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Abstract

Quantile-dependent penetrance is proposed to occur when the phenotypic expression of a SNP depends upon the
population percentile of the phenotype. To illustrate the phenomenon, quantiles of height, body mass index (BMI), and
plasma lipids and lipoproteins were compared to genetic risk scores (GRS) derived from single nucleotide polymorphisms
(SNP)s having established genome-wide significance: 180 SNPs for height, 32 for BMI, 37 for low-density lipoprotein (LDL)-
cholesterol, 47 for high-density lipoprotein (HDL)-cholesterol, 52 for total cholesterol, and 31 for triglycerides in 1930
subjects. Both phenotypes and GRSs were adjusted for sex, age, study, and smoking status. Quantile regression showed that
the slope of the genotype-phenotype relationships increased with the percentile of BMI (P = 0.002), LDL-cholesterol
(P = 361028), HDL-cholesterol (P = 561026), total cholesterol (P = 2.561026), and triglyceride distribution (P = 7.561026), but
not height (P = 0.09). Compared to a GRS’s phenotypic effect at the 10th population percentile, its effect at the 90th

percentile was 4.2-fold greater for BMI, 4.9-fold greater for LDL-cholesterol, 1.9-fold greater for HDL-cholesterol, 3.1-fold
greater for total cholesterol, and 3.3-fold greater for triglycerides. Moreover, the effect of the rs1558902 (FTO) risk allele was
6.7-fold greater at the 90th than the 10th percentile of the BMI distribution, and that of the rs3764261 (CETP) risk allele was
2.4-fold greater at the 90th than the 10th percentile of the HDL-cholesterol distribution. Conceptually, it maybe useful to
distinguish environmental effects on the phenotype that in turn alters a gene’s phenotypic expression (quantile-dependent
penetrance) from environmental effects affecting the gene’s phenotypic expression directly (gene-environment interaction).
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Introduction

Genome-wide association studies have shown that for most

traits, a few, common, single nucleotide polymorphisms (SNP)

account for a small proportion of the genetic variance [1]. Meta-

analyses have been instrumental in culling a select subset of true

associations from the large number of false positive results [2].

With respect to the analyses of the data per se, statistical concerns

have focused on adjustment for covariates, transformations for

nonnormal phenotypes, and selection of additive vs. dominant

phenotypic expression of the allelic dose [3]. Major questions

remain as to why SNPs explain only small proportions of the

phenotypic variance for traits showing high genetic inheritance

from twin and family studies [4].

The classical regression model assumes that the relationship

between the independent variable (e.g., genotype) and dependent

variable (e.g., phenotype) applies to all quantiles of the dependent

variable [5]. For example, the 0.39 kg/m2 per allele increase in

body mass index (BMI) for the rs1558902 (FTO gene) [6] is

assumed to apply equally to healthy weight, overweight, and obese

individuals. There is, however, no a priori biological rationale for

this premise.

We hypothesize that describing the effect of single nucleotide

polymorphisms (SNP) by their standard regression slope may

fundamentally mischaracterize their relationship, and contribute

in a modest way to underestimating the proportion of the variance

explained by genetic variants. Specifically, some of the missing

genetic variance could be due to the misperception that the same

genotype-phenotype relationship applies whether the phenotypic

value is high, intermediate, or low relative to its population

distribution. Although there are often statistical advantages to

comparing the genotypic frequencies at the phenotypic extremes

[7], differing penetrance for the tails of the distribution would also

argue against comparing their genotypic frequencies to identify

their genetic determinants.

To test this hypothesis, this paper examines the relationships of

linear combinations of SNPs shown to predict lipoprotein

concentrations, BMI, and height in published meta-analyses

[6,8,9]. Genetic risk scores (GRS) for BMI, plasma lipid and

lipoprotein concentrations, and height were created from the

published meta-analyses of individuals of European ancestry

(Table 1 in Speliotes et al., 2010 [6]; supplementary Table 2 in

Teslovich et al., 2010 [8], supplementary Table 1 in Lango et al.,

2010 [9]). The meta-analyses identified genome-wide statistical

significance for 32 SNPs with BMI, 37 SNPs with low-density

lipoprotein (LDL)-cholesterol concentrations, 47 SNPs with high-

density lipoprotein (HDL)-cholesterol concentrations, 52 SNPs

with total cholesterol concentrations, 31 SNPs with plasma

triglyceride concentrations, and 180 loci for height. Each

individual was given a GRS that was the summation of the
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product of the number of minor alleles for each SNP and their

published per allele phenotypic effect (e.g., #minor alleles

SNP1*its published per allele effect on the phenotype + #minor

alleles SNP2*its published per allele effect on the phenotype,….).

