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A dataset of remote-sensed Forel-
Ule Index for global inland waters 
during 2000–2018
Shenglei Wang1,2, Junsheng Li2,3, Wenzhi Zhang2,3, Chang Cao4, Fangfang Zhang2, 
Qian Shen2,3, Xianfeng Zhang1 ✉ & Bing Zhang2,3 ✉

Water colour is the result of its constituents and their interactions with solar irradiance; this forms 
the basis for water quality monitoring using optical remote sensing data. The Forel-Ule Index (FUI) 
is a useful comprehensive indicator to show the water colour variability and water quality change in 
both inland waters and oceans. In recent decades, lakes around the world have experienced dramatic 
changes in water quality under pressure from both climate change and anthropogenic activities. 
However, acquiring consistent water colour products for global lakes has been a challenge. In this paper 
we present the first time series FUI dataset for large global lakes from 2000–2018 based on MODIS 
observations. This dataset provides significant information on spatial and temporal changes of water 
colour for global large lakes during the past 19 years. It will be valuable to studies in search of the drivers 
of global and regional lake colour change, and the interaction mechanisms between water colour, 
hydrological factors, climate change, and anthropogenic activities.

Background & Summary
Lakes are widely recognised as sentinels of environmental change, representing ecosystems that are particularly 
vulnerable to anthropogenic disturbance and climatic variability1. They play a crucial role in the global hydrolog-
ical cycle, supporting extensive services such as water supply, hydropower generation, flood mitigation, fisheries, 
and biodiversity2–4. Deriving water quality information for lakes over large areas and long-time scales is of con-
siderable value in exploring how lakes change and respond to environmental changes. Satellite remote sensing 
can potentially provide objective, broad scope, high frequency, and continuous measurements of inland water 
quality by capturing water colour information5. However, challenges brought about by the optical complexity of 
inland waters and overlying atmosphere, and interference due to adjacency effects have hindered the develop-
ment of valid Earth observation (EO) approaches for water quality monitoring in inland waters compared with 
the ocean applications. As a result, few water quality EO products are available for inland waters at global and 
regional scales.

Water colour itself is recognised by the Global Climate Observing System as a key essential climate variable 
for lakes as it is directly related to variations in water constituents. Water colour is one of the oldest water obser-
vation data with records for global water bodies stretching back over a century. Water colour observations are 
based on the fact that clear water appears blue while turbid water turns green and/or yellow with increased levels 
of suspended sediment, phytoplankton, and coloured dissolved organic matter. It is traditionally measured using 
the Forel-Ule water colour scale, which divides water into 21 colour classes from dark blue to yellowish-brown. 
Recently remote sensing data have been applied to derive the Forel-Ule Index (FUI) of water using remote sensing 
reflectance (Rrs) in the visible domain6–8. Studies have shown that FUI derived from Rrs has relatively low uncer-
tainty due to its tolerance of aerosol perturbations, variable observational conditions, and good transferability 
across different sensors7,9,10. As water colour is the outcome of interactions between sunlight and the absorption 
and scattering of water constituents, changes in water optically active constituents can be described by varia-
tions in FUI6,11. The relationships between FUI and water quality parameters (e.g. chlorophyll-a (Chl-a) and total 
suspended matter (TSM), coloured dissolved organic matter (CDOM), turbidity, and water clarity) have been 
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previously explored and documented6,7,12,13. While FUI yields more information on Chl-a for open oceans11,12, it 
is well-correlated with water clarity for coastal and inland waters according to the recent studies12,14,15. Given its 
low uncertainties, feasible transferability, and intrinsic relationship with water quality, FUI was recently promoted 
as a comprehensive water quality index for marine and inland waters, especially in large regions and over long 
time spans7,12,14.

