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In this paper, we apply optimal control theory to the model for shigellosis. It is assumed that education campaign, sanitation, and
treatment are the main controls for this disease. The aim is to minimize the number of infections resulting from contact with
careers, infectious population, and contaminated environments while keeping the cost of associated controls minimum. We
achieve this aim through the application of Pontryagin’s Maximum Principle. Numerical simulations are carried out by using
both forward and backward in time fourth-order Runge-Kutta schemes. We simulate the model under different strategies to
investigate which option could yield the best results. The findings show that the strategy combining all three control efforts
(treatment, sanitation, and education campaign) proves to be more beneficial in containing shigellosis than the rest. On the
other hand, cost-effectiveness analysis is performed via incremental cost-effectiveness ratio (ICER). The findings from the ICER
show that a strategy incorporating all three controls (treatment, sanitation, and education campaign) is the most cost-effective of
all strategies considered in the study.

1. Introduction

Shigellosis is an acute infection of the intestine caused by
bacteria in the genus Shigella. There are four species of
Shigella: Shigella dysenteriae, S. flexneri, S. boydii, and S.
sonnei (also referred to as groups A, B, C, and D, respec-
tively). An estimate of 165 million cases of shigellosis is
reported annually worldwide [1, 2]. Illness can range from
mild diarrhea to potentially fatal dysentery, depending on
Shigella species and host factors. Secondary infections are
common due to the low infectious dose. Since humans
and other primates are the sole natural reservoirs for Shigella
and a shigellosis vaccine is not available, rigorous human
hygiene practices are the cornerstone of prevention of food-
borne transmission [3].

The symptoms of shigellosis vary from mild diarrhea
lasting a few days to an acute febrile illness that may include
nausea, vomiting, tenesmus, and bloody stools. Symptoms
begin 1-4 days after infection and typically last 4-7 days; they
are usually self-limited and infrequently require hospitaliza-
tion. Children under five years, the elderly, and immuno-
compromised are at higher risk of severe illness. Mild cases

of shigellosis are often undiagnosed and not treated; asymp-
tomatic infection is also possible. Once infected, individuals
are not likely to get infected again with the same species for
several years [3].

Shigellosis is mainly transmitted via fecal-oral route. The
organism does not persist long term in the environment, but
it can survive in foods at ambient or refrigerated tempera-
tures in sufficient quantities to cause illness for the duration
of the shelf life of some foods. Person-to-person transmission
is also common in this disease [4–6].

Several scholars have studied shigellosis by mathematical
models with the main focus of understanding its trans-
mission dynamics (e.g., see [7–11]). Motivated by the
work of Edward et al. [11] who studied shigellosis by
examining the role played by carriers in its transmission
dynamics, we apply optimal control theory to study how
the optimal control strategies could be designed to end
this disease.

Optimal control is a branch of mathematics which
deals with finding optimal ways to control a dynamical
system. The theory has been currently used extensively
in many fields such as biological sciences, economics,
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physics, and engineering to mention a few [12]. In math-
ematical epidemiology, this theory has been a useful tool
when it comes to planning how to eliminate or minimize
the number of cases at an optimal cost. Several studies
have used the optimal control theory to capture interven-
tion strategies, e.g., see [13]. They used the optimal control
theory to confirm the significant role played by control
measures (education and treatment of water bodies) and
the bacteria in the environment in the transmission
dynamics as well as reduce the spread of cholera. Refer-
ence [14] studied cholera by incorporating two control
strategies, namely, education and chlorination. Cost-
effectiveness was also carried out, and it was noted that
education was the most cost-effective strategy to curtail
cholera. Reference [15] developed a cholera epidemiologi-
cal model which incorporates three types of intervention
strategies: vaccination, therapeutic treatment, and water
sanitation. Optimal control theory was then applied to seek
the cost-effective solution of multiple time-dependent inter-
vention strategies against cholera outbreaks. Reference [16]
studied dysentery with optimal control strategies. They
applied incremental cost-effectiveness analysis technique to
determine the most cost-effective strategy. It was noted that
sanitation and education campaign are the most efficient
and cost-effective.

Most previous studies of shigellosis did not invest in
optimal control strategies, except possibly a study by Berhe
et al. [16]. However, their basic model has a few short-
comings that have been addressed by Edward et al. [11].
Therefore, this study focuses on identifying optimal con-
trol strategies for the model developed by Edward et al.
[11]. We propose and analyze shigellosis optimal control
problem that captures three controls, namely, treatment,
sanitation, and public health education campaign. With
these interventions, individuals are protected from infec-
tion. The objective is to find the optimal strategy that
minimizes the total number of new infections while keep-
ing the cost associated with the strategy low. Pontryagin’s
Maximum Principle [17] is used to find the optimal level
of effort, which gives the required control of the disease
at the cheapest cost. Furthermore, this study investigates
which control strategy is the most cost-effective; this is
made possible via ICER.

The rest of the paper is organized as follows: Section 2
focuses on the formulation of an optimal control problem
and investigating its existence, then deriving the optimality
system which characterizes the optimal control using
Pontryagin’s Maximum Principle. On the other hand,
numerical simulation is presented in Section 3. Section 4
presents a cost-effective analysis of the control strategies,
and lastly, Section 5 winds up by giving concluding
remarks.

