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Abstract

Background: Computational prediction of protein subcellular localization can greatly help to elucidate its functions.
Despite the existence of dozens of protein localization prediction algorithms, the prediction accuracy and coverage
are still low. Several ensemble algorithms have been proposed to improve the prediction performance, which
usually include as many as 10 or more individual localization algorithms. However, their performance is still limited
by the running complexity and redundancy among individual prediction algorithms.

Results: This paper proposed a novel method for rational design of minimalist ensemble algorithms for practical
genome-wide protein subcellular localization prediction. The algorithm is based on combining a feature selection
based filter and a logistic regression classifier. Using a novel concept of contribution scores, we analyzed issues
of algorithm redundancy, consensus mistakes, and algorithm complementarity in designing ensemble algorithms.
We applied the proposed minimalist logistic regression (LR) ensemble algorithm to two genome-wide datasets
of Yeast and Human and compared its performance with current ensemble algorithms. Experimental results showed
that the minimalist ensemble algorithm can achieve high prediction accuracy with only 1/3 to 1/2 of individual
predictors of current ensemble algorithms, which greatly reduces computational complexity and running time. It was
found that the high performance ensemble algorithms are usually composed of the predictors that together cover
most of available features. Compared to the best individual predictor, our ensemble algorithm improved the prediction
accuracy from AUC score of 0.558 to 0.707 for the Yeast dataset and from 0.628 to 0.646 for the Human dataset.
Compared with popular weighted voting based ensemble algorithms, our classifier-based ensemble algorithms
achieved much better performance without suffering from inclusion of too many individual predictors.

Conclusions: We proposed a method for rational design of minimalist ensemble algorithms using feature selection
and classifiers. The proposed minimalist ensemble algorithm based on logistic regression can achieve equal or better
prediction performance while using only half or one-third of individual predictors compared to other ensemble
algorithms. The results also suggested that meta-predictors that take advantage of a variety of features by combining
individual predictors tend to achieve the best performance. The LR ensemble server and related benchmark datasets
are available at http://mleg.cse.sc.edu/LRensemble/cgi-bin/predict.cgi.
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Background
Functions of proteins are closely correlated with their sub-
cellular locations. For example, Assfalg et al. [1] showed
that there exists strong correlation between localization
and proteins fold and localization can be utilized to predict
structure class of proteins. It is thus desirable to accurately
annotate subcellular location of proteins to elucidate their
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functions. In the past ten years, dozens of protein
localization algorithms have been proposed based on differ-
ent information sources such as amino acid composition,
sorting signals, functional motifs, conserved domains,
homology search, and protein-protein interaction [2]. A
variety of machine learning techniques, such as SVM and
K-nearest neighbour classifiers, have been used in these
prediction algorithms. Although existent methods have
achieved success at different degrees, a comprehensive
evaluation study has shown that many of the reported
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prediction accuracies are far from being sufficient for gen-
ome wide protein localization prediction [3].
Recently, several research groups proposed to apply en-

semble or integration of algorithms to protein localization
prediction [4-8]. Liu et al. [4] proposed weighted and adap-
tive weighted voting algorithms in which the overall accur-
acy of a standalone algorithm is used as the weight. Laurila
and Vihinen [5] proposed an integrated method (PROlocali-
zer) which combines the predictions of multiple specialized
binary localization prediction algorithms such as TMHMM
and Phobius. Park et al. [6] developed a Linear Discrimin-
ant Analysis (LDA) method (ConLoc) to assign LDA opti-
mal weights for weighted voting. Assfalg et al. [7] proposed
two ensemble localization algorithms; one is a scored vot-
ing scheme based on the ranks of the prediction accuracy
of the predictors; the other chose J48 decision tree (DT)
classifier as the integration scheme. Shen and Burger [8]
proposed a two-layer decision tree method to improve the
prediction accuracy of a single subcellular location. Most of
these ensemble algorithms integrated 10 or more standa-
lone prediction methods for localization prediction without
considering their relationships such as redundancy and
complementarity. This makes these ensemble algorithms
computationally intensive. Furthermore, incorporation of
unnecessary predictors into an ensemble algorithm may
overfit the training data and result in degradation of its
prediction performance, which has been reported recently
for ensemble mitochondrion predictors [9].
In this paper, we evaluated 9 standalone localization pre-

diction algorithms and analyzed their bias and relationships
in the prediction space of the resulting ensemble algo-
rithms. We found that ensemble algorithms based on the
combination of several specific predictors achieved com-
parable prediction performance as using all 9 predictors,
suggesting that a high degree of redundancy exists among
all individual predictors. We thus proposed a minimalist
ensemble prediction algorithm for subcellular localization
prediction and evaluated its performance on two data sets,
which showed high performance and significant reduction
of computational complexity and running time.
Table 1 Features used in localization prediction algorithms