Height, BMI, lipids, and GRSs were adjusted for sex, age (age and

age2), study, and smoking status. In each case, the unit of measure

of the GRS was the predicted kg/m2 (BMI), mg/dL (lipids and

lipoproteins), or z-score increase (height). In addition, two SNPs

are examined that have shown consistent replication across

multiple studies: BMI vs. rs1558902 (FTO) [6], and HDL-

cholesterol vs. rs3764261 (CETP) [8]. The results suggest that

phenotypic expressions of SNPs are significantly related to the

percentile of the lipoprotein and BMI distribution, and that

measuring a SNP’s effect by the standard regression slope may

underestimate its true genetic impact. The consistency of the

results across multiple SNPs and traits suggest this phenomenon

may not be uncommon.

Results

LDL-cholesterol
Standard regression analyses showed that when adjusted

for covariates, plasma LDL-cholesterol concentrations increased

(slope6SE) 0.80160.085 mg/dL per unit increase in the

GRSLDL-cholesterol (Table 1, 4.4% of the variance, P,10215).

Figure 1 (upper panel) presents the regression analyses for selected

quantiles of the LDL-cholesterol distribution. It shows that the slopes

became progressively larger at the higher quantiles of the LDL-

distribution. These slopes, along with the slopes for the other

quantiles, are presented in the lower panel’s graph of the regression

slopes (Y-axis) as a function of the quantile of the LDL-cholesterol

distribution (X-axis). The Y-axis of the lower panel represents the

slopes rather than the LDL-cholesterol concentrations themselves

(compare with the upper panel). Specifically, the Y-axis represents the

LDL-cholesterol vs. GRSLDL-cholesterol slope at the 5th quantile of the

LDL-cholesterol distribution, the 6th quantile of the LDL-cholesterol

distribution,…, and the 95th quantiles of the LDL-cholesterol

distribution. Dashed lines present the standard errors for the slopes

at each quantile value. The figure shows that each unit increase in the

GRSLDL-cholesterol was associated with an LDL-cholesterol increase of

0.28160.099 mg/dL at the 10th percentile of the LDL-distribution,

0.65260.111 mg/dL at the 25th percentile, 0.77160.098 mg/dL at

the 50th percentile (the median), 0.90960.110 mg/dL at the 75th

percentile, and 1.38460.195 mg/dL at the 90th percentile of the

LDL-cholesterol distribution. If the slopes relating LDL-cholesterol to

the GRSLDL-cholesterol were the same throughout the LDL-cholesterol

distribution, as traditionally assumed, then the upper graph would

present parallel regression lines, and the lower graph would present a

simple horizontal line. In fact, the graph shows that the increase in

LDL-cholesterol became progressively more positive with increasing

percentile of the its distribution, such that on average each 1-percent

increase was associated with a 0.010660.0019 mg/dL increase in the

slope (P = 361028). The LDL-cholesterol-GRS slope was 4.93-fold

greater at the 90th than at the 10th LDL-cholesterol percentile.

The absolute difference in slopes at the 10th and 90th quantiles

(1.10 mg/dL) exceeded the traditional regression slope

(0.801 mg/dL) by 38%. The 95% confidence interval for the

standard regression slope (i.e., 61.96*SE) included only those

slopes between the 24th and 77th quantiles of Figure 1,

misrepresenting the LDL-cholesterol-GRS slope for 46% of the

LDL-cholesterol distribution. Allowing the slopes to increase with

the quantiles of the LDL-distribution improved the proportion of

the variance explained by the GRSLDL-cholesterol by 20.1% (from

4.43% to 5.61% of the variance).