In the past century, land-use changes, increasing urbanisation and industrialisation, population growth, 
together with apparent climate change have inevitably brought about changes in aquatic systems worldwide16. 
However, there is a lack of systematic water quality products or datasets available for global inland waters. Here, 
we present a time series dataset of FUI for large global lakes (including lakes and reservoirs, termed as ‘lake’ 
or ‘lakes’ for briefness hereafter) from 2000–2018 based on Moderate Resolution Imaging Spectroradiometer 
(MODIS) data. This dataset has a high value for providing unique information for the spatial patterns and 
long-term change trends of water colour worldwide over the past 19 years. These data could also be used in 
analyses in addressing scientific issues such as how water colour associated with hydrological parameters, climate 
change, and local anthropogenic activities at global and regional scales.

Methods
Water-leaving reflectance correction.  The MODIS surface reflectance level-3 product (MOD09A1) was 
acquired from the Goddard Space Flight Center (GSFC) of the National Aeronautics and Space Administration 
(NASA) (http://ladsweb.nascom.nasa.gov/index.html). This global coverage product is 8-day composited data 
with 500 m spatial resolution that have been previously applied to inland water quality monitoring7,17. MOD09 
has already been corrected for aerosol effect, Rayleigh scattering, and cirrus clouds and provides an estimation 
of surface reflectance. We performed a further water-leaving reflectance correction based on the minimum band 
value in the near infrared (NIR) to short wave infrared (SWIR) bands to remove the skylight reflection, residual 
aerosol effect, and sun glint for improved estimation of water-leaving reflectance (Rrs)18. This correction method 
can be operationally applied to various types of inland waters over large areas with relatively stable and satisfac-
tory performance7,18.

Lake water body extraction and identification.  We used a modified histogram bimodal method to 
extract large inland water areas (>25 km2) automatically based on the reflectance of the 1640 nm band7,19. This 
band was selected because of the obvious reflectance difference between water and other land covers in the SWIR 
band. First, an initial rough water area was obtained based on the MOD09A1 Quality Assurance (QA) dataset 
where inland water pixels were marked. Then, during automatic selection of the threshold value (Fig. 1), a buffer 
zone was created around each connected water area with an area 1.5 times the initial water area. Based upon the 
expanded area including the initial water area and the buffer zone, a histogram of the 1640 nm reflectance was 
produced for the whole expanded area where water and other land-cover types would be distributed separately in 
the histogram within the two modes (Fig. 1(b)). Finally, the threshold value for this water was recognised as the 
valley value within a specific threshold range in the histogram (denoted as the range between T0 and T1 in Fig. 1). 
In this way, every water body found in the imagery could be identified separately with a threshold adapted to 
the water reflectance and its surrounding land-cover features, which can avoid misidentifications caused by one 
harmonised threshold value for all waters. In addition, clouds, cloud shadows, snow/ice, mixed pixels, and other 
noise pixels were identified using the MOD09A1 QA dataset, then removed before further analysis.

Following water body extraction from MODIS imagery, a normal water mask for lakes would be obtained 
where the occurrence frequency of the water pixels exceeds 30% during 2000–2018. The normal water mask rep-
resented the lake’s normal water area acquired by MODIS during 2000–2018 and served as the boundary in the 

Fig. 1  Diagram of the modified histogram bimodal method19. (a) The reflectance image of the 1640 nm band 
from MOD09A1 data; blue line denotes lake shoreline and yellow line denotes buffer boundary. (b) Histogram 
of the 1640 nm band for the whole expanded area enclosed by the buffer boundary including the water area and 
the buffer area, where T denotes the threshold value that is found as the valley value within the threshold range: 
here, T0 (0.04) and T1 (0.12) denote the left and right edges of the threshold range, respectively.
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following FUI statistical calculations. This removed the ephemeral water areas or low coverage water bodies from 
our dataset. Hence, the surface areas provided in this dataset are based on MODIS observations which may be a 
little different with the surface areas in other databases but indicated the valid water area calculated in this dataset. 
Besides, each lake’s centroid point was identified using the normal mask, and its latitude and longitude were then 
extracted. The geographical coordinates were used to identify a specified water body.