Sorting
signal

Amino acid
composition

Known
or moti

NetLoc

YLoc X X X

MultiLoc2 X X X

KnowPred

Subcell X

WoLFPSORT X X X

BaCelLo X

CELLO X

SubLoc X
Methods
Standalone protein localization predictors
To implement our ensemble localization predictor, we
selected 8 published localization prediction algorithms
provided that the software or web server is publicly
available, and batch submission is supported. These
algorithms include YLoc [10], MultiLoc2 [11], KnowPred
[12], Subcell [13], WoLFPSORT [14], BaCelLo [15],
CELLO [16], SubLoc [17]. We also included NetLoc [18],
a protein-protein interaction (PPI) based prediction
method. These prediction methods differ in the features
that characterize proteins targeting different subcellular
locations (Table 1) and the prediction algorithms. These
diverse features include sorting signals, amino acid
composition, known motifs or domains, homology
search against a known dataset or database such as
SwissProt, evolutionary information such as phylogen-
etic profiles or sequence profiles, and protein-protein
interaction. The overlap of the used features among
localization predictors suggests that redundant predic-
tions could be made when these prediction methods are
combined to build an ensemble algorithm, which could
mislead the prediction behaviour of the resulting en-
semble algorithm.
In addition to amino acid sequence information,

protein-protein interaction has been known as external
information correlated to protein subcellular localization.
A number of algorithms have been developed to utilize
PPI features to predict protein localization (Hishigaki
et al. [19], Lee et al. [20] and Shin et al. [21]). Recently,
our group developed NetLoc [18], a kernel-based logistic
regression (KLR) method, which can effectively extract
PPI features to predict protein localization. Considering
that NetLoc simply used PPI as its features, we integrated
NetLoc into our ensemble algorithms to compare the en-
semble performances with and without a PPI-based pre-
dictor. In our experiments, PPI data of NetLoc is based
on the whole Saccharomyces cerevisiae physical PPI
dataset obtained from BioGRID database [22]. We ex-
clude proteins overlapped with our Yeast datasets from
domains
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the PPI dataset to ensure independency between the
training and testing datasets.

Mapping of subcellular locations
Different localization predictors may have different subcell
resolutions. In order to compare their performances on
genome wide datasets, we applied a location mapping
scheme to map the subcellular locations of standalone pre-
dictors to unified 5 locations in the ensemble algorithms,
including Cytosol, Mitochondrion, Nucleus, Secretory
(secretory pathway), and Others. Six classes of subcellular
locations are mapped to Secretory according to [11]: extra-
cellular, plasma membrane, endoplasmic reticulum, golgi
apparatus, lysosomal, and vacuolar. Except for Cytosol,
Mitochondrion, Nucleus, and Secretory, the remaining
subcellular locations are categorized as Others. For ex-
ample, for CELLO, the following subcellular locations are
mapped to Secretory: extra, plas, er, vacu, golgi, and lyso;
chlo, pero, and cytos are mapped to Others. For WoLFP-
SORT, E.R., extr, plas, golg, lyso, and vacu are mapped to
Secretory; chlo, cysk, and pero are mapped to Others.

Contribution score
To explore the complementary relationship among the
individual predictors used in an ensemble algorithm,
we calculated contribution scores [23] of component stan-
dalone prediction methods. This measure is used to evalu-
ate the contribution of each individual classifier to the
ensemble algorithm, and has been used for pruning large
ensemble set. The main idea of the contribution score is
that predictors that tend to make correct and minority
predictions among other predictors will be scored higher
since they make unique contribution and thus are essen-
tial for the ensemble algorithm. On the other hand, pre-
dictors with low contribution scores tend to make
incorrect and majority predictions. The contribution score
of a predictor in an ensemble algorithm is calculated
as follows:

Contribution score of predictor i ¼
XN
j¼1

αij 2υ jð Þ
max � υ jð Þ

pi proteinjð Þ
� �

þ βijυ
jð Þ
sec

�

þ θij υ jð Þ
correct � υ jð Þ

pi proteinjð Þ � υ jð Þ
max

� �

where:
αij ¼
�
1 if pi proteinj

� � ¼ realj and pi proteinj
� �

is
0 otherwise:

βij ¼
�
1 if pi proteinj

� � ¼ realj and pi proteinj
� �

is
0 otherwise:

θij ¼
�
1 if pi proteinj

� � 6¼ realj;
0 otherwise:
Symbols in the formula are explained as follows: for a
protein j, the prediction results of nine predictors in the
order of predictor 1 to predictor 9 are Cytosol, Nucleus,
Nucleus, Mitochondrion, Nucleus, Cytosol, Nucleus, Nu-
cleus, and Nucleus, while the real localization of protein j
is Cytosol. In this case, the majority votes (predictions)
are for Nucleus, the number of the majority votes is

denoted as υ jð Þ
max , which is 6; the number of the second

majority votes is denoted as υ jð Þ
sec , which is 2; the number

of the correct votes is denoted as υ jð Þ
correct , which is 2; the

prediction result of predictor i is denoted as pi proteinj
� �

;
the number of predictors having the same prediction re-

sult with predictor i is denoted as υ jð Þ
pi proteinjð Þ . From the

formula, we can see that predictor 1 and predictor 6 have
the same positive contribution, which is 2*6-2 = 10; pre-
dictor 4 has minor negative contribution, which is −5;
predictors 2,3,5,7,8,9 have the most negative contribu-
tion, which is −10. If the dataset used to learn contribu-
tion scores has N proteins, then the final contribution
score of a predictor is summation of its N contributions.
We normalized the final contribution scores (CS) with
the formula: (CS – μ)/σ, where μ and σ are mean and
standard deviation of contribution scores among
predictors.
Minimalist ensemble prediction algorithm
Existing ensemble algorithms tend to include as many as
possible component classifiers for better prediction per-
formance. However, including redundant predictors not
only increases computational complexity and collecting
effort, but also may lead to over-fitting [9]. Moreover,
predictors with poor performance could mislead the en-
semble algorithms especially those using majority voting
schemes. It is thus desirable to find the minimal subset
of predictors for achieving equally good or better predic-
tion performance.
Several strategies can be used to find the minimal set

of predictors: exhaustive search of all possible combina-
tions of component predictors, feature selection, and
selecting top k most accurate predictors. We did an ex-
haustive search for all combinations of K individual pre-
dictors to build different ensemble algorithms. It shows
that combining 6 out of 9 predictors can achieve the
in the minority group;

in the majority group;
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best performance when the logistic regression classifier
was used to integrate the predictions. However, exhaust-
ive search is a time consuming process especially when
the set of available predictors is large. Top-K accuracy
selection method is straightforward and fast, but has the
limitation of neglecting the redundancy among individ-
ual predictors.
Here we proposed a minimalist ensemble design

method to approximate the smallest set of predictors
with the best possible prediction accuracy. The rationale
is to find the smallest subset of predictors whose predic-
tions are highly correlated to the real locations. The
minimalist ensemble design problem is similar to feature
selection when the prediction labels of individual predic-
tors are considered as features. Here, we chose the cor-
relation based feature subset evaluator (CfsSubsetEval)
[24] as the attribute evaluator to evaluate correlation be-
tween a feature subset and the class. Greedy-Stepwise
method is used to search optimal feature subsets in
different size of K through the space: the starting point
of search is set as the set with all available predictors
(assume size N). Each time Greedy-Stepwise algorithm
will remove one feature or predictor from the set which
would produce a reduced set with the highest possible
CfsSubsetEval Score. We continue the process until set
size is 1, while along the way the predictors in the set
with size K are recorded as the output of our minimalist
ensemble algorithm. After the K individual predictors are
selected based on the training dataset, their predicted
localizations for all proteins in the training dataset will
be used as features, and a machine learning based classi-
fier, such as naive Bayes, logistic regression, or decision
trees is used to train a classifier to predict the final sub-
cellular localization. This method used to select minimal-
ist set of individual predictors can also be used for
building ensemble algorithms based on weighted voting
or LDA.
Datasets preparation
Two genome-wide protein localization databases are
used to build three datasets in our experiments. The
yeast dataset is obtained from Huh et al. [25]. We
excluded proteins localized to Others (after location
mapping) and multi-location proteins from the yeast
Table 2 The distributions of proteins in different locations fo