HDL-cholesterol
Standard regression analyses showed that when adjusted

for covariates, plasma HDL-cholesterol concentrations in-

creased (slope6SE) 0.86060.074 mg/dL per increase in the

GRSHDL-cholesterol (6.6% of the variance, P,10215), of which more

than one-half can be ascribed to the number of C alleles of

rs3764261 (slope6SE: 3.36960.398 mg/dl per dose of the risk

allele, explaining 3.58% of the variance, P,10215). Figure 2 shows

that the effects of both GRSHDL-cholesterol and rs3764261 increased

in proportion to the quantiles of the HDL distribution (P,0.0001).

Compared to their slope at the 10th percentile, the slope at

the 90th HDL percentile was 1.87- and 2.42-fold greater for

GRSHDL-cholesterol and rs3764261, respectively. The 95% confi-

dence interval for the standard regression slopes included only

between the 35th and 76th percentile of the HDL cholesterol

distribution for the GRSHDL-cholesterol (misrepresenting 58%), and

excluded those slopes above the 65th HDL percentile for

rs3764261. The absolute differences in the slopes between the

10th and 90th percentiles represented 70% of the standard

regression estimate for the GRSHDL-cholesterol score, and 96% for

rs3764261. We estimate that allowing the regression slope to

increase with the percentile of the lipoprotein distribution

increased the percent of the variance explained by 7.6% for the

GRSHDL-cholesterol (from 6.61 to 7.11), and by 6.1% for rs3764261

(from 3.58% to 3.80%).

Table 1. Standard least-squares and quantile regression analyses of lipids, lipoproteins, BMI and height.

Quantile regression (slope±SE)

10th percentile 25th percentile 50th percentile 75th percentile 90th percentile
Standard least
squares regression

LDL-cholesterol (mg/dL) vs. GRS 0.2860.10 0.6560.11 0.7760.10 0.9160.11 1.3860.20 0.8060.09

HDL-cholesterol (mg/dL) vs. GRS 0.6960.13 0.6960.10 0.7860.08 0.9860.10 1.2960.15 0.8660.07

HDL-cholesterol (mg/dL) vs. CETP (rs3764261) 2.2760.60 2.6960.43 2.9660.44 4.3860.67 5.5161.01 3.3760.40

Total cholesterol (mg/dL) vs. GRS 0.4360.10 0.5660.09 0.7060.08 1.0760.12 1.3260.18 1.0160.09

Triglycerides (mg/dL) vs. GRS 0.7460.14 0.7960.11 1.1660.13 1.5960.29 2.4660.42 1.3660.17

BMI (kg/m2) vs. GRS 0.4460.27 0.3660.19 1.1960.26 1.5260.30 1.8860.59 0.9860.23

BMI (kg/m2) vs. FTO (rs1558902) 0.2260.24 0.0960.19 0.6260.26 1.0760.21 1.4760.45 0.8260.20

Height (z-score) vs. GRS 1.1260.16 1.1860.13 1.1760.09 0.9860.08 0.9360.13 1.0960.08

doi:10.1371/journal.pone.0028764.t001
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Lipids
Standard regression analyses showed that when adjusted for

covariates, plasma total cholesterol concentrations increased

(slope6SE) 1.01160.088 mg/dL per increase in its GRS (6.4%

of the variance, P,10215), and plasma triglycerides increased

1.35960.167 mg/dL per increase in its GRS (3.3% of the

variance, P,10215). Figure 3 showed that their slopes with

GRSTotal cholesterol and GRSTriglycerides increased significantly with

increasing quantiles of their distributions. Whereas total choles-

terol showed a mostly linear increase (acceleration) with increasing

quantile values, the graph for plasma triglyceride concentrations

suggested a steeper rise in its regression slopes with increasing

percentiles of the triglyceride distribution. Compared to their

slopes at the 10th percentile, the increase in slope was 3.07-fold

larger for the 90th percentile of the total cholesterol distribution,

and 3.34-fold larger for the 90th percentile of plasma triglycerides.

The 95% confidence interval for the standard regression slopes

included only between the 57th and 85th percentiles of the total

cholesterol distribution (misrepresenting 71%), and between the

46th and 76th percentiles of the triglyceride distribution

(misrepresenting 69%). The absolute differences in the slopes

between the 10th and 90th percentiles exceeded the standard

regression estimate by 27% for triglycerides, and represented

about 88% of the standard regression estimate for total cholesterol.

