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ABSTRACT: The existence of a very large number of porous materials is a great
opportunity to develop innovative technologies for carbon dioxide (CO2) capture to
address the climate change problem. On the other hand, identifying the most
promising adsorbent and membrane candidates using iterative experimental testing
and brute-force computer simulations is very challenging due to the enormous
number and variety of porous materials. Artificial intelligence (AI) has recently been
integrated into molecular modeling of porous materials, specifically metal−organic
frameworks (MOFs), to accelerate the design and discovery of high-performing
adsorbents and membranes for CO2 adsorption and separation. In this perspective,
we highlight the pioneering works in which AI, molecular simulations, and
experiments have been combined to produce exceptional MOFs and MOF-based
composites that outperform traditional porous materials in CO2 capture. We outline
the future directions by discussing the current opportunities and challenges in the
field of harnessing experiments, theory, and AI for accelerated discovery of porous materials for CO2 capture.

Fossil fuels will continue to provide a substantial portion of
the world’s energy needs in near future. However, this

reliance comes at a cost; their combustion has caused a
significant rise in atmospheric carbon dioxide (CO2) levels
from 320 parts per million (ppm) in 1960 to 417 ppm in
2022,1 and an increase in the global average temperatures,
reaching a 1 °C rise above preindustrial levels.2 Consequently,
the urgency of climate action has resonated across the globe,
with countries committed to ambitious CO2 emission
reduction targets through new policies and international
accords such as the Paris Agreement and the European
Green Deal.3−6 Traditional carbon capture technologies,
amine-based scrubbing and cryogenic separation, have been
commercially used for CO2 separation.7,8 Adsorption- and
membrane-based separation techniques are better alternatives
in the pursuit of sustainable CO2 capture solutions since they
can offer low operation costs, simplified operation, and easy
scalability.9,10 The main challenge of adsorption- and
membrane-based separation technologies is to find the optimal
materials to be integrated, as traditional ones such as zeolites,
activated carbons, and polymers generally suffer from low CO2
affinity/capacity/selectivity and stability concerns.11

Recent studies have focused on CO2 capture with metal−
organic frameworks (MOFs),12 a unique class of porous
materials composed of metal nodes and organic linkers that
form crystalline structures. MOFs offer significant opportu-
nities such as very large structural diversities and function-
alities, exceptional porosities (up to 0.9), tunable pore sizes
(3−100 Å), and record surface areas (up to 10,000 m2/g)

compared to classical porous materials. Inspired by the MOFs,
many other MOF-like structures such as covalent organic
frameworks (COFs),13,14 zeolite imidazolate frameworks
(ZIFs),15 and porous polymer networks (PPNs)16 have
emerged, and all these materials have been widely investigated
for CO2 adsorption in the last two decades as shown in Figure
1(a), more than the adsorption of other gases such as CH4, O2,
and H2 as shown in Figure 1(b). Thanks to their large chemical
varieties, high surface areas, and pore volumes, MOFs offer
favorable adsorption sites for CO2 molecules, and more
importantly, their structures can be decorated with open metal
sites and/or functional groups to achieve very high CO2
uptakes.17,18 For example, early experimental studies showed
that several MOFs outperform commercial zeolite 13X (4.7
mol/kg)19 and activated carbon Norbit RB2 (2.5 mol/kg)20

because of their high CO2 adsorption capacities in the ranges
of 0.6−8.5 mol/kg at ambient conditions, even reaching
record-breaking capacities of ∼50 mol/kg at 40 bar, 298
K.21−23

Motivated by these findings, more and more MOFs have
been synthesized and tested for CO2 capture. Structures of
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synthesized MOFs are deposited into the Cambridge
Structural Database (CSD),24 and our search of this data
center using ConQuest software25 resulted in 122,738 MOFs
as of October 2023. In addition to MOFs, 648 synthesized
COFs were reported.26 Beyond the synthesized structures,
hypothetical MOFs27−30 and COFs31−33 (hMOFs and
hCOFs), consisting of trillions of structures generated by
using metals, linkers, and topological nets observed in
synthesized structures, have recently emerged. Evaluating the
CO2 adsorption performance of each material present in this
large material spectrum through experimental methods is
unfeasible due to extensive time and resource needs. High-
throughput computational screening (HTCS) uses classical
molecular simulations to rapidly assess MOFs for adsorption of
target gas molecules, accelerating the identification and
development of materials for specific adsorption and
separation purposes.34,35 For example, almost 4000 MOFs
were examined for adsorption-based separation of a CO2/H2
mixture using Grand Canonical Monte Carlo (GCMC)
simulations, and MOFs were shown to exhibit superior

performance compared to many zeolites.36 10,995 MOFs,
which were computationally constructed by addition of
functional groups (−F, −NH2, and/or −OCH3) into multi-
variate MOFs, were studied using GCMC simulations for
CO2/N2 separation, and the results showed increases up to 3-
fold in CO2 selectivities and capacities of MOFs.37