FUI retrieval.  We used a FUI retrieval algorithm for visible MODIS bands defined in previous research7,14, 
as summarized below:

	(1)	 CIE tristimulus X, Y, Z were calculated from the R, G, B bands of MOD09A1 after water-leaving correction 
using an RGB conversion method6,20:

= . + . + .
= . + . + .
= . + . + .

X R G B
Y R G B
Z R G B

2 7689 1 7517 1 1302
1 00 4 5907 0 0601
0 00 0 0565 5 5943 (1)

	(2)	 The chromaticity coordinates x, y were calculated by normalising X, Y, Z between 0 and 120:

=
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	(3)	 Hue angle α can be derived with x, y9,10:
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here, the hue angle α is in degrees and changes from 0° to 360° anti-clockwise starting from the positive 
x-axis at y - 1/3 = 0 in the CIE chromaticity diagram. We note that our previous publications7,12,14 have used 
a different definition for hue angle α (termed as α’ hereafter) where it increases in a clockwise direction 
starting from the negative axis at x - 1/3 = 0. This calculates the value of α’ using the formula arctan2(x - 1/3, 
y - 1/3) + π and α’ increases with FUI. However, this would not affect the FUI result because the same chro-
maticity coordinates of the 21 FUI colours21 were used to generate the FUI look-up table (Table 1).

	(4)	 To eliminate the colour difference caused by the MODIS visible band setting, we conducted a devia-
tion delta (Δ) correction by modelling the α differences between human-eye-sensed true colour and 
MODIS-derived colour, following the idea proposed in previous research9. However, because we use differ-
ent method to derive CIE tristimulus X, Y, Z (as shown in Eq. (1)), our correction equation is different with 
that in [9]:

FUI x y α α’

1 0.1914 0.1669 229.5330 40.4670

2 0.1990 0.1999 224.8037 45.1963

3 0.2100 0.2399 217.1473 52.8527

4 0.2265 0.2883 202.8305 67.1695

5 0.2459 0.3353 178.7020 91.2980

6 0.2662 0.3762 147.4148 122.5852

7 0.2908 0.4115 118.5208 151.4792

8 0.3154 0.4400 99.5371 170.4629

9 0.3367 0.4617 88.5017 181.4983

10 0.3633 0.4764 78.1648 191.8352

11 0.3862 0.4866 70.9617 199.0383

12 0.4024 0.4811 64.9378 205.0622

13 0.4162 0.4737 59.4234 210.5766

14 0.4313 0.4655 53.4431 216.5569

15 0.4457 0.4576 47.8847 222.1153

16 0.4606 0.4494 42.3707 227.6293

17 0.4753 0.4410 37.1698 232.8302

18 0.4887 0.4328 32.6477 237.3523

19 0.5033 0.4246 28.2408 241.7592

20 0.5155 0.4161 24.4487 245.5513

21 0.5283 0.4083 21.0471 248.9529

Table 1.  Chromaticity coordinates21 and corresponding hue angle α of FUI indices from 1 to 21. α’ denotes the 
differently defined hue angle used in our previous publications7,12,14.
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	(5)	 Finally, the FUI of each pixel in the image was calculated from the corrected hue angle α using a look-up 
table (Table 1), which is determined through measuring the chromatic properties of Forel-Ule colour scale21.