We estimate that allowing the regression slope to increase with the

percentile of the lipoprotein distribution increased the percent of

Figure 1. Increase in LDL-cholesterol per increase in the
GRSLDL-cholesterol for selected percentiles (upper panel), and
for all percentiles as a function of the LDL-percent distribution
(lower panel). Note that the Y-axis represents LDL-cholesterol
concentrations in the upper panel, and the slopes for LDL-cholesterol
vs. GRSLDL-cholesterol in the lower panel. The correspondence between
the upper and lower panels is illustrated by the letter designation of the
corresponding slopes at the 10th (A), 25th (B), 50th (C), 75th (D), and 90th

(E) LDL-percentile distribution. Lighter lines designate 6 one standard
error.
doi:10.1371/journal.pone.0028764.g001

Figure 2. Slopes for HDL-cholesterol versus GRSHDL-cholesterol

and the number of C alleles for rs3764261 (CEPT, Y-axis) by
percentiles of the HDL-cholesterol distribution (X-axis). Lighter
lines designate 6 one standard error.
doi:10.1371/journal.pone.0028764.g002
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the variance explained by 4.6% for total cholesterol (from

to 6.40% to 6.70%) and by 27.9% for plasma triglyceride

concentrations (from 3.31% to 4.23%).

Body mass index
Standard regression analyses showed that when adjusted for

covariates, BMI increased (slope6SE) 0.98260.227 kg/m2 per

increase in the GRSBMI (0.96% of the variance, P = 1.661025),

almost all of which was explained by the number of T alleles for

rs1558902 in the FTO gene (slope6SE: 0.8156201 kg/m2 per

dose of the risk allele, P = 561025, 0.85% of the variance

explained). The proportion of the BMI variance explained was

improved by fitting separate coefficients to rs1558902 and to the

weighted combination of the 31 other SNPs (total percent of the

variance explained: 1.15%). The GRSBMI was therefore defined

by 0.807904 rs1558902+ 0.708466*the weighted combination of

the 31 other SNPs, which predicted a 1.00060.210 kg/m2

increase per increase in the GRSBMI (P = 1.861026).

Figure 4 displays the plot of the regression slopes for both the

GRSBMI and rs1558902 by the quantiles of the BMI distribution. For

the GRSBMI, the regression slope increased 0.0172160.0055 kg/m2

for each 1% increment in the BMI percentile (P,0.0001). For

rs1558902, the regression slope increased 0.016560.0042 kg/m2 for

each 1% increment in the BMI percentile (P,0.0001). The GRSBMI

had a 4.24-fold greater effect, and rs1558902 had 6.69-fold greater

effect, at the 90th percentile than at the 10th BMI percentile. The

figures display generally linear increases in the slope with inflections at

the extremes where the precision in estimate diminishes. The 95%

confidence interval for the standard regression slope included only

those slopes between the 29th and the 73rd BMI percentiles for

GRSBMI, and between the 42rd and 75th BMI percentiles for

rs1558902. Allowing the regression slope to increase with the

Figure 3. Slopes for plasma total cholesterol concentrations
versus GRSTotal cholesterol and plasma triglyceride concentra-
tions versus GRSTriglycerides (Y-axis) by the percentiles of the
lipid distribution (X-axis). Lighter lines designate 6 one standard
error.
doi:10.1371/journal.pone.0028764.g003

Figure 4. Slopes for BMI versus GRSBMI and rs155890 (FTO
gene, Y-axis) by the percentile of the BMI distribution (X-axis).
Lighter lines designate 6 one standard error.
doi:10.1371/journal.pone.0028764.g004
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percentile of the BMI distribution increased the percent of the

variance explained by 24.7% for GRSBMI (from 1.15 to 1.43) and by

59.1% for rs1558902 (from 0.79 to 1.26).

Height
Standard regression analyses showed that when adjusted for

covariates, the z-score for height increased 1.08660.076 units per

increase in the GRSHeight (9.66% of the variance, P,10215).

Figure 5 shows that the regression slope did not increase with the

percentile of the height distribution. With minor exceptions (86th,

92nd–94th percentiles), the 95% confidence interval for the

standard regression slope included all slopes for height vs.

GRSHeight.