Dataset Cytosol Mitochondrion Nucleus

Yeast-LowRes 498 175 234

Human 361 327 159

Cytosol Mitochondrion Nucleus

Yeast-HighRes 530 165 233
1Overlap 451 133 218
1Overlap of Yeast LowRes and Yeast HighRres.
dataset. Two versions of the yeast dataset with different
resolutions are prepared; for the low-resolution yeast
dataset (Yeast Low-Res), we extracted proteins in Cyto-
sol, Nucleus, Mitochondrion, Secretory after location
mapping. For the high-resolution yeast dataset (Yeast
High-Res), we extracted proteins in Cytosol, Nucleus,
Mitochondrion, ER, Vacuole, Golgi, and Cell Periphery
(plasma membrane and extracellular). The Human data-
set is obtained from the LOCATE database [26] by
extracting proteins in 4 locations (Cytoplasmic, Mitocho-
dria, Nuclear, and Extracellular). Then we removed all
multi-location proteins. For both Yeast and Human data-
sets, Blastclust with 30% sequence identity was used to
remove redundant sequences. In addition, proteins over-
lapped with the training datasets of component predic-
tors in the corresponding ensemble experiment are
removed. It should be noted that the Yeast High-Res
dataset is highly overlapped with the Yeast Low-Res
datasets. The final distribution of proteins in different
locations for the three datasets is shown in Table 2.

Evaluation of individual predictors and ensemble
algorithms
To evaluate the performance of predictors, accuracy and
MCC were calculated using the equations below:

Accuracy :
TP þ TNð Þ

TP þ TN þ FP þ FNð Þ

MCC :
TP � TN � FP � FNð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TP þ FNð Þ TP þ FPð Þ TN þ FPð Þ TN þ FNð Þp
where TP, TN, FP, FN means true positive, true negative,
false positive and false negative predictions. It should be
noted that since localization prediction is a multi-class
classification problem, MCC can only be calculated for
each location while an overall accuracy can be calculated
for each prediction method for a given dataset. In our
experiments, 10-fold cross-validation was used to evalu-
ate all the ensemble algorithms.

Results and discussion
Evaluation of individual predictors
We obtained the prediction results on three test datasets
(Yeast Low-Res, Yeast High-Res and Human) from the
r the test datasets

Secretory Total

315 1222

458 1305

ER Vacuole Golgi Cell Periphery

149 103 33 34 1247

132 90 32 0 1056



Table 3 Prediction performance (MCC Scores) of individual predictors for the Yeast Low-Res dataset

YLoc
(2010)

NetLoc
(2010)

MultiLoc2
(2009)

KnowPred
(2009)

Subcell
(2008)

WoLFPSORT
(2007)

BaCelLo
(2006)

CELLO
(2006)

SubLoc
(2001)

LR with
8 predictors
without
NetLoc

LR with all
9 predictors

Cytosol 0.146 0.270 0.268 0.286 0.134 0.265 0.164 0.261 0.184 0.429 0.504

Mitochondrion 0.556 0.350 0.581 0.415 0.243 0.549 0.526 0.547 0.354 0.668 0.666

Nucleus 0.367 0.484 0.420 0.345 0.181 0.312 0.291 0.302 0.260 0.476 0.550

Secretory 0.314 0.473 0.339 0.534 0.326 0.568 0.339 0.534 0.391 0.607 0.664

Overall
Accuracy

0.453 0.556 0.558 0.51 0.399 0.484 0.468 0.493 0.439 0.668 0.707
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selected individual predictors using the web servers or
standalone programs and then evaluated their accuracy
and MCC scores. The results of 9 predictors for the
Yeast Low-Res dataset are shown in Table 3, the results
of 6 predictors for the Yeast High-Res dataset are shown
in Table 4, and the results of 8 predictors for the Human
dataset are shown in Table 5.
For the Yeast dataset (Tables 3, 4), most algorithms

have better performance on predicting Mitochondrion
proteins. For the Yeast High-Res dataset (Table 4), we
can see that all predictors except NetLoc showed poor
performance on predicting proteins localized to secretory
pathway compartments especially golgi, and cell periph-
ery. This suggests that PPI can be an effective feature for
predicting low-resolution compartments. Predictors with
relatively high accuracy on the Yeast Low-Res Secretory
proteins, such as CELLO and WoLFPSORT, don’t have
corresponding performance on predicting proteins loca-
lized to ER, Golgi, Vacuole in the Yeast High-Res dataset
which are highly overlapped with the Yeast Low-Res
Secretory proteins (Table 3). This means those predictors
have difficulties in distinguishing smaller compartments
of secretory pathway. YLoc and MultiLoc2 have very dif-
ferent performances between the Yeast Low-Res and
High-Res datasets, which could be due to the use of dif-
ferent training datasets. For the Human dataset (Table 5),
the Secretory proteins (which are exclusively Extracellu-
lar proteins) are the easiest for YLoc, MultiLoc2, and
Table 4 Prediction performance (MCC Scores) of individual pr

YLoc
(2010)

MultiLoc2
(2009)

Subcell
(2008)

WoLFPSORT
(2007)