With the number of MOFs increasing at an unprecedented
rate, even using the HTCS approach remains insufficient to
examine the entire MOF spectrum for the identification of the
most promising materials for CO2 capture. More importantly,
analyzing the very large amount and high-dimensional data
belonging to this large material world requires the usage of
data science to reveal the hidden materials’ structure−
performance relations to gain a fundamental understanding
of the molecular features leading to high-performing materials.
As a result, we have recently witnessed significant efforts to
combine artificial intelligence (AI) methods with classical
molecular simulations and experiments to unlock the CO2
capture performance of MOFs.

Figure 1. (a) The number of publications having keywords “metal−organic framework or MOF or zeolite or activated carbon” and “carbon dioxide
or CO2” and “adsorption or uptake or capture” in their titles and abstract. For simplicity, MOF subfamilies, including ZIFs, PPNs, and COFs, were
also referred to MOFs in the figure. (b) The percentage of published papers having keywords “methane or “CH4”, “oxygen or O2”, and “hydrogen
or H2” in addition to the keywords listed in part (a) in their titles and abstracts. Search was performed using Scopus, accessed on October 15, 2023.

Figure 2. (a) Word cloud analysis of 85 publications in 2014−2023 collected from the literature by using the keywords of “artificial intelligence or
machine learning” and “metal−organic framework or MOF or zeolite or activated carbon” and “carbon dioxide or CO2” and “adsorption or uptake
or capture”. Search was performed using Scopus, accessed on October 15, 2023. The sizes of the words reflect the frequency of the relevant words
appearing in publications. For example, pore size appeared in 8 of 85 studies. (b) The four main fields where AI has been beneficial.
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In this perspective, we address the state-of-the-art
technologies in integrating AI, molecular modeling, and
experiments for accelerating the design and discovery of
MOFs and MOF-based composite materials that outperform
traditional porous materials in CO2 capture. We focus on
pioneering contributions that have used the combination of AI
and theory to design novel MOF adsorbents and membranes
for CO2 capture and then validated the designed materials with
experimental studies. We finally outline the directions we see
as most critical for further advances by addressing the current
opportunities and challenges in this field.

2. AI APPLICATIONS OF POROUS MATERIALS FOR
CO2 CAPTURE

We start by reviewing the current state of emerging AI
applications and their benefits in the field of CO2 capture with
porous materials. Including the first machine learning (ML)
study focusing on predicting CO2 capture properties of 100
different MOFs,38 almost all AI-based studies aiming to assess
porous materials for CO2 capture focused on MOFs, hMOFs,
and COFs while a very limited number of studies examined
porous carbons and zeolites, as shown in Figure 2(a). To the
best of our knowledge, two AI studies exist for porous carbons
and one for zeolites. By collecting 1000 experimental data
points for CO2 adsorption in porous carbons, an ML algorithm
was developed to predict CO2 adsorption capacity of unknown
porous carbons based on their textural properties such as
surface area and pore volume.39 A convolutional neural
network algorithm trained on experimental N2 isotherms of
porous carbons measured at 77 K was utilized to predict CO2/
N2 separation performance of 1 million hypothetical porous
carbons.40 An artificial neural network (ANN) constructed
based on the molecular simulation data of 245 zeolites was
used to evaluate the significance of various structural
descriptors in determining CO2 adsorption, and surface area
was found to be the most important descriptor.41 Many studies
recently utilized AI to explore MOFs and their composites,
which are addressed in detail in sections 2.1 and 2.2.
The literature predominantly focuses on supervised learning

algorithms for classification and regression in specific data sets.
These algorithms use various descriptors, like structural- and
energy-based, to predict metrics such as CO2 adsorption
capacities. Supervised models need large labeled data sets, and
they may face issues such as overfitting. Unsupervised
algorithms, free from the need for labeled data, face challenges
in interpretation of the results and require high-quality data.42