Additional analyses
The preceding analyses were redone using weights for the

individual SNPs that maximize the proportion of the variance

explained in the current sample, rather than the published effects

from meta-analyses. Using multiple regression to find the best

weights for our specific sample increased the explained variance

from 4.4% to 7.2% for LDL-cholesterol, from 6.6% to 8.8% for

HDL-cholesterol, from 6.4% to 9.5% for total cholesterol, from

3.3% to 4.4% for triglycerides, and from 1.15% to 3.09% for BMI.

Adjusting for the number of coefficients fitted had little effect on the

percent of the variance explained (i.e., adjusted R2). On average,

each 1% increase in the quantile of the dependent variable was

associated with a 0.010660.0022 increase in the slope for LDL-

cholesterol vs. GRSLDL-cholesterol fitted (P,1026), a 0.01026

0.0017 mg/dL increase in the slope for HDL-cholesterol vs.

GRSHDL-cholesterol fitted (P = 2.461029), a 0.006960.0018 mg/dL

increase in the slope for total cholesterol vs. GRSTotal cholesterol fitted

(P = 561025) a 0.014260.0027 mg/dL increase in the slope for

triglycerides vs. GRStriglycerides fitted (P = 1027), and a 0.01456

0.0032 kg/m2 increase in the slope for BMI vs. GRSBMI fitted

(P = 1026). Compared to the 10th quantile of the dependent variable,

the regression slope at the 90th quantile was 2.93-fold larger for

LDL-cholesterol vs. GRSLDL-cholesterol fitted, 2.23-fold larger for

HDL-cholesterol vs. GRSHDL-cholesterol fitted, 1.78-fold larger for total

cholesterol vs. GRStotal cholesterol fitted, 3.26-fold larger for triglycerides

vs. GRStriglycerides fitted, and 3.73-fold larger for BMI vs.

GRSBMI fitted. We estimate that allowing the regression slopes to

increase with the percentile of the independent variable increased

the percent of the variance explained by 15.6% for LDL-cholesterol

(from 7.19 to 8.31), 12.5% for HDL-cholesterol (from 8.82 to 9.92),

6.59% for total cholesterol (from 9.48 to 10.11), 42.1% for

triglycerides (from 4.40 to 6.25), and 20.1% for BMI (from 3.09 to

3.71). Thus the increases in the regression slopes with the percentiles

of the dependent variable persisted. We also verified that the

reported findings were not artifacts of skewness or other distribu-

tional characteristics of the dependent variable. Specifically,

randomly permuting the residuals across the fitted standard

regression estimates, thereby insuring parallel increases for all

quantiles of the dependent variable, produced no significant

relationship between the regression slopes and the quantiles of the

dependent variable (analyses not displayed).

Discussion

We have shown that across a variety of traits the phenotypic

expression of genetic variation differed by the percentile of the

phenotype. We are aware of no reference to this phenomenon in

the various reviews of the analyses of SNPs. Forsooth, if the effects

of SNPs on the phenotypes as estimated by standard regression

analyses merit scientific significance, then so must their differences

across the percentile distribution of the trait, being nearly as great

or greater than the standard regression estimates themselves. The

phenomenon was demonstrated for both GRS calculated from the

published effects of allelic dose and GRS calculated from

individual effects that maximize the percent of the variance

explained for our specific dataset. These analyses do not reveal

whether these genotypes are specifically responsible for the more

extreme phenotype values, or whether the penetrance of these

genotypes was greater in subjects in the higher percentiles of the

population. Figures 1, 2, 3, 4 all show that the phenotypic variance

increases with the GRS, which would likely affect variance-

component estimates in genetic models, particularly in cases where

the significance of the effects are marginal. We believe the

phenomenon is common, and has key implications with respect to

estimating the proportion of the variance explained, the study of

gene-environment interactions, and the design of studies.

Ubiquity
Genotypic expression was shown to depend upon the percentile

of the phenotype distribution for GRSs representing the combined

effects of 31 to 52 loci. Although a few SNPs had large effects, the

majority of the GRSs represented the sum of a large number of

small to moderate size effects. Averaging over different genotype-

phenotype relationships within each GRS, some increasing, some

decreasing, and some showing no difference across the pheno-

type’s quantile distribution, might be expected to cancel each

other out, converging to the classical statistical model of the same

slope throughout the phenotype distribution, but this was not

observed. Although we lacked the statistical power to assess this

phenomenon for individual SNPs, their collective effect in the

GRS suggests that the majority of their individual effect must also

be quantile dependent. Moreover, we demonstrated that the

phenotypic expressions of the two SNPs with the strongest

association with their trait (i.e., rs3764261 vs. HDL-cholesterol,

and rs1558902 vs. BMI) increased significantly with the percentile

of the trait distribution.