Cytosol 0.441 0.293 0.146 0.251

Mitochondrion 0.689 0.496 0.251 0.510

Nucleus 0.405 0.275 0.181 0.311

ER 0.207 0.203 0.022 0.059

Vacuole 0.115 0.045 0.034 0.000

Golgi 0.008 0.010 0.054 0.118

Cell Periphery 0.107 0.044 0.068 0.142

Overall accuracy 0.506 0.473 0.300 0.362
WoLFPSORT, which may suggest that these proteins
have more distinct features such as secretory pathway
signals than the Yeast Secretory proteins. As shown in
Table 1, YLoc, MultiLoc2, and WoLFPSORT all use sort-
ing signals as one of their features. The variation of pre-
diction performance of the individual predictors implies
that an ensemble algorithm may be able to integrate their
strengths and achieve better overall performance.

Ensemble performance
From Tables 3, 4, 5 we can compare the performances
between logistic regression (LR) ensemble algorithms
and their element predictors on the three test datasets.
We can see that LR ensemble has better overall accur-
acy than the best element predictor over the three data-
sets; for the Yeast Low-Res dataset and Yeast High-Res
dataset, LR ensemble have more than 10% improvement
over the best element predictors when integrating all
available element predictors. However, LR ensemble
does not always have the best performance on each
compartment. This is because the ensemble training
process is to optimize the overall accuracy while per-
formance of certain compartment(s) could be compro-
mised. We can also see that when all of the element
predictors failed on certain compartments, such as
Golgi and Cell Periphery in the Yeast High-Res dataset,
LR ensemble doesn’t have any improvement on predict-
ing those compartments.
edictors for the Yeast High-Res dataset

CELLO
(2006)

NetLoc
(2010)

LR with 5 predictors
without NetLoc

LR with all
6 predictors

0.255 0.247 0.459 0.555

0.501 0.318 0.684 0.713

0.306 0.434 0.351 0.473

0.000 0.340 0.431 0.463

0.061 0.189 0.174 0.191

−0.005 0.465 0.038 0.275

0.090 0.449 0.04 0.269

0.354 0.523 0.585 0.640



Table 5 Prediction performance (MCC Scores) of individual predictors for the Human dataset

YLoc
(2010)

MultiLoc2
(2009)

KnowPred
(2009)

Subcell
(2008)

WoLFPSORT
(2007)

BaCelLo
(2006)

CELLO
(2006)

SubLoc
(2001)

LR with all
8 predictors

Cytosol 0.308 0.334 0.307 0.050 0.261 0.220 0.117 0.065 0.362

Mitochondrion 0.546 0.451 0.048 0.080 0.329 0.439 0.369 0.264 0.515

Nucleus 0.454 0.293 0.419 0.122 0.277 0.233 0.234 0.162 0.375

Secretory 0.720 0.627 0.477 0.205 0.553 0.607 0.428 0.339 0.712

Overall Accuracy 0.628 0.581 0.514 0.303 0.527 0.54 0.419 0.375 0.646
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Prediction performance of the optimal ensemble
algorithms using exhaustive search
Here we evaluated the prediction accuracy of the logistic
regression ensemble algorithm with all combinations of
K (K=2. . .9) predictors using 10-fold cross-validation.
Figure 1 (a) shows the result tested on the Yeast Low-Res
dataset. First, we found that by using just three predictors,
the ensemble algorithm can achieve comparable perform-
ance as using nine predictors. The 3 predictors are NetLoc
(PPI), WoLFPSORT and YLoc which cover most of the
available features among the predictors. On the other
hand, the ensemble algorithm composed of predictors
with low coverage of features has poor prediction effi-
ciency. It is also observed that when more predictors were
used, the performance discrepancy between the ensemble
algorithms based on different predictors became smaller.
This indicates that the prediction performance is more re-
liable as the number of predictors increases.
We also evaluated the ensemble performance on the

Human dataset with all combinations of predictors in-
cluding YLoc, MultiLoc2, WoLFPSORT, CELLO, Sub-
Loc, Subcell, BaCelLo and KnowPred. However,
relatively limited accuracy improvement over the best
individual predictor has been achieved by the LR ensem-
ble compared to the Yeast dataset. One reason is that
the ensemble algorithm for the Yeast dataset includes
NetLoc which uses protein-protein correlation network
information for localization prediction. This distinctive
feature makes it complementary to the other algorithms,
which leads to significant performance boosting. An-
other reason may be that the strengths and bias of differ-
ent predictors are enlarged or reduced to different
degrees on different datasets, which may result in the
change of complementary relationship among predictors.
The varying complementary relationship thus leads to
different prediction accuracy of the ensemble composed
of the same set of predictors on different datasets.