Both types of algorithms are crucial in materials genomics for
predicting properties and identifying patterns, but their
limitations must also be considered. Figure 2(a) shows that
ML algorithms, such as decision trees, random forests, gradient
boosting, and ANN, have been used to predict CO2 adsorption
capacities43−45 and CO2 diffusion rates46 in porous materials
based on materials’ structural properties, such as pore size,
surface area, porosity, and topology. More complex algorithms,
including convolutional neural networks, genetic algorithms,
deep learning, and deep neural networks, have also recently
been implemented in MOF research.47−50 Achieving accurate
ML predictions requires training the models based on a high-
quality data set obtained for a large number and diversity of
materials. CO2 adsorption and diffusion data of MOFs have
been generally obtained from HTCS of thousands of materials
and then used to train predictive ML models, while

experimental CO2 uptake data of MOFs are utilized to
optimize the material synthesis procedures.51−53

Figure 2(b) shows the four important aspects of AI in the
discovery of novel MOFs:
(i) ML algorithms are used to estimate the materials’

performance metrics related to CO2 capture and
separation, such as CO2 uptake,54 diffusivity,46 and
permeability,55 by reducing the need for complex
simulations and time-consuming experiments through
classifying high- or low-performing materials.45,56,57 For
example, the quantitative structure−property relation-
ship (QSPR) classifiers generated based on support
vector machines accurately identified the promising
materials offering high CO2 adsorption capacity (>1
mmol/g at 0.15 bar and >4 mmol/g at 1 bar, 298 K)
among 292,050 different types of hMOFs.57 These
QSPR models found 945 (905) out of the top 1000
structures with the highest CO2 uptakes at 0.15 (1) bar,
298 K, which were identified based on the results of
GCMC simulations.

(ii) AI-based algorithms can extend the current reach of
experimental and computational studies by efficiently
identifying the optimal materials having the desired CO2
capture performance among millions of candidates and
describing the most important features of the best
materials. For example, a ML algorithm was developed
to predict CO2 uptake capacities of 70,433 hMOFs at
0.5 and 2.5 bar, 298 K, using their structural and
chemical properties such as pore size, surface area,
density, atom types, and building blocks, and ML
predictions were shown to be in a very good agreement
with the direct GCMC simulations.54

(iii) AI-based text and data mining algorithms enable us to
rapidly extract data from the vast MOF literature. For
example, important data on materials’ pore sizes and
surface areas, which are the two key structural properties
for determining the gas uptakes,51,58−60 or experimental
binary mixture adsorption data61 can be collected using
AI. Text and data mining was recently used to search,
filter, and summarize synthesis conditions of MOFs from
the publications into structured data sets and used to
construct predictive models for the outcomes of MOF
synthesis reactions.51

(iv) ML algorithms further help optimizing the current
synthesis conditions such as temperature, concentration,
and time to formulate the novel synthetic pathways for
MOFs.62,63 For example, the usage of the genetic
algorithm, a computational technique inspired by the
principles of natural selection and evolution to optimize
large and complex search areas where an exhaustive
search would be impossible, is useful for the
optimization of synthesis conditions of MOFs offering
high CO2 capture performance. For instance, conditions
of failed and successful experiments, reaction time,
temperature, solvent composition, and reactants ratio
were fed to a genetic algorithm to develop a more
efficient synthetic pathway to synthesize the well-known
MOF, HKUST-1.64 Similar approaches have also been
used for the synthesis of ZIF-6765 via developing fully
automated MOF synthesis platforms using robotics to
reduce the expenses and time requirements associated
with experimental efforts and to expedite the synthesis of
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new and innovative MOFs discovered through AI-based
algorithms.

2.1. MOFs. Discovery of MOFs for CO2 Capture. The key
benefit of integrating AI with molecular simulations is the
ability to study the very large MOF spectrum in a quick and
efficient manner as opposed to the brute-force computational
screening of every single material. In one of the pioneering
works, a genetic algorithm was employed to discover a high-
performing MOF for CO2 capture from the precombustion
mixture (CO2/H2:20/80) and required only 1% of time that
would have been spent if the brute-force computational
screening had been used for all hMOFs in the database.49 First,
a screening approach based on the materials’ chemical
similarity was used to refine 51,163 unique hMOFs out of
137,193 structures, and then, the genetic algorithm identified
730 hMOFs as the top candidates offering the highest CO2
working capacities, CO2/H2 selectivities, and adsorbent

performance scores (APS), which is the multiplication of the
first two. Figure 3(a) shows the relationship between CO2
selectivity and working capacity of 730 hMOFs calculated from
the gas uptakes obtained from GCMC simulations at an
adsorption condition of 20 bar, 313 K. Computations
predicted a very high CO2 working capacity (5.6 mol/kg)
for one of the hMOFs, NOTT-101/OEt, which outperformed
several well-known MOFs, Mg-MOF-74 (2.6 mol/kg) and Ni-
4PyC (3.4 mol/kg). This MOF was then synthesized, and
experimental tests resulted in a CO2 working capacity of 3.8
mol/kg, still higher than widely studied MOFs.
Functionalization of MOFs is a strategy to enhance their