Figure 5. Slopes for height versus GRSHeight (Y-axis) by the
percentile of the height distribution (X-axis). Lighter lines
designate 6 one standard error.
doi:10.1371/journal.pone.0028764.g005
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Proportion of the variance explained
Considerable effort and expense has been spent on identifying

the associations between SNPs and traits that individually usually

explain very small portions of the phenotypic variance [1,4].

However, the combined influences of multiple SNPs into genetic

risk scores have begun to approach the contribution of other risk

factors. Standard regression analyses captured much of the

phenotypic effect associated with the genotypes examined in this

report. However, our analyses suggest that allowing the genotype’s

phenotypic expression to vary with the percentile of the trait

distribution significantly increases the proportions of phenotypic

variances explained. Allowing the rs1558902-BMI slope to

increase by 1.8127*BMIquantile-0.27054 for each percent increase

in the BMI distribution produced a larger increase in the percent

of the BMI variance explained than did the addition of all 31 other

SNPs currently associated with BMI at genome-wide statistical

significance.

Gene-environment interactions
Gene-environment interactions are surmised when the pheno-

typic expression of a genetic variant is altered by environmental

status. It has been proposed that such interaction may contribute

to the missing heritability [4]. However, if the phenotypic

expression of a genotype is quantile dependent, then an

environmental factor affecting the phenotype might increase or

diminish the expression of the genotype. This would follow from

the relationship of the genotype’s effect to the percentile of the

phenotype, rather than directly affecting the genotype’s expression

(Figure 6).

For example, the effect of rs155890 on BMI may be greater for

individuals who are more obese (Figure 4). A number of recent

articles have described a diminished effect of FTO polymorphisms

on BMI in physically active versus sedentary individuals [10–13].

The effect is universally described as a gene-environment

interaction [10–13]. However, Figure 4 suggests an alternative

explanation based on the fact that the effect of the FTO

polymorphism is diminished in lean vis-à-vis overweight individ-

uals. Physically active individuals are leaner than sedentary

individuals because exercise causes weight loss acutely and

attenuates age-related weight gain in the long term [14,15]. Thus,

the apparent diminished effect of the FTO polymorphism with

greater physical activity may be, in part, a direct consequence of

the relationship of the genotype to quantiles of BMI as shown in

figure 4.

Figure 2 shows that the effect of rs3764261 of the CETP gene

on plasma HDL-cholesterol levels is quantile dependent. The

Etude Cas-Temoin sur 1’Infarctus du Myocarde Study reported a

strong interaction between CETP genotypes and alcohol on HDL-

cholesterol, the genotype effect purported to be absent in

teetotalers, and to increase progressively with increased alcohol

consumption [16]. Similar interactions were cited for other HDL-

related variables [16]. We hypothesize that this interaction could

be due, in part, to quantile dependence causing the effect of CETP

polymorphisms on HDL-cholesterol to be less for the lower HDL-

cholesterol levels of the teetotalers and greater for higher HDL-

cholesterol levels of heavy alcohol consumers. Similarly, reported

associations between CETP polymorphisms and the HDL-

cholesterol response to physical activity [17,18] may also reflect,

in part, quantile dependence in the relationships of CETP

polymorphisms on plasma HDL-cholesterol concentrations.

Experimental design
The best estimate of the standard regression slope is obtained by

sampling data from the two ends of the range of the independent

variable. This is part of the rationale for genetic studies that

compare the upper tail of a trait’s distribution, presumably

enriched with high-risk genotypes, with the lower tail, presumably

enriched with low-risk genotypes [7]. However, Figures 1 through

4 suggest that such comparisons may actually be between regions

of the distribution having high genetic penetrance (upper tail) and

low genetic penetrance (lower tail). The figures suggest that in

some cases, a more informative design may be to restrict sampling

to the upper population quantiles of a trait where phenotypic

differences between high- and low-risk alleles are more fully

expressed.