Contributions of individual predictors to the
ensemble algorithm
To explore the contributions of individual predictors to
the ensemble algorithm and their redundant or comple-
mentary relationships, we calculated their contribution
scores in the ensemble algorithm for the Yeast Low-Res
and Human datasets. Nine predictors are available for
the Yeast Low-Res dataset and 8 predictors for the
Human dataset. Figure 2(a) and (b) show the normalized
contribution scores and prediction accuracies of the 9
(8) predictors on the Yeast Low-Res dataset and Human
dataset respectively. For the Yeast Low-Res dataset,
YLoc, Subcell, WolfPSORT, BaCelLo, CELLO, and Sub-
Loc all have relatively low contribution scores, which
suggests that their predictions are highly redundant with
the other predictors’ predictions. We also found that the
predictors simply using the most common features
(amino acids composition) such as CELLO, SubLoc,
Subcell, all have relatively low contribution scores, which
suggests that the proteins whose localizations can be
correctly predicted by these predictors can also be pre-
dicted correctly by other predictors. On the other hand,
it can be observed that predictors using distinct features
such as NetLoc and KnownP have relatively high contri-
bution scores. NetLoc (PPI) has the highest contribution
score because it used very different PPI information
compared to other predictors, which allows it to cor-
rectly predict proteins that other individual predictors
cannot. KnowPred applies a sophisticated local similarity
method to detect remote sequence homology and there-
fore might correctly predict some proteins that most of
others cannot. Another reason why NetLoc and
KnowPred have relatively high contribution scores is
that they don’t use other common features so they are
less likely to make the same wrong predictions like other
predictors. For the Human dataset, YLoc, MultiLoc2 and
KnowPred have the highest contribution scores while
CELLO, SubLoc, and Subcell still have the lowest contri-
bution scores, which suggests that the latter three pre-
dictors’ correct predictions can be covered by the other
component predictors or that they tend to mislead the
ensemble algorithm by making majority incorrect pre-
dictions. This contribution score analysis can thus be ap-
plied to evalute future new protein localization
predictors in terms of their unique prediction capability.

Prediction performance of the minimalist
ensemble algorithm
To test the performance of our minimalist LR ensemble
algorithm with K component predictors, we run the
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Figure 1 Prediction performance of the logistic regression ensemble methods with K individual predictors selected by exhaustive
search. (a) Performance on the Yeast Low-Res dataset, (b) Performance on the Human dataset. Each dot represents one combination of
predictors. The number of predictors is annotated on the X axis. The performance of the logistic regression ensemble method is annotated
on the Y axis. The dots connected by the line represent the combinations of predictors determined by the minimalist algorithm for
different K values.
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minimalist algorithm to generate the combination of
predictors for each K to build the minimalist ensemble
algorithms and then tested them on the Yeast Low-Res
and Human datasets. The results in Figure 1 show that
for the LR ensemble method, our minimalist ensemble
algorithm can achieve near-optimal performance for any
given K value. We also found that using 3–4 individual
predictors can obtain near-best performance for all pos-
sible K values on the Yeast Low-Res dataset. This means
that our minimalist ensemble algorithm can use 1/2 to



Figure 2 Contribution scores of individual predictors. (a) 9 predictors for the Yeast Low-Res dataset, (b) 8 predictors for the
Human dataset.
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1/3 of individual predictors used by existing ensemble
algorithms to achieve similar performance while remark-
ably reducing the computational effort.
To examine the complementary relationships of the

selected algorithms in the ensemble algorithms, Table 6
Table 6 The most frequent predictors selected by the minima
10-fold cross-validation and the best combination of K predic
result of the logistic regression ensemble on the Yeast datase

Number of
predictors

YLoc
(2010)

NetLoc
(2010)

MultiLoc2
(2009)

KnowPred
(2009)

2 BM

3 B BM M

4 B BM BM M

5 B BM M BM

6 BM BM M BM

7 BM BM M M

8 BM BM BM BM
shows the most frequent predictors selected by the min-
imalist ensemble algorithms during the 10-fold cross-
validation and the best combination for each K according
to the exhaustive search of the LR ensemble on the Yeast
Low-Res dataset. It is interesting to find that NetLoc and
list algorithm with size of each K (noted by M) during the
tors (noted by B) according to the exhaustive search
t
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Figure 3 Performance of the best ensemble on the Yeast
dataset using different ensemble schemes with K (K = 2..9)
predictors selected by exhaustive search. (a) 9 predictors
including NetLoc (PPI) (b) 8 predictors without NetLoc (PPI).