CO2 capture properties by creating new adsorption sites
attracting more CO2 molecules. Numerous functional groups
exist even for a single MOF; therefore, identifying the most
effective functional groups for improving the CO2 adsorption
capacity of thousands of MOFs is a very challenging work,

Figure 3. (a) Simulation results for 730 hMOFs identified using genetic algorithm among 51,163 structures for precombustion CO2 capture at 20
bar, 313 K. Reprinted with permission from ref 49. (b) CO2 uptakes acquired from molecular simulations at 0.15 atm and 298 K for 141
experimental MOFs with the genetic algorithm-optimized functional groups compared to the uptakes of the unfunctionalized parent MOFs.
Reprinted with permission from ref 66.

Figure 4. Isoreticular design process of a new hMOF, starting from NU-1104, offers significantly higher CO2 uptake and selectivity. Readapted with
permission from ref 67.
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which requires one to search for a very large space of material−
functional group combinations. The MOF functionalization
genetic algorithm (MOFF-GA) was utilized to identify 1035
novel MOFs with high CO2 uptakes (>3 mmol/g) obtained
from the GCMC simulation results among 581,278 unique and
viable structures derived from 141 MOFs and 26 functional
groups including aldehyde (−HCO), ethene (−CHCH2),
propoxy (−OPr), nitro (−NO2), and hydroxyl (−OH), which
are promising for optimizing the CO2 uptake, volumetric
surface area, and parasitic energy of materials.66 As shown in
Figure 3(b), optimizing functional groups resulted in an
average 3.7-fold increase in CO2 capacities of 141 MOFs.
Functionalized versions of widely studied, well-known MOFs,
such as MIL-47, HKUST-1, and UiO-67, exhibit very high
CO2 uptakes (up to 4.6 mol/kg), a notable three times
enhancement compared to those of their original versions. As a
result, MOFF-GA represents the importance of using AI-
driven screening methods to examine very large material spaces
that cannot be fully explored through purely experimental
approaches.

Design of New MOFs for CO2 Capture. AI is not only useful
for screening the material databases to identify promising
MOFs among already available structures but also very
valuable for generating new materials with improved CO2
capture properties. A deep learning algorithm was employed
for the automated design of materials offering high CO2
capture, and ∼2 million new hMOFs were generated by
using metal nodes, organic linkers, and topologies of ∼14,000
synthesized MOFs.67 Here, 45,000 hMOFs were randomly

selected to study CO2/CH4 separation at 5 bar, 300 K, by
using GCMC simulations, and gas uptake results were fed to
the deep learning algorithm together with the structural
properties of these hMOFs to obtain the optimized structures
with improved CO2 uptakes. Figure 4 shows the isoreticular
design process starting from a previously synthesized MOF,
NU-1104, having a ftw topology, Zr node, and CO2 uptake of
0.65 mol/kg. A peak CO2 uptake of 4.33 mol/kg, with more
than six times increase compared to the CO2 uptake of the
original material (NU-1104), and infinite CO2/CH4 selectivity
were achieved after utilizing six different linkers extracted from
experimental MOFs. This study proved that AI-based plat-
forms grounded in chemical and structural knowledge
significantly aid in the design of new, novel MOF materials
with improved CO2 capture properties at predefined operating
conditions.