Quantile dependence generally as a biological
phenomenon

The effect of the percentile of the trait distribution on factors

affecting BMI and lipoprotein concentrations is not limited to their

genetic determinants. Elsewhere we have shown that the

associations of moderate-intensity physical activity (i.e., walking)

and vigorous-intensity physical activity (i.e., running) on BMI

became progressively greater with increasing percentiles of the

BMI distribution [19–22]. We have also reported that the well-

established increase in HDL-cholesterol per unit alcohol intake

was at least twice as great at the 95th as at the 5th quantile of the

HDL distribution [23]. There was also a significant graded

increase from the 5th to the 95th HDL percentile for the slopes

relating HDL to exercise [23]. Men’s HDL-cholesterol concen-

trations declined in association with fatness (BMI, waist, and chest

circumference) more sharply at the 95th than at the 5th percentile

of the HDL distribution [23]. BMI is a major determinant of

plasma triglyceride levels, and we have shown that compared to

the 5th quantile of the triglyceride distribution, the rise in

triglycerides at the 95th quantile per unit of adiposity was 14-

fold greater for BMI and 7.8-fold greater for waist circumference

in men, and 8-fold greater for BMI in women [24]. The greater

increases in triglycerides per unit of adiposity in whites than blacks,

in men than women, and in LDL-pattern B compared to pattern A

reported by others could all be explained, at least in part, to the

dependence on the triglyceride population percentiles we reported

[24].

Nonnormality and data transformations
Quantile regression is a nonparametric technique and therefore

there is no assumption of normality. Fitting the standard

regression line to all the data and then randomly permuting the

residuals among the fitted values did not produce the increases in

the regression slope with the percentiles of the phenotype

distributions, as would be expected (analyses not displayed).

However, the functions in the figures could be used to transform

the data such that the same relationship applies to all percentiles of

the phenotype. In some cases, the transformation may approxi-

mate a log transformation, suggesting multiplicative rather than

additive genetic effects.

Figure 6. Suggested interpretation of quantile-dependent
penetrance and gene-environment interaction.
doi:10.1371/journal.pone.0028764.g006
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Conclusion
Our analyses suggest that the most important gene-environment

interaction involves an individual’s physiological environment

within which genes are expressed. The lowest to the highest

percentiles of a physiological trait represent range of physiologic

parameters, genetic make-ups, and gene-gene interactions whose

presence may be essential for the genetic variant to be expressed.

The higher phenotypic range may represent a less regulated

physiological environment than at lower phenotypic levels and

providing more abundant substrates upon which the variant’s

expression depends. The relationships we observed for the GRSs

are unlikely due to the effects of a few SNPs, since in most cases

the effects of the individual SNPs are small. The greater genetic

influence at higher physiological values may represent the

influence of multiple loci, including enhanced synergism of gene-

gene interaction.

Materials and Methods

Human subjects
This report uses the baseline data for Caucasian participants of the

Cholesterol/Atherosclerosis Pharmacogenetics (CAP) Study and the

Pravastatin Inflammation/CRP Evaluation (PRINCE) trial [25–28].

The characteristics of the samples have been previously published

[25–27]. CAP subjects were recruited from two clinical centers:

University of California, Los Angeles, School of Medicine (Los

Angeles, CA) and San Francisco General Hospital (San Francisco,

CA) [25]. PRINCE subjects were enrolled from 1143 sites

representing 49 states and the District of Columbia, with no single

site enrolling more than 4 patients [26,27]. They were recruited on

the basis of having serum total cholesterol levels of 4.14–

10.36 mmol/L (CAP) or for having an LDL-cholesterol concentra-

tion $3.5 mmol/L or a history of myocardial infarction, stroke, or

coronary revascularization regardless of their baseline LDL-choles-

terol (PRINCE). Both studies excluded subjects for baseline use of

statins or other lipid lowering agents, pregnancy, lactation, alcohol or

drug abuse, liver disease, known statin intolerance, uncontrolled

diabetes, uncontrolled thyroid disease or abnormal thyroid function,

and likelihood for not completing the planned study based on the

judgment of their physician (PRINCE) or ,90% compliance with the

study medication during a two-week run in period (CAP). The studies

differed slightly with respect to minimum age (30 and 21 years old for

CAP and PRINCE, respectively). The CAP study also excluded

persons for serum triglycerides .4.52 mmol/L or fasting glucose

.6.99 mmol/L; recent or planned change in diet or a weight change

of $4.5 kg; the use of corticosteroids, immunosuppressive drugs, or

drugs affecting the CYP3A4 system; elevated creatine phosphokinase

levels .10 times the upper limits of normal; uncontrolled

hypertriglyceridemia or blood pressure; abnormal renal function; or

recent major illness in the preceding 3 months. Additional exclusion

criteria for PRINCE were history of systemic inflammatory diseases

(rheumatoid arthritis, osteoarthritis, inflammatory bowel disease,

systemic lupus erythematous), myositis/myopathic process, or cancer;