Monthly and yearly FUI calculation.  All FUI images were produced using the 8-day composited 
MOD09A1 data from February 2000 to December 2018, and monthly FUI images were produced by removing 
outlier data in the time domain and averaging the remaining values in the same pixel location for one month. 
The time domain outlier data were recognised when outside the ‘μ ± 3σ’ window (μ denotes the average value 
and σ denotes the standard deviation). The monthly average FUI values were then calculated for each water body 
when the detected water pixels for one water body were >30% of those in the normal water mask to ensure the 
representativeness of the calculation. In the monthly average FUI calculation, outlier data in the spatial domain 
were removed and the remaining pixel values within the extent of the water body (identified by the normal water 
mask) were averaged. The spatial domain outlier data were recognised when outside the ‘μ ± 1.5σ’ window in 
order to avoid uncertainties caused by thin clouds, aerosol perturbations, or other noise, thereby ensuring more 
accurate monthly averaged FUI values for water bodies. Because lakes may be covered by clouds or other noise at 
times, there would be missing data for some lakes. To ensure the reliability of this time series dataset, lakes with 
less than six valid monthly data in one year from 2000–2018 were not included in this dataset. Because some 
Northern Hemisphere lakes may be covered or partly covered by ice during winter, their monthly FUI data were 
only calculated from boreal May to October each year. These frozen lakes were identified based on monthly cli-
matological lake surface water temperature data provided by the ARC-Lake v3.0 dataset (http://www.laketemp.
net/home_ARCLake/data_access.php)22. These lakes were only included if they had at least three valid monthly 
data points in each year. Finally, the missing data for lakes were filled through linear interpolation23,24. The yearly 
average FUI values were calculated for each water body by averaging the corresponding monthly average FUI.

Data Records
The long-term FUI time series data are available via Figshare25.

General information for the 1049 investigated large lakes (>25 km2) around the world is compiled in ‘lake_
info.csv’, where each row represents one lake and the columns are as follows:

	(1)	 Lake_id: Identifies each lake with MODIS tile and location number.
	(2)	 Lake_name: Lake name acquired from Google Earth and some lake database. A small part of lakes have 

blank names since we cannot find their names.
	(3)	 Lon: Longitudinal coordinate of the lake’s centroid point.
	(4)	 Lat: Latitudinal coordinate of the lake’s centroid point.
	(5)	 Lake_area: Surface area (km2) of the lake derived from the MODIS normal water mask.
	(6)	 Freezing: ‘Yes’ means the lake may freeze in winter, while ‘No’ means it would not freeze in winter.
	(7)	 Country/Region: Country or region in which the lake is located; international lakes are assigned to the 

country or region containing the centroid point and may be arbitrary for centroid points falling on the 
boundaries.

	(8)	 Continent: Continent in which the lake is located; international lakes may be arbitrarily assigned to one 
continent.

The long-term monthly FUI data from February 2000 to December 2018 for lakes are compiled in the 
‘monthly_FUI’ folder, in which the raw monthly FUI and filled monthly FUI data are provided in the ‘raw_
monthly_FUI’ and ‘filled_monthly_FUI’ files, respectively. Monthly FUI data for freezing lakes are only provided 
from May to October for every year because ice cover changes the observed colour. Long-term yearly FUI data 
from 2000–2018 are compiled in the ‘yearly_FUI’ folder, in which the yearly mean FUI is provided in the ‘yearly_
FUI.csv’ file. Average FUI of lakes from 2000–2018 is mapped in Fig. 2, and annual change rates are graphed in 
Fig. 3. Lakes have significant positive or negative yearly change trend (p < 0.01) in the nineteen years are also 
marked in Fig. 3.

Technical Validation
Quality control and assurance of the dataset.  Quality control methods were embedded and executed 
during the processes of water-leaving reflectance correction, water body extraction, FUI image retrieval, and 
monthly- and yearly-average FUI calculation. After water-leaving reflectance correction and water body extrac-
tion were performed, clouds, cloud shadow, snow/ice, and other noise over the water area were identified using 
the QA flags attached to the MOD09A1 data and removed for further processing. The land adjacency effect was 
avoided by eroding the water areas with a 500 m distance26. To avoid data contamination by water bottom appear-
ance, optically shallow water was excluded using a blue-band thresholding method assisted by visual interpreta-
tion using Google Earth images7. During monthly FUI image calculation, outliers at the pixel level were checked 
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using the ‘μ ± 3σ’ criterion. During the summer-average FUI value calculation for each lake, water areas <30% 
of the normal surface area were removed to avoid average value biases caused by spatial variability in lakes. To 
avoid artificial errors, a set of scripts in the IDL programming language were composed for water extraction, FUI 
retrieval, and summer-average FUI calculation.