AI-Driven MOF Synthesis. A systematic approach combin-
ing AI, molecular simulations, and experiments is very useful
for the design and discovery of new MOFs specifically tailored
for effective CO2 capture from wet flue gas. Smit’s group68

computationally generated 325,000 hMOFs and examined for
CO2/N2 separation by using GCMC simulations. Here, 8325
hMOFs with high CO2 selectivities (>50) and working
capacities (>2 mol/kg) were identified as high-performing
materials. Based on the chemical property information
acquired by data mining on CO2 binding sites of these high-
performing materials, 35 isoreticular hMOFs with frz top-
ologies, Al metal nodes, and tetra-carboxylate-based organic
linkers were generated. Molecular simulations showed that one

Figure 5. Experimental variables (microwave power, reaction temperature, time, concentration, and solvents) identified from the genetic algorithm
for optimizing Al-PMOF synthesis are depicted by circles, while the bar graphs illustrate the ranking of each reaction in terms of crystallinity and
yield. The good samples (green) have crystallinity scores larger than 6 out of 10 with yields larger than 50%, while the poor and bad samples
(yellow/orange and brown) have crystallinity scores less than 6 out of 10 and yields less than 50%. Readapted with permission from ref 62.

Industrial & Engineering Chemistry Research pubs.acs.org/IECR Perspective

https://doi.org/10.1021/acs.iecr.3c03817
Ind. Eng. Chem. Res. 2024, 63, 37−48

41

https://pubs.acs.org/doi/10.1021/acs.iecr.3c03817?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.3c03817?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.3c03817?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.3c03817?fig=fig5&ref=pdf
pubs.acs.org/IECR?ref=pdf
https://doi.org/10.1021/acs.iecr.3c03817?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


of these hMOFs, Al-PMOF, can achieve a CO2 uptake of 1.75
mol/kg under dry conditions and 1.65 mol/kg under humid
conditions at 1 bar, 313 K. This hMOF was selected for
synthesis, and breakthrough experiments determined its high
CO2 working capacity up to 0.95 (0.86) mol/kg under dry
(humid) conditions, surpassing those of activated carbon (0.55
and 0.35 mol/kg) and zeolite 13X (0.74 and 0.50 mol/kg)
under both dry and humid conditions, respectively.
Although Al-PMOF was proven to be exceptional in CO2

capture and was successfully synthesized, it had low yields
(38%−88%) and required a long reaction time (16 h). To
tackle this inefficiency problem, synthesis conditions for Al-
PMOF were optimized using the parameters of both failed and
partially successful experiments.62

Figure 5 shows the main experimental variables such as the
power of the microwave used for synthesis, reaction temper-
ature and time, the concentration of substrates, and the type of
organic solvent. According to these variables, 25 different
synthetic pathways were identified, and through experiments,
two different generations were employed by genetic algorithm
to optimize both the crystallinity and the yield, which define
the success of a valid and stable MOF synthesis. Results
showed that very high yields (>%80) in Al-PMOF synthesis
were acquired from the optimized synthetic pathway with a

reaction time of only 50 min, almost 20 times more time
efficient compared to the original synthesis methodology.
These results demonstrate that the integration of molecular
simulations, AI, and experiments will enable researchers to
efficiently synthesize novel MOFs with desired CO2 capture
performances.
2.2. MOF-Based Composites. Opportunities for enhanc-

ing the gas adsorption and separation performance of a high-
performing MOF persist, even after its synthesis, by generating
MOF-based composites. The two most widely studied MOF-
based composites are ionic liquid (IL)/MOF composites,
where an IL is incorporated into a MOF via postsynthesis
modification, and MOF/polymer composites where MOFs are
incorporated into polymers to generate composites with
enhanced CO2 adsorption and/or separation properties.69,70

AI will perhaps be much more useful for the design and
discovery of MOF-based composites rather than pristine
MOFs since selecting the most appropriate IL among 1018
different available chemicals,71 and the most appropriate
polymer among hundreds of available structures72 for a given
MOF, would be critical.
To find a novel IL/MOF composite for CO2/N2 separation,

ML models were developed using structural-, chemical-, and
energy-based descriptors of 941 MOFs and their composites

