resources, a product can be manufactured with low cost and 
high efficiency by using different equipment. If the constraints of manufacturing resources are not considered, 
manufacturability evaluation does not make sense. A modern production firm would always have rich processing 
equipment. To utilize them better, the efficiency of manufacturability evaluation needs to be increased and the 
processing equipment has to be partitioned. There are different principles of partition. With the development of 
feature technology, feature-based manufacturability evaluation has turned into a research hotspot. These features 
include economic indicators, technical indicators, productivity indicators, and environmental indicators. Differ-
ent manufacturability evaluation methods have been proposed based on different features13. The feature-based 
grouping of processing equipment makes manufacturability evolution more conducive.

Manufacturing processes can include many features, such as plane, hole, blind hole, step, slot, blind slot, 
pocket, cylindrical protrusion, and curved surface. Processing equipment is grouped according to the features 
that can be processed by the equipment. However, the same features cannot always be processed by the same 
equipment because of varying part sizes, tolerance requirements, and other important manufacturing criteria. In 
this study, in addition to the features, the part size and processing accuracy were also considered as processing 
equipment attributes. In feature-based manufacturing resources partition, there are N processing equipment and 
s features altogether. The processing equipment vector can be defined through Eqs. (1) and (2).

There are a few clustering algorithms, and the FCM algorithm can be used to partition the manufacturing 
resources here. The overall process of manufacturing resource modeling is shown in Fig. 1.

Hybrid algorithm of FCM and GA for grouping manufacturing resources
Fuzzy c‑means (FCM) algorithm.  The FCM clustering algorithm is an unsupervised and non-parametric 
method that can help to analyze data through cluster analysis. The technique was first proposed in 1973 and has 
been widely used since. The FCM has been proven to have good stability and partition quality through some 
cases and good convergence14. An FCM convergence proof can be established as follows15–18.

Given a set of objects X = (x1, x2, . . . , xN ), xi ∈ Rs , where N is the number of objects and s is the dimension 
of the pattern vectors, FCM can be used to divide the region and find the optimal corresponding partition and 
prototype to minimize the following objective function.

where C is the number of clusters, U is the matrix of membership functions, µij is the element of U and the 
membership value of the ith object of the jth cluster , V is the clustering center vector, m is the index controlling 
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the amount of µij cluster overlap and fuzziness,dij =
∥

∥

∥
xi − v

(t)
j

∥

∥

∥
 represents the distance between xi and vj, and 

t denotes the tth iteration.
The standard Lagrange multiplier minimization method can be invoked in Eq. (3) to obtain the updated 

clustering centroid vector and membership function matrix.
Given a fixed number C ( 2 ≤ C < N ), m ( 1 < m < ∞ ) and ε (a small positive constant), the FCM algorithm 

starts with a set of initial cluster centers. It then randomly generates a fuzzy c-partition and sets the iteration 
number t = 0 , t = (0, 1, 2, · · · · · ·) . The three-step iterative process works as follows:

Step 1. Given the membership values µ(t)
ij  , the cluster center vector V is calculated by

Step 2. Given the new cluster centers V (t) , the membership values µ(t)
ij  can be updated as

Step 3. Compare U (t) to U (t+1) in a convenient matrix norm: if 
∥

∥U (t+1) − U (t)
∥

∥ < ε , then stop; otherwise, 
set t = t + 1 and return to step 1.