Figure 4 Performance of different ensemble schemes on the
Yeast Low-Res dataset with K (k = 2..9) predictors selected by
Minimalist algorithm and Top-K accurate method. (a) Different
ensemble methods with K (k = 2..9) predictors selected by Minimalist
algorithm. (b) Different ensemble methods with K (k = 2..9)
predictors selected by Top-K accurate algorithm.
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WoLFPSORT are the key component algorithms that are
selected by the best combination and the minimalist en-
semble with different K components. YLoc is the second
tier of algorithms selected by the best combination, while
MultiLoc2 is the second tier of algorithm selected by the
minimalist algorithm. The consistent difference of the
selected component predictors between the best combin-
ation and the minimalist after the key component algo-
rithms is due to that our minimalist algorithm used
greedy and stepwise method to search the optimal K
component predictors.

Comparison of computational complexity
The computational complexity of the ensemble involves
the effort to collect prediction results from individual
predictors either from local software running or from
web servers and the total running time. Since most of
the predictors are available only via web servers which
are sometimes offline, it is desirable to have fewer com-
ponent predictors. As demonstrated in Figure 1, the
minimalist algorithm can efficiently find the key compo-
nent predictors. Since only 4 predictors are needed for
the ensemble algorithm to achieve comparable perform-
ance of using 9 predictors, about 1/2 to 2/3 amount of
computation time to collect prediction results can be
saved.

Comparison of different ensemble schemes
Several ensemble schemes have been proposed for build-
ing ensemble localization prediction algorithms, including
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weighted voting [4] (weight is assigned based on predictor
accuracy), LDA [6], and classifiers-based ensemble algo-
rithms such as decision tree (DT) [7]. It is interesting to
compare their performance on the genome-wide Yeast
and Human datasets. Here we compared their best per-
formance given K individual predictors selected by ex-
haustive search. As shown in Figure 3, weighted voting
has the worst performance and its performance degrades
dramatically when more individual predictors are
included. This is because its prediction can be easily
biased by redundant low-performance predictors. LDA
ensemble is better than weighted voting because it can
assign LDA optimal weights to predictors and avoid
the prediction results being biased by low-performance
predictors. However, it is still a voting based algorithm
which might not be able to capture the rules relating
the predictions of predictors to the real locations. For
other classifiers-based (such as naive Bayes, decision
tree and logistic regression) ensemble methods, they
yield better prediction accuracy because these machine
learning algorithms can better find and learn the rules
between the features (predictions of individual predic-
tors) using supervised learning. For these machine
learning ensemble methods, the capability to handle re-
dundancy is essentially the capability to handle over-
fitting. As Figure 3 shows, if too many predictors are
included, voting based ensemble algorithms such as
weighted voting and LDA show the trend of downgrading
the performance.
Figure 3(a) and (b) showed the performance of the en-

semble algorithms with or without including the PPI
based predictor NetLoc. It is observed that ensemble
algorithms without NetLoc have much less improvement
over the best individual predictors, which means that
these ensemble algorithms except weighted voting can
automatically take advantage of the unique/beneficial
component predictors (such as NetLoc which uses a
unique protein-protein interaction features) to improve
the performance. From Figure 3(b) we also noticed that
LDA ensemble’s performance could degrade dramatically
when too many redundant predictors are included with-
out including predictor(s) with distinct property such as
NetLoc.
Table 7 Comparison of the performance of ConLoc and Minim
Yeast Low-Res dataset

The best element
predictor of ConLoc:
SherLoc

ConLoc

Cytosol 0.301 0.441

Mitochondrion 0.574 0.622

Nucleus 0.341 0.461

Secretory 0.533 0.537

Overall Accuracy 0.529 0.616
We also compared the performances of the minimalist
ensemble algorithms on the Yeast Low-Res dataset. The
result is shown in Figure 4(a), which demonstrates simi-
lar relationship of the performance for the evaluated en-
semble algorithms in Figure 3(a). Figure 4(b) shows the
performance of the ensemble methods by selecting the
top K accurate predictors. We can see that the main
peformance difference between the minimalist ensemble
and top-K ensemble is when K is less than 4, which
means the top 4 accurate predictors can form a very
complimentary group. However, top K method is not re-
liable especially when the predictor with distinct features
has relatively low accuracy, or when many included pre-
dictors are highly redundant.