Figure 6. (a) 941 different types of [BMIM][BF4]-incorporated IL/MOF composites and the relationships between their pore volume, porosity,
and ML-predicted selectivities at 1 bar, 298 K. Readapted with permission from ref 73. (b) SHAP value analysis showing the relations between
volumetric [MMIM][BF4] loading (vol %) and ML-predicted TSN values for 15,410 different types of [MMIM][BF4]-incorporated IL/COF
composites at 1 bar, 298 K. Readapted with permission from ref 74. (c) Experimentally reported CO2/CH4 selectivities as a function of CO2
permeabilities for PIM-1-Cu-CAT-1 membrane, which was selected to be synthesized based on insights of ML model. Readapted with permission
from ref 75.
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with [BMIM][BF4] (1-n-butyl-3-methylimidazolium tetrafluor-
oborate).73 Figure 6(a) shows the distribution of ML-
predicted CO2 selectivities of [BMIM][BF4]/MOF composites
with respect to the two most important molecular features,
porosity and pore volume, identified from the feature
importance analysis of a ML model. A computationally
designed [BMIM][BF4]/UiO-66 composite was then success-
fully synthesized and tested for CO2/N2 separation. Exper-
imentally measured selectivity matched well with the ML-
predicted value, highlighting the great value of using ML in
accurately assessing CO2/N2 separation performances of any
[BMIM][BF4]/MOF composite within minutes compared to
extensive time and effort requirements of purely experimental
studies. The CO2 capture properties of the composites are not
only determined by the type of IL but also its loading in the
composite. Here, 15,410 different types of IL/COF compo-
sites, derived from 557 COFs and an IL, [MMIM][BF4] (1,3-
dimethyl-imidazolium tetrafluoroborate), at 18 different
loadings, were studied to identify the optimal IL loading
ratio to maximize the adsorption-based CO2/N2 separation
performance of composites.74 Structural features of COFs and
IL loading ratios were used in ML models to predict the trade-
off (TSN) between CO2 selectivity and uptake in [MMIM]-
[BF4]/COF composites. Shapley additive explanation (SHAP)
analysis that quantifies the magnitude of each feature’s impact
on the ML predictions was used to analyze the relation
between TSN and IL loadings. Figure 6(b) shows that
composites offering the highest TSN have an IL loading ratio
of 35 vol %, an important result that can accelerate the
experimental efforts toward the synthesis of the most useful
IL/COF composites with the optimal IL loadings. A similar
approach can be used to determine the optimum IL loadings
for IL/MOF and IL/MOF/polymer composite membranes to
guide the experimental efforts.
IL/MOF composites are not only used as adsorbents for

CO2 separation but also used as fillers in polymers to generate
mixed matrix membranes (MMMs) with the aim of making
novel membranes exceeding the upper bounds76,77 established
for pure polymer membranes. In a recent work, 8167 different
types of [NH2-PMIM][Tf2N]@MOF composites ([NH2-
PMIM] [T f 2N ] : 1 - am i n op r o p y l im i d a z o l i um b i s -
(trifluoromethylsulfonyl) imine) were computationally gen-
erated, and ML models were developed to predict their CO2
permeabilities and CO2/N2 membrane selectivities based on
the structural (accessible volume, density, pore size, surface
area, etc.) properties.55 ML-predicted separation performance
of the [NH2-PMIM][Tf2N]@ZIF-67 composite was shown to
be above the upper bound, and it was incorporated into the
polymer, PIM-1, to make IL@ZIF-67/PIM-1 MMM. This
MMM also surpassed the upper bound with a CO2/N2
selectivity of 31.1, higher than that of PIM-1/ZIF-67 MMM,
showing the potential of using IL@MOF composites as fillers
in MMMs to make membranes with outstanding CO2 capture
performance.
Data for a large variety of MOF/polymer MMMs composed

of 36 MOFs and 41 polymers studied for CO2/CH4 separation
were collected and used to develop ML models predicting CO2
permeabilities and CO2/CH4 membrane selectivities of
MMMs.75 Pore size, polymer type, and MOF loading were
found to be the most significant descriptors to predict the CO2
permeability of MOF/polymer MMMs among descriptors that
include surface area, MOF type, pressure, filler size, aperture
size, temperature, and thickness. According to the results of the

ML model, Cu-CAT-1 was found to have the optimum
structural features for high CO2 separation; it was synthesized
and incorporated into polymers Pebax 2553 and PIM-1. The
resulting Cu-CAT-1/PIM-1 membrane surpassed the upper
bound with a CO2/CH4 selectivity of 15.4, as shown in Figure
6(c). ML models constructed for predicting CO2/CH4
separation performance of MOF/polymer MMMs were then
extended for CO2/N2 separation by applying a transfer
learning approach. These extended models made more
accurate predictions compared to the models developed by
using the limited experimental data for MOF/polymer MMM
for CO2/N2 separation. This result highlights a very important
capacity of AI: making accurate predictions for a target
application by learning from the predictions made for another
application. Considering the fact that the majority of MMM
studies focus on well-known MOFs such as ZIF-8, UiO-66,
Cu-BTC, and MIL-5378,79 for CO2 separations, the discovery
of a Cu-CAT-1/PIM-1 membrane demonstrates a significant
shift toward the identification of promising MMMs from
unexplored MOF material space. AI can play a pivotal role in
decision-making processes by assessing critical factors like
separation performance, durability, and costs associated with
the utilization of MOF membranes versus MOF-based
composite membranes. AI can use the results of simulations
and experiments to show whether a pure MOF or a MOF-
based composite exhibits better gas separation performance. In
addition, AI can provide thermal and mechanical stability
predictions for a very large material spectrum which are crucial
to assess the materials’ applicabilities for target gas separation.