The genetic algorithm (GA).  In 1975, inspired by the evolutionist theory explaining the origin of spe-
cies, Professor J. Holland proposed the GA. In nature, weaker species become extinct by natural selection while 
stronger species emerge from natural selection to pass on their genes to future generations. In the long run, 
dominant populations tend to be the species that carry the correct combination of genes. During the slow evolu-
tion of a species, genes can change at any time. If these changes are aided by natural selection, a new species is 
formed; conversely, if these changes do not aid natural selection, it eliminates any unsuccessful changes as the 
challenge to survive continues to increase. Because GA replaces many computationally expensive deterministic 
optimization methods, it has gained increasing popularity in the engineering field19–21.
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Figure 1.   Overall flow chart of manufacturing resources modeling.
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The hybrid fuzzy clustering algorithm.  Since the FCM algorithm is a local search algorithm, it is effec-
tive in some areas; however, overall, its performance fails to meet people’s expectations22. The algorithm is par-
ticularly sensitive to initialization, leading to easy access to local optima during computation23. The GA is a 
global optimization algorithm widely used in practice and has advantages because of its universality and simplic-
ity. It also has good robustness and fitness for concurrent processing. Based on these advantages, an FCM algo-
rithm based on GA not only offers the GA’s global searching ability but also the local searching ability of FCM. 
The hybrid algorithm can solve the issue of the FCM algorithm being sensitive to initialization and increase the 
convergence speed. Consequently, clustering can be done more efficiently.

With the FCM algorithm, it is difficult to determine the number of initial clusters without effective guidance 
before performing clustering. The hybrid fuzzy clustering algorithm comprises outer and inner iterations. The 
outer iteration determines the optimal number of clusters dynamically by using the GA, and the inner iteration 
determines the optimal partition corresponding to the optimal number of clusters by using FCM clustering 
based on the GA.

Inner iteration.  Since the hybrid algorithm of GA and FCM is introduced in the internal iteration, the 
optimal classification matrix corresponding to the number of clusters can be easily obtained according to the 
principle of maximum membership. The main functions of the hybrid algorithm include encoding, constructing 
the fitness function, selecting the genetic operators, and determining the parameters24.

Encoding.  Real coding on the clustering center v can be performed by the coding method25. A chromosome 
is expressed as chr = v1v2 · · · vc,vi(i = 1, 2, · · · , c) , where C is the number of clusters. There are S characters in 
each cluster, so the length of a chromosome is c × s . A chromosome is expressed as {v11,v12,...,v1s,v21,v22,v2s,......,
vc1,vc2,...,vcs}.

Fitness function.  The purpose of fuzzy clustering is to obtain the minimum objective function (loss function), 
which constitutes an optimization problem26. The method of determining the chromosomal fitness value for the 
survival probability of the next generation of an individual is a vital issue during optimization. The objective 
function of fuzzy clustering ( Jm ) should be small and the partition should be more reasonable. The correspond-
ing fitness function of GA should also be big. The fitness function with the objective function Jm can be defined 
as follows:

Crossover and mutation operator.  The most important operator in the GA is the crossover operator. An off-
spring is produced during the crossover process, which is defined as two chromosomes from the parents joining 
together to form a new chromosome. Upon iterating the crossover operator, the expected good chromosome 
genes appear frequently in the population, leading to convergence and an overall good solution. The double-
point crossover operator is also employed. The two-point crossover operator involves a random selection of two 
crossover points, and fragments corresponding to the crossover points on two parental genes are exchanged27–29.

The variation operator plays a key role in the GA by introducing stochastic changes during chromosome 
evolution. The crossover uses an iterative approach to make the chromosomes in a population similar and 
thus converge the population, whereas mutation introduces random variation into the population and helps 
in searching, avoiding local optima. Because the mutation rate is very small, the new chromosomes created by 
mutation are not very different.

Selection operator.  Simple GAs do not guarantee convergence of results to the global optimum solution. 
However, the GA when applied with the optimum individual maintaining strategy can yield a global opti-
mum solution30–32. Thus, for this hybrid algorithm in this study, the selection was carried out by combining the 
remainder stochastic sampling with replacement and the optimum individual maintaining strategy. The advan-
tage of remainder stochastic sampling with replacement is that individuals with high fitness can be preserved 
during child generation with a minimum selection error. Individuals with the biggest value of fitness function 
are maintained in the offspring without genetic manipulation.