and use of steroids or chemotherapeutic drugs within the past year or

chronic use of nonsteroidal anti-inflammatory drugs besides aspirin

(use for $2 weeks within the past year). Human use approval was

provided by the Lawrence Berkeley National Laboratory Human

Subjects Committee and all participants signed statements of

informed consent, which included permission for samples to be used

in future genomic studies.

Laboratory measurements
Plasma LDL-cholesterol concentrations in PRINCE were

measured by a Centers for Disease Control and Prevention–

standardized laboratory. For CAP, plasma total cholesterol and

triglyceride concentrations were determined by enzymatic proce-

dures on an Express 550 Plus analyzer (Ciba Corning, Oberlin,

OH) and were consistently in control as monitored by the CDC-

NHLBI standardization program. High-density lipoprotein

(HDL)-cholesterol was measured after dextran sulfate precipitation

of plasma [29], and LDL-cholesterol was calculated using the

Friedewald formula [30]. Blood specimens from each subject were

obtained after an overnight fast.

Genotyping
Genotyping was performed in two stages: 1) 304 CAP and 675

PRINCE participants were genotyped for 314,621 SNPs (Hu-

manHap300 bead chip, Illumina, San Diego, CA); and 2) 280

CAP and 652 PRINCE samples were genotyped for 620,901 SNPs

(HumanQuad610 bead chip (Illumina). Both bead chips were

designed to tag common genomic variation in Caucasians.

Additional genotypes were obtained in 292 CAP and 634

PRINCE samples that were genotyped at 12,959 sites using a

custom-made iSelect chip (N = 926). These measurements were

used to infer the genotypes for approximately 2.5 million SNPs

typed in the HapMap (phase II [31]) CEU parents using the

genotype imputation software BIMBAM [32,33].

Quantile regression
Quantile regression was used to estimate the slope for the kth

lipoprotein, BMI, or height quantile versus the GRS [34], and

bootstrap resampling to estimate their corresponding variances

and covariances [35,36]. One-thousand bootstrap samples were

drawn for their estimation. The test for whether the slopes

increased or decreased with the percentile of the dependent

variable was based on the linear contrast of the slope at the 5th,

6th,…, 95th quantiles of the phenotype. All analyses were

performed using Stata (version 11, StataCorp, College Station,

TX). In the text, the terms ‘‘increase’’ and ‘‘decrease’’ are used in

the mathematical description of a function only, and do not imply

actual phenotypic changes over time.

Estimating the proportion of the variance explained
The classical regression model assumes the same regression

slope applies to all quantiles of the independent variable. This

means that when adjusting for the effect of the independent

variable, either to control for its effect in multivariate analyses or

to estimate the proportion of the variance it explains, it is

unnecessary to specify a value of the independent variable to

which the observations were adjusted. This is because the points

maintain their same relative positions when they are projected to a

common value along parallel trajectories, so all common values

yield the same results. When the regression slopes are not parallel,

the relative positions of the data points will change depending

upon the value of the independent variable to which the points are

projected. In the current analyses, the proportion of the variance

explained by the GRS was computed by projecting all observa-

tions to the mean GRS value. Specifically, for each observation

we: 1) determined the percentile rank of the lipoprotein values

within its GRS decile; 2) determined the corresponding regression

slopes; 3) determined the difference between the GRS and the

mean GRS for the entire sample; and 4) subtracted their products

from the original lipoprotein values. The regression slopes for

noninteger quantile values were found by interpolation. The

proportion of the variance explained by an individual SNP was

computed the same way, except that the observed lipoprotein

values were ranked within each genotype, and adjusted to the

mean number of doses of the risk allele.
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