3. OUTLOOK
In this perspective, we discuss the recent works showing how
AI can guide experimental works to discover an existing porous
material from thousands of candidates for CO2 capture or to
design an entirely new MOF that offers high CO2 adsorption
property. Believing that we will witness rapid and continuous
growth in the number of studies combining AI, molecular
simulations, and experiments for the design and discovery of
new porous materials, we now present the current oppor-
tunities and challenges we see as the most critical for the
further advancement of the field.
Most of the ML studies in this field primarily center around

removal of CO2 from flue gas (CO2/N2), natural gas (CO2/
CH4), and precombustion gas (CO2/H2) mixtures since many
computational research groups generated very large amounts
of data for the adsorption of these three gas mixtures by
molecular simulations which were then used in training ML
models. Separation of CO2 from other gases such as acetylene
(C2H2), ethylene (C2H4), ethane (C2H6), propane (C3H8),
and hydrogen sulfide (H2S) is also critical for industrial and
environmental reasons, but the literature data are limited for
them.80−82 This can be attributed to several reasons such as (i)
the challenge in computational modeling of large, polar gas
molecules in addition to the difficulty of accurately defining the
interactions in multicomponent gas mixtures and (ii) the
experimental challenges posed by toxic or flammable gases like
hydrogen sulfide and acetylene when testing CO2 capture. The
available literature on processes like pervaporation indicates
that performing such molecular simulations for these systems,
especially for separating very large molecules, is also computa-
tionally expensive.83,84 Thus, the usage of low-data effective AI-
based models can be useful to study MOFs as adsorbents and
membranes in this regard. Future studies in this field may also
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identify the porous adsorbents and membranes that will show
superior performance in separating CO2 from multiple
different gas mixtures.
Current studies used molecular simulation results for

training ML models to predict the CO2 adsorption properties
of porous materials, but a lot of experimental data also exist,
especially for CO2 adsorption in zeolites and MOFs. However,
extracting these large data from the vast literature and
classifying them based on the operating conditions, process
type, etc. is not straightforward. AI-based data and text mining
algorithms can be used to extract, clean, and organize
experimental data related to CO2 adsorption and separation
performances of porous materials in addition to complement-
ing these data with structural (pore size, surface area, etc.) and
chemical (metal, linker types, topologies, etc.) properties. The
development of accurate, clean, easily accessible, standardized
data sets on experimental CO2 adsorption and separation
properties of various types of porous materials will significantly
accelerate the integration of experiments with ML and provide
important collaboration opportunities between experimental
and computational researchers.
ML models are generally trained by using the results of

GCMC simulations for CO2 adsorption. GCMC is a well-
established technique in quantifying gas adsorption properties
of various porous materials, but it relies on many assumptions,
such as using rigid frameworks, generic force fields, and partial
charge assignment for framework atoms, to screen several
thousands of MOFs in a time-efficient manner. Several MOFs
are known to be flexible upon guest adsorption, and many have
open metal sites or special functional groups or defects that
may require specially tailored force fields to accurately describe
the interactions between the framework and CO2 molecules.
Of course, all these issues may affect the simulated CO2
adsorption capacity, diffusivity, selectivity, and permeability
of materials. On the other hand, performing flexible MOF
simulations and developing material-specific force fields are
computationally very demanding when thousands of materials
are considered. AI has a huge potential in solving this
bottleneck. For example, running computationally demanding
flexible simulations for a representative set of materials and
then training AI models based on these data can assist the
researchers to make highly accurate predictions for CO2
capture properties of MOFs that have special features such
as flexibility, defects, etc. Assigning accurate partial atomic
charges is critical for CO2 molecules to model their
electrostatic interactions with the MOF atoms during the
adsorption simulations. Partial charges are not experimentally
observable, and ab initio calculations to compute them are very
time demanding. A recent work used the power of AI to
develop software that assigns the partial atomic charges in
MOFs with similar accuracy and 40% faster than the density
functional theory (DFT)-based methods.85 These AI-driven
tools will accelerate the molecular simulations of adsorption
and diffusion of CO2 in porous materials.
Molecular simulation studies focusing on IL/MOF and