FCM optimization of individuals.  Due to the greater local searching capability of FCM, the population can be 
optimized using FCM after each generation of genetic manipulation to generate new populations for subsequent 
evolution. Using the FCM optimization method, the convergence speed can be improved and the local searching 
capability can be enhanced33. The realization of FCM optimization can be performed as follows:

1.	 The corresponding fuzzy matrix U is derived by calculating the chromosome code through Eq. (5).
2.	 The new clustering matrix U is calculated by Eq. (4) to derive the new clustering centers, which are encoded 

to generate new chromosomes.
3.	 By recalculating the value of the objective function, the worst individual in the population is found and is 

replaced with an individual that always remained the best during selection.

(6)F(U ,V) =
1

Jm + ε
ε > 0
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Outer iteration.  The FCM algorithm must determine the number of clusters in advance, and the process 
cannot be optimized. A typical GA uses outer iterations to determine the optimal number of clusters. A good 
clustering algorithm takes into account both the degree of separation between the different partitions and the 
degree of compression of a partition. The degree of dispersion between the different partitions can be expressed 
as the average distance between the clustering centers. The bigger the value of the average distance between the 
cluster centers, the greater the degree of deviation of the different partitions. The distance between the clustering 
centers is denoted by D and is expressed as follows:

The main purpose of clustering is to partition the dataset in such a way that the distance between the dif-
ferent partitions is maximized and the distance between each object in a cluster is minimized. As the number 
of clusters (C) increases, the value of Jm decreases and the value of D increases. The objective function of outer 
iteration can be defined as follows:

The fitness function of the outer iteration is defined as

The encoding method in a typical GA is a binary encoding of the number of clusters. The hybrid of opti-
mum individual maintaining strategy and remainder stochastic sampling with replacement is employed as the 
selection operator. The crossover and mutation operators are the single-point crossover and essential mutation, 
respectively. The number of clusters corresponding to each chromosome is calculated, and the corresponding 
optimum partition is obtained by using the inner iteration.

Implementation of algorithm
The hybrid algorithm that introduces manufacturing resource division comprises two parts: outer iteration and 
inner iteration. The program flow chart is shown in Fig. 2.

To test the effectiveness of the algorithm, the set of manufacturing resources shown in Table 1 was divided 
based on the features that can be processed by the device. The relevant features considered by this study were 
cylinders and tapers, planes, bevels, holes, surfaces, and steps. The device was represented by a pattern vector, 
and the length of the pattern vector was 8. The first six digits represent cylinders, tapers, planes, grooves, holes, 
surfaces, and steps. The two diagrams on the left indicate the dimensions of the parts that can be machined with 
machining equipment and whether the machining equipment can be used for finishing. The mode vector com-
prised 0 and 1, corresponding to a value of 1 if the machine can handle the feature and 0 otherwise. Similarly, 
1 if the machine can process large parts and 0 otherwise and 1 if the machine can be used for finishing and 0 
otherwise. For example, the vertical milling machine can handle a plane slot but cannot handle a large part and 
can be used for finishing. Thus, the vector is 01100001. Lathe 2 can handle cylinder and cone, plane, slot, and 
hole but cannot handle a large part and can be used for finishing. Thus, the vector is 1,110,000, as shown in 
Fig. 3. The pattern vectors of 32 machining equipment are shown in Table 1. The equipment was grouped using 
the algorithm proposed by this study.

The algorithm was implemented in C +  + . The population sizes of the internal and external iterations were 
set to 40 and 20, respectively. The number of evolutionary generations of the hybrid algorithm was set to 100, 
and the crossover and variation rates were set to 0.8 and 0.1, respectively.

The variation of fuzzy clustering objective function Jm and the mean distance D between the cluster centers 
with respect to the number of clusters is shown in Fig. 4. Jm decreased monotonically with an increase in the 
number of clusters. D monotonically increased in the range (2, 10) (11, 12) and monotonically decreased in the 
range (10, 11). The sum of Jm and D was minimal when the number of clusters was 6. The variation of the outer 
iterative fitness function is shown in Fig. 5, and the maximum value of fitness was obtained when the number 
of clusters was 6. According to the optimal number (6) of the proposed algorithm, the optimal classification 
was obtained according to the principle of maximum affiliation. The optimal classification of manufacturing 
resources is shown in Table 2.