Comparison with other ensemble algorithms
There are several published and publicly available en-
semble algorithms such as ConLoc [6] and PROlocalizer
[5]. ConLoc intergrated 13 different predictors and used
LDA as the ensemble scheme. PROlocalizer intergrated
11 different programs to predict localization of animal
proteins. We tested ConLoc on our Yeast Low-Res and
Human datasets. The results are shown in Tables 7 and
8. It should be noted that although our datasets are not
overlapped with ConLoc ensemble training dataset, the
performance result of ConLoc can still be overestimated
since we didn’t exclude proteins of our datasets that are
overlapped with the training datasets of ConLoc’s 13
element predictors. To test our minimalist ensemble al-
gorithm, we first collected predictions of ConLoc’s 13
element predictors on the Yeast Low-Res and Human
datasets and then tested LR ensemble with 10-fold
cross-validation. The results (Tables 7 and 8) showed
that LR ensemble achieved higher accuracy than LDA
based ConLoc on both datasets, which is consistent with
our previous experiment results (Figure 3(a) and 3(b))
alghough ConLoc LDA used a different ensemble train-
ing dataset.
To investigate the redundancy among ConLoc’s 13

predictors, we applied our minimalist algorithm to select
K out of the 13 predictors and tested them on the Yeast
Low-Res dataset and the Human dataset. The results
(Tables 7 and 8, column 5) showed that for the Yeast
alist LR ensemble algorithm with 13 predictors on the

LR ensemble with 13
predictors as used in
ConLoc

LR+minimalist algorithm to
select K out of 13 predictors in
ConLoc, K = 4

0.489 0.472

0.708 0.731

0.537 0.541

0.608 0.605

0.696 0.693



Table 8 Comparison of the performance of ConLoc and Minimalist LR ensemble algorithm with 13 predictors on the
Human dataset

The best element
predictor of ConLoc:
Proteome Analyst

ConLoc LR ensemble with 13
predictors used in
ConLoc

LR+minimalist algorithm to
select K out of 13 predictors
used in ConLoc, K = 3

Cytosol 0.390 0.414 0.429 0.460

Mitochondrion 0.613 0.628 0.641 0.645

Nucleus 0.463 0.415 0.371 0.392

Secretory 0.754 0.721 0.749 0.758

Overall Accuracy 0.644 0.664 0.689 0.703
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Low-Res dataset, using only 4 predictors can achieve
equally good performance as using all the 13 predictors.
The most frequent 4 predictors selected by our minimal-
ist algorithm during the 10-fold cross-validation are
CELLO, Proteome Analyst, PTS1Prowler, and SherLoc.
For the Human dataset, using only 3 predictors can
achieve better performance than using all the 13 predic-
tors. The most frequent 3 predictors selected by our
minimalist algorithm during the 10-fold cross-validation
are Proteome Analyst, PTS1Prowler, and SherLoc.
We also tested PROlocalizer which is an integration

algorithm based mainly on binary classifiers. However,
the server was able to generate prediction results for
only 399 out of 1305 proteins in our Human dataset.
The overall prediction accuracy of PROlocalizer on those
399 proteins is 0.81 while the standalone predictor YLoc
alone has an overall accuracy 0.84 on the same dataset.
We argue that it is difficult to construct a reliable
protocol-based ensemble algorithm such as PROlocalizer
when the predictions of individual predictors are still
not reliable leading to accumulation of errors along its
sequential inference steps. Instead, the machine learning
based ensemble methods can learn complementary rules
among the predictors to function as a “protocol” to de-
termine protein localization.

Conclusions
Although many protein localization prediction algo-
rithms have been developed, the prediction performance
remains low and the features used to predict localiza-
tions are still limited. Ensemble algorithms have shown
some promise to take advantage of a variety of features
by combining individual predictors. However, combining
as many as possible individual predictors, which is the
most common strategy, has the drawback of high run-
ning complexity and low availability as well as risk of
performance degradation. The result of our minimalist
ensemble algorithm showed that it is possible to signifi-
cantly reduce the number of individual predictors in a
given ensemble algorithm while maintaining comparable
performance. It is also observed that the best component
algorithm set tends to keep predictors with unique fea-
tures, which indicates that new features are the key to
further improve the prediction accuracy for localization
prediction. The success of our minimalist ensemble algo-
rithm based on feature selection and logistic regression
showed that supervised ensemble algorithms based on
machine learning can effectively capture the complex
relationships among individual predictors and achieve
better performance than the voting methods.
We found that our ensemble algorithm works best

when predictors with unique features are combined. For
example, the PPI based NetLoc algorithm can signifi-
cantly improve the ensemble performance, which is
however limited by the fact that many proteins do not
have PPI information. It should be also noted that the
PPI information and ensemble predictor itself are spe-
cies specific. So our ensemble predictor trained on
human/yeast dataset may not work well for proteins of
other species. However, the design methodology of min-
imalist ensemble predictors can be used to develop pre-
dictors tailored to specific organisms or available
training datasets.
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