MOF/polymer composites also have several assumptions, such
as perfect interaction between the composite constituents and
homogeneous distribution of the fillers in the MMMs.86

Several studies investigated the specific interactions in the
MOF−polymer interface to gain insights into the stability and
feasibility of MMMs.87−89 A similar approach can be applicable
to IL-incorporated MMMs as well because ILs can improve the
MOF−polymer interactions in IL/MOF/polymer MMMs.90,91

However, studies investigating the interactions between ILs,
MOFs, and polymers on an atomistic scale are limited due to
high computational cost required to define all complex
interactions.92 AI-based methods using the descriptors
acquired from the DFT calculations for IL-incorporated
MMMs can help in developing force fields to define these
complex interactions accurately and efficiently for several
different combinations of MOFs, polymers, and ILs. AI-based
methods will enable the exploration of a wider variety of ILs
and polymers for integration of these novel MOF-based
composite adsorbents and membranes into CO2 capture
processes.
ML studies on zeolites, porous carbons, MOFs, COFs, and

their composites generally predicted materials’ CO2 adsorption
and separation properties based on the easily accessible
structural features of materials, such as surface areas and
element types. New tools were developed to predict guest
accessibility of any given MOF from the chemical features, the
organic linkers, and the metal ions.93,94 Recent efforts showed
that introducing new descriptors can offer time efficiency and
more accurate predictions. For example, energy-based
descriptors, including Gibbs free energy and Boltzmann
weighted energy distributions of xenon (Xe) and krypton
(Kr) gases, were demonstrated to be more important for
determining Xe/Kr selectivities of MOFs compared to their
structural and chemical features.95 Another new descriptor,
effective point charge, was recently introduced and used
together with the Henry coefficients of CO2 in ML models to
predict CO2 capture properties of MOFs at very low-pressure
conditions mimicking direct air capture.96 Development and
usage of new features in the future will lead to much accurate
ML models.
AI studies to date have been used to predict CO2 adsorption

and separation performance metrics of porous materials, such
as selectivity, working capacity, APS, and permeability, and
then to rank the materials based on these metrics for
identifying the top performing candidates. However, the fact
that a material captures a very high amount of CO2 does not
guarantee that the material can be easily synthesized or is
stable or feasible to use in real applications. AI tools that can
predict the synthesizability of MOFs,97 the optimal synthesis
conditions of MOFs,64 and their expected thermal and
mechanical stabilities98−100 have recently appeared. Heat
capacity is a fundamental descriptor defining the heat required
to regenerate an adsorbent, and a ML model was developed to
accurately predict heat capacities of MOFs, COFs, and zeolites
using DFT-based chemical descriptors.101 These capacities
were then used to calculate the performance metrics
identifying the best materials for a temperature swing CO2
capture process. In addition to performance metrics related to
the material itself, metrics focusing on the efficiency of a
process, such as CO2 recovery, purity, productivity, and
parasitic energy, are also important.102−104 However, finding a
material that meets all requirements of material- and process-
based metrics is difficult using molecular simulations or
experiments alone. For example, MOFs offering high CO2
purity, recovery targets and having parasitic energies lower
than the one required for a solvent-based CO2 capture were
identified for a CO2/N2 separation process using a genetic
algorithm.105 AI-based methods can also be useful for techno-
economic analysis of MOF-based CO2 capture processes to
evaluate the efficiency of MOFs for an industrial-scale process
by computing the cost of carbon capture.
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Material discovery, particularly in the field of MOFs, faces
challenges in aligning computational predictions with labo-
ratory experiments. The hesitancy to invest in uncertain
experiments and the complexity of synthesis procedures are
major hurdles. Computational models also struggle with data
imbalances, usually omitting unsuccessful attempts. Integrating
AI and automated systems into existing lab workflows and
scaling experiments for industrial applications are other
significant challenges. Therefore, enhanced collaboration
between computational and experimental researchers is vital
in this field. With the rapid developments in AI, the increase in
computer power, the realization of experimental studies with
novel robotic systems, the increase in the number and variety
of new porous materials, and perhaps most importantly, the
cooperation of expert researchers in these fields, a very exciting
future awaits us for the design and discovery of new adsorbents
and membranes that will efficiently capture CO2 and hopefully
solve one of the most important challenges of our world, global
warming.
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