Each manufacturing resource belongs to only one class, but each feature can belong to multiple classes. The 
second and fifth groups could process cylinder, taper, and hole features for small- and medium-sized parts, but 
the equipment in the fifth group could be used for finishing; thus, the two groups were divided into different 
groups. The first and sixth groups could handle cylindrical and conical, hole, plane, and groove features, but the 
equipment in the sixth group could handle large parts of these features and was thus used for finish machining. 
These equipment were in different partition groups although they could handle the same features. The main 
component of manufacturability evaluation is to evaluate whether each feature of the part has the correspond-
ing processing equipment. By classifying processing equipment in groups, only the group with the evaluated 
feature needs to be searched. Therefore, the search time and space for processing equipment corresponding to 
the features is reduced and the efficiency of manufacturability evaluation is improved.

After finding the processing equipment corresponding to the features, the information model of the equip-
ment needs to be established and used to evaluate whether the processing capability of the equipment meets the 
design requirements. This study used the object-oriented approach to build the model.

(7)
D =

C
∑

i=1

∥

∥vi − vj
∥

∥

C

(8)f = Jm(U ,V)+ D

(9)F ′(U ,V) =
1

Jm(U ,V)+ D
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Information modeling of manufacturing resources based on the object‑oriented 
method
Object‑oriented method in the manufacturing resource model.  The basic principle of the object-
oriented approach is to identify and define entities in the objective world. Object-oriented methods have effec-
tive structural features, including classification, encapsulation, and inheritance, but it is a vague analytical model. 
Unlike the structural modeling approach, the object-oriented modeling approach emphasizes the relationships 
and states among objects during system measurement. The state of each object in the system is expressed through 
properties in the object-oriented modeling approach, and relationships and interactions between the objects are 
measured through events and messages. The structure of the object model can be described by objects, attrib-
utes, and associations34.

Demands and structure of the manufacturing resource model based on the object‑oriented 
method.  A few factors such as the manufacturing capacity of enterprise resources, processing materials, 
and the processing capability for equipment processing (machining precision, working range, and the carrying 
capacity of the table) need to be considered during manufacturability evaluation. The manufacturability of a part 
relates not only to the processing equipment but also to the technological equipment, such as the cutting tool, 
fixture, and measuring tool. Thus, a detailed information model of manufacturing resources, which includes 
processing equipment and technological equipment, should be built to evaluate their processing capabilities. In 
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Figure 2.   Schematic representation of the hybrid approach.
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the manufacturing resources model based on features, the manufacturing features are involved in this model too. 
Manufacturability evaluation not only assesses whether a part can be machined by the existing manufacturing 
resources but also selects the optimum processing equipment based on the different needs of the clients. The 
selection of equipment involves plenty of information, such as the state of equipment, processing cost, process-
ing time, and location. When the information of the model is more detailed, the evaluation results are better. 
Thus, the model should contain as much information as much as possible and should be changed whenever 
necessary.

To meet the demands of manufacturability evaluation, the information model of manufacturing resources 
should be dynamic, integrated, and steady. The data of the manufacturing resources model should be stored in a 
coherent and safe way, and the data structure of the model should be convenient for data processing. The object-
oriented class hierarchical structure model is constructed by taking advantage of encapsulation and inheritance 
of the object-oriented method to abstract manufacturing resources. Each class has its own subclasses.

Table 1.   A set of manufacturing resources.