To assemble the summer-average FUI data for each lake, the lake ID was attached to each lake according to its 
centroid location, then the assembled dataset was cross-checked using a series of graphs and maps, allowing the 
identification of outliers and abnormal trends. We also compared the FUI change rates with other related water 
quality studies to confirm the results27,28.

Validation with in situ data.  Previous studies have shown that FUI can be derived from multispectral satel-
lite data with high accuracy given its tolerance of aerosol perturbation and unfavourable viewing conditions, and 
the uncertainties in satellite water-leaving reflectance can be reduced during conversion to FUI7,10. We evaluated 
the FUI derived from MOD09 by comparison with in situ spectral data measured in our previous study7, which 
showed the uncertainties contained in the MODIS FUI data were <10%.

We further validated the MODIS FUI results using concurrent in situ Rrs(λ) data, mainly from Chinese lakes. 
That is to say, the MODIS FUI is validated to the color of water itself without having any Secchi disk submerged, 
while there would be a Secchi disk put in the water during the traditionally FUI measurement using the handheld 

Fig. 2  Average FUI of lakes from 2000–2018 in this dataset. Circle size is proportional to the lake surface area.

Fig. 3  Annual change rate of FUI from 2000–2018 over lakes in this dataset. Circle size is proportional to the 
lake surface area.

https://doi.org/10.1038/s41597-021-00807-z


6Scientific Data |            (2021) 8:26  | https://doi.org/10.1038/s41597-021-00807-z

www.nature.com/scientificdatawww.nature.com/scientificdata/

Forel-Ule water colour scale29. We note that there could be systematic biases between the satellite FUI data and 
the in situ FUI obtained using the handheld water colour scale assisted by a Secchi disk, but this is not the case in 
this study30,31. Here, the mean relative difference (MRD) and root mean square error (RMSE) were used to depict 
the uncertainties:

∑
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= ∗
=
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MRD

n
x x

x
%1 100

(6)i

n
est i mea,i

mea i1

,

,

 =
−∑ =RMSE

x x
n

( )
(7)

i
n

est,i mea,i1
2

where xest denotes the estimated value, xmea denotes the measured value, and n is the number of measurements.
The in situ Rrs(λ) measurements were carried out in six large Chinese lakes with diverse water types ranging 

from clear and oligotrophic to turbid and eutrophic. In addition, in situ Rrs(λ) data collected in Lake Erie (North 
America) were acquired from the SeaWiFS Bio-optical Archive and Storage System (SeaBASS) database and 
used to fill a gap in our data for moderately clear water (FUI ranging from 7–10). In the in situ measurements, 
above-water radiance measurements were conducted to derive water-leaving reflectance spectra for the sampling 
sites, then the water-leaving reflectance spectra were resampled to the MODIS bands and the FUI values were 
calculated. In the built of match-ups, the nearest pixel to the sampling location was selected in the MOD09 daily 
data (MOD09GA) and the time window was within 1 day. Finally, there are a total of 151 concurrent matchups in 
the seven lakes (Table 2). As shown in Fig. 4, the MRD between the MODIS FUI and in situ derived FUI was 6.5%, 
and the RMSE between them was 1.09. Given that the acceptable error level in satellite water colour products is 
~30%32,33, our error rate of <10% demonstrates the validity of the MODIS FUI results. Moreover, the MODIS FUI 
was derived with a consistent methodology and dataset, further guaranteeing its performance for water colour 
change detection.

Cross validation with diversity II data.  Water quality parameters (TSM and turbidity) provided by 
Diversity II dataset were used to cross validate the MODIS FUI dataset presented here in several large lakes 

Lake name Latitude Longitude Sampling date (YYYYMM) N

Lake Taihu 31.1N 120.2E 200607, 200610, 200612, 200704 73

Lake Poyang 29.1N 116.3E 200910 4

Lake Chaohu 31.5N 117.5E 200906 5

Lake Dianchi 24.8N 102.7E 200912 4

Lake Qinghai 36.8N 100.3E 201408 10

Reservoir Yuqiao 40.0N 117.5E 201309, 201410 38

Lake Erie 41.6N 82.5W 201408 17

Table 2.  Lake name, location, sampling date, and the number of match-ups (N) in the in situ dataset.

Fig. 4  Scatterplots of the in situ Rrs(λ) derived FUI and concurrent MODIS-derived FUI (a) by lake and (b) by 
50% transparency (darker shading indicates higher data density).

https://doi.org/10.1038/s41597-021-00807-z
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around the world. The Diversity II datasets were produced from Medium Resolution Imaging Spectrometer 
(MERIS) data using optimised water quality retrieval algorithms for inland waters34. This dataset provides water 
quality data (e.g. Chl-a, TSM, and turbidity) for ~300 large lakes around the world from 2002–2012. As studies 
have shown6,12,14,15, FUI of water is well-correlated with Secchi disk depth and turbidity and can also indicate TSM 
in turbid waters with high suspended sediment. Therefore, our long-term monthly FUI data were compared with 
Turbidity and TSM monthly data from Diversity II dataset in several lakes including Lake Namco, Lake Silingco, 
Lake Ontario, Lake Ladoga and Lake Taihu (Fig. 5). This comparison showed that similar temporal patterns and 
trends in MODIS FUI and MERIS turbidity generally occurred in Lakes Namco, Silingco, and Ontario, which 
are relatively clear waters located in the Qinghai-Tibet Plateau and North America, respectively. In these lakes, 
MERIS TSM data basically had similar long-term trends with MERIS turbidity and MODIS FUI, but with some 
details that may differ. That is probably because water constituents other than TSM (such as CDOM) may also 
affect water colour and FUI. However, in Lake Taihu in eastern China, which is very turbid and dominated by 
TSM35, FUI and TSM basically had a better correlation than FUI and turbidity. In Lake Ladoga in northwestern 
Russia, the correlation between FUI and TSM is slightly higher than the correlation between FUI and turbidity, 
which suggest TSM have a little larger effect on FUI in this lake.

Figure 6 shows correlations between the monthly FUI and turbidity in Lake Namco, Lake Silingco, and Lake 
Ontario, and the correlations between monthly FUI and TSM in Lake Ladoga and Lake Taihu. Our FUI data and 
Diversity II Turbidity or TSM data generally showed good agreement, with correlation coefficients (R) rang-
ing from 0.47–0.73, consistent with previous research showing that FUI can be used as an indicator of water 

Fig. 5  Comparison of FUI time series data derived from MODIS, and TSM and turbidity time series data 
derived from MERIS, in five representative lakes: (a) Lake Namco, (b) Lake Silingco, (c) Lake Ontario, (d) Lake 
Ladoga, and (e) Lake Taihu.
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clarity12,14,15. The correlation coefficients in Lakes Namco and Silingco were higher than those in the other three 
lakes, which are reasonable because water constituents in the latter three are generally more complicated28,35–38. 
In addition to the suspended solids quantified by TSM and turbidity, CDOM may also play an important role in 
driving water colour changes in some saline lakes and lakes surrounded by forests or agriculture farmland39, so in 
these cases the correlation between FUI and turbidity and TSM might be weak. As the Diversity II data and our 
FUI data were produced using different satellite data (MERIS and MODIS, respectively), the good agreements 
between the two datasets shown here also demonstrate the reliability of both the two satellite data for use in stud-
ying long-term water colour and water quality parameters for inland waters when assisted by proper atmospheric 
corrections.

Code availability
The IDL code named MODIS_FUI.pro for calculating FUI from MOD09A1 data is also available via Figshare25. 
We note that the code contains a few steps that need ENVI software, so that it needs to be run under the 
ENVI + IDL environment. The ENVI version 5.3 and the IDL version 8.5 were used in the code development.
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