Number Device name Features Pattern vector

1 Vertical milling machine Plane, groove, finish processing 011000 01

2 Drilling machine 1 Hole 000100 00

3 Drilling machine 2 Hole 000100 00

4 Drilling machine 3 Hole, large-size part 000100 10

5 Lathe 1 Cylinder and taper, hole 100,100 00

6 Lathe 2 Cylinder and taper, plane, groove, hole 111,100 00

7 Lathe 3 Cylinder and taper, plane, groove, hole, curved surface, step, finish 
processing 111,111 01

8 Lathe 4 Cylinder and taper, hole, finish processing 100,100 01

9 Lathe 5 Cylinder and taper, hole 100,100 00

10 Lathe 6 Cylinder and taper, plane, groove, hole, large-size part, finish process-
ing 111,100 11

11 Drilling machine 4 Hole 000100 00

12 Milling and drilling machine Plane and hole 010100 00

13 Drilling machine 5 Hole 000100 00

14 Boring-milling machine 1 Cylinder and taper, plane, hole, large-size part, finish processing 110,100 11

15 Coordinate setting boring machine Plane, groove, hole, large-size part, finish processing 011100 11

16 Boring-milling machine 2 Plane, groove, hole, large-size part, finish processing 011100 11

17 Horizontal fine-boring machine Hole, finish processing 000100 01

18 Milling machine 1 Plane, groove, finish processing 011000 01

19 Milling machine 2 Plane, curved surface, large-size part, finish processing 010010 11

20 Milling machine 3 Plane, groove, step, finish processing 011001 01

21 Milling machine 4 Plane, groove, curved surface, step, finish processing 011011 01

22 Milling machine 5 Plane, groove, hole, step, finish processing 011101 01

23 Milling machine 6 Plane, large-size part, finish processing 010000 11

24 Milling machine 7 Plane, large-size part, finish processing 010000 11

25 Milling machine 8 Plane, curved surface, large-size part, finish processing 010010 11

26 Boring-milling machine 3 Plane, hole, large-size part, finish processing 010100 11

27 Planning machine 1 Plane, groove 011000 00

28 Cylindrical grinder Cylinder and taper, finish processing 100,000 01

29 Internal grinding machine Hole, finish processing 000100 01

30 Surface grinding machine Plane, finish processing 010000 01

31 Planning machine 2 Plane, large-size part, finish processing 010000 11

32 Broaching machine Plane, curved surface, finish processing 010010 01

Figure 3.   Vector representation of manufacturing resource.
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Figure 4.   Relationship between Jm, D, and the number of clusters.

Figure 5.   Relationship between the outer fitness and the number of clusters.

Table 2.   Classification result of manufacturing resources.

Number of cluster Machining equipment Feature

1 Lathe 2, Lathe 3, Milling and drilling machine, Milling machine 5, Broaching 
machine Cylinder and taper, plane, groove, hole, curved surface, step

6, 7, 12, 22, 32

2 Drilling machine 1–5, Lathe 1, Lathe 5, Horizontal fine-boring machine, 
Cylindrical grinding machine, Cylinder and taper, hole

2, 3, 4, 5, 9, 11, 13, 17, 29

3 Vertical milling machine, Milling machine 1, Milling machine 3, Milling 
machine 4, Planning machine 1, Surface grinding machine Plane, groove, step, finish processing

1, 18, 20, 21, 27, 30

4
Milling machine 2, Milling machine 6–8, Planning machine 2 Plane, curved surface, large-size part, finish processing

19, 23, 24, 25, 31

5
Lathe 4, Cylindrical grinder Cylinder and taper, hole, finish processing

8, 28

6
Lathe 6, Boring-milling machine 1–3, Coordinate setting boring machine Cylinder and taper, plane, groove, hole, large-size part, finish processing

10, 14, 15, 16, 26
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According to the content of manufacturability evaluation, the manufacturing resources model comprises 
the information model of the manufacturing equipment class, technological equipment class, and feature class. 
The information model of the manufacturing equipment class mainly includes the processing equipment, which 
includes equipment such as the milling machine, grinding machine, and lathe. The grinding machine involves 
the cylindrical grinding machine, internal grinding machine, and surface grinding machine. The cylindrical 
grinding machine comprises equipment such as the CNC cylindrical grinding machine and universal cylindrical 
grinding machine. The information model of the technological equipment class includes cutting tools, measur-
ing tools, and fixtures, and the information model of the feature class involves features that can be processed by 
the equipment in this manufacturing resources model, such as plane, hole, and groove. A schematic illustration 
is shown in Fig. 6.

The object-oriented information model of processing equipment contains two sections: the essential infor-
mation model of specific processing equipment and processing capability information of processing equip-
ment. The essential information model describes public information unrelated to processing. This information 
includes parameters such as the machine ID, machine name, machine type, machine owner, machine cost, and 
machine load. When a specific machine tool object belonging to a class of machine tools is built, a value should 
be assigned to these attributes. The essential information model of machine tools is depicted in Fig. 7(a). The 
processing capability model describes the capability of generating manufacturing features. The information 
includes aspects such as the feature ID, feature name, feature owner, max length (max length machined), min 
length (min length machined), max Ra (max roughness), max Fp (max form and position accuracy), max D (max 
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Figure 6.   Manufacturing resources model.
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Figure 7.   Object-oriented information model. (a) essential information of machine tool; (b) feature processing 
capability of the equipment; (c) essential information of cutting tool; and (d) essential information of the 
features.
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diameter machined), min D (min diameter machined), and lot size. The feature processing capability model of 
the equipment is shown in Fig. 7(b).

The essential information model of the cutting tool and the features are shown in Figs. 7(c) and 7(d).

Manufacturability evaluation based on manufacturing resources constraints.  The manufactur-
ability of a part is the extent to which a part can be adapted to suit the available manufacturing resources. This 
involves factors such as the machining cost, machining time, machining technology, and assembly process35. 
Based on this information, the manufacturing resources model based on the object-oriented method was built. 
An important step in manufacturability evaluation based on manufacturing resource constraints is to test 
whether the part and design features can satisfy the constraints and be machined by the existing manufacturing 
resources. Manufacturability evaluation is also based on feature and evaluation processes and is shown in Fig. 8.

Step 1. The manufacturing feature is defined as the input. Thereafter, search the database for the feature infor-
mation. If the feature is found, the part can be processed; otherwise, the part cannot be processed.
Step 2. Search the machining tool group corresponding to the features according to the design requirements 
of the part. If the equipment that can process the feature is found, the part can be processed; otherwise, the 
part cannot be processed by the limited manufacturing resource.
Step 3. Search the database for the technology equipment information. If the proper cutting tools and fixtures 
are found based on the design requirements, the part can be processed in the existing manufacturing environ-
ment; otherwise, the part cannot be processed.

There are two aspects to manufacturability evaluation: one is to test whether the part can be processed by 
the existing manufacturing resource and the other is to decide how the part can be processed effectively at a low 
cost. The first step is concerned only with the manufacturing resources. The next step involves finding an optimal 
way to process the part based on varying customer requirements.

Conclusions
This study developed a hybrid algorithm comprising the GA and the FCM to group processing equipment 
according to the manufacturing and geometric features that can be processed by the equipment. The fuzzy rules 
employed could cope with the problem of the difference arising between the processing capabilities of modern 
processing equipment. The algorithm was tested on a variety of applications. The mathematical model of this 
algorithm was constructed, and the algorithm was tested with 32 processing machines. The results showed that 
the search space and search time of the processing equipment were successfully reduced by using the hybrid 
algorithm, indicating that it was reasonably effective and insensitive to the initial values.

The information model of manufacturing resources was built by using the object-oriented method based 
on features. The features were also involved in this model. The model could provide information required for 
product development and manufacturability evaluation to determine whether the product could be processed 
by employing the existing manufacturing resource. The information model could also yield information for 
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Figure 8.   Manufacturability evaluation based on manufacturing resources constraints.
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computer-aided process planning and render the manufacturing resources conducive for effective manage-
ment. The framework of manufacturability evaluation based on the constraints of the proposed manufacturing 
resources model was defined. By adopting this framework, the time taken for evaluation could be reduced. The 
manufacturing resources model proved beneficial in enhancing the overall performance of the company, result-
ing in improved and feasible decision-making among the management. The model can be further refined in the 
future by introducing additional manufacturing characteristics to make the information more detailed and the 
manufacturability assessment and decision-making more effective and feasible.
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