2. A Model for Optimal Control Problem

The present study extends the work by Edward et al. [11]
which included treatment, public health education cam-
paign, and sanitation as constant control measures. The
main difference between the previous work by Edward

et al. [11] and the current study is that the present one
hinges on application of the optimal control theory. In this
case, the constant parameters are treated as time-
dependent variables; such a notion allows us to explore
how the disease can be optimally controlled using a suit-
able strategy which is cost-effective. To formulate an opti-
mal control problem, first consider a basic model (1)
developed by Edward et al. [11] whose parameters and
variables are given in Tables 8 and 9:

dS
dt

=Λ + ωR − 1 − ρð Þ λh tð Þ + λp tð Þ� �
+ μh

� �
S,

dE
dt

= 1 − ρð Þ λh tð Þ + λp tð Þ� �
S − μh + δð ÞE,

dI
dt

= qδE + 1 − lð ÞαC − μh + d1 + η1 + γð ÞI,
dC
dt

= 1 − qð ÞδE − μh + lη2 + 1 − lð Þαð ÞC,
dR
dt

= η1 + γð ÞI + lη2C − μh + ωð ÞR,

dB
dt

= rB 1 −
B
Kp

 !
+ 1 − ρð Þε1I + 1 − ρð Þε2C − μb + σð ÞB,

ð1Þ

where

λh tð Þ = β1I + β2C,

λp tð Þ = ϕB
K + B

,
ð2Þ

with initial conditions Sð0Þ > 0 ; Eð0Þ > 0 ; Ið0Þ > 0 ; Cð0Þ >
0 ; Rð0Þ > 0 ; and Bð0Þ > 0:

Next, it is assumed that effective treatment of shigellosis
patients is imperative in reducing the spread of the disease.
If shigellosis patients are left untreated for long, situations
may be fatal as in most cases, clients die due to dehydration.
Therefore, we assume that infectious individuals are treated
at the rate u1ðtÞ and upon treatment, they may recover and
join recovery class R. Also, it is assumed that sanitation
(including treatment of water bodies, safe disposal of waste)
reduces pathogen concentrations in the environment. There-
fore, to minimize the number of pathogens in the environ-
ment (including water sources and foods), it is essential to
incorporate a rate u2ðtÞ that caters for that case. Likewise, a
success of education campaigns has been extensively
reported by a number of scholars (e.g., [14, 16]) in combating
several diseases. In the current work, we also assume that
public health education plays an important role in control-
ling shigellosis. Education campaign is captured by a func-
tion u3ðtÞ. Based on these assumptions, we obtain the
optimal control model:
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dS
dt

=Λ + ωR − 1 − u3ð Þλ + μhð ÞS,
dE
dt

= 1 − u3ð ÞλS − μh + δð ÞE,
dI
dt

= qδE + 1 − lð ÞαC − μh + d1 + η1 + η1u1ð ÞI,
dC
dt

= 1 − qð ÞδE − μh + lη2 + η2u1 + 1 − lð Þαð ÞC,
dR
dt

= η1 + η1u1ð ÞI + lη2 + η2u1ð ÞC − μh + ωð ÞR,
dB
dt

= r 1 −
B
Kb

� �
B + 1 − u3ð Þε1I + 1 − u3ð Þε2C

− μb + σ + σu2ð ÞB,

ð3Þ

where the force of infection is

λ = β1I + β2C +
ϕB

K + B
, ð4Þ

with initial conditions Sð0Þ > 0 ; Eð0Þ > 0 ; Ið0Þ > 0 ; Cð0Þ > 0 ;
Rð0Þ > 0 ; and Bð0Þ > 0: It is needed to adjust these control
strategies in order to minimize the number of infectious
individuals and careers as well as Shigella bacteria and the
cost of implementing the control strategies. We will con-
sider the optimal control problem with objective functional
of the form

J =min
u

ðtf
0

A1I + A2C + A3B + 〠
3

i=1

Ki

2
u2i

 !
dt, ð5Þ

where tf is the final time and Aj, j = 1, 2, 3, are the weight con-
stants associated with the number of infectious humans, carrier
humans, and bacterial concentration whereas Ki, i = 1, 2, 3, are
the ith weights of control relative to its cost implications. The
quadratic terms ðK1/2Þu21, ðK2/2Þu22, and ðK3/2Þu23 represent
the costs of control efforts on treatment, sanitation, and public
health education campaign, respectively. In this work, the con-
trols ui, i = 1, 2, 3, in the objective functional are quadratic since
the costs of these interventions are nonlinear. This assumption
follows the works suggesting the nonlinear relationships
between the effects of interventions and the cost of the interven-
tion of the infective populations. In addition, such quadratic
costs have been frequently used by several authors, for example,
[18, 19]. The aim is to minimize the objective function J, so we
are required to find the optimal control such that

J u∗ð Þ =min J u ∣ u ∈Uð Þ, ð6Þ

where U = fðu1, u2, u3Þ ∣ ui is Lebesgue measurable with 0 ≤
U ≤ 1 for t ∈ ½0, tf �, i = 1, 2, 3g is the set of admissible controls.

The basic setup of the optimal control problem is to check the
existence and uniqueness of the optimal controls and to charac-
terize them.

2.1. Existence of the Optimal Controls. In this section, we
establish existence of the optimal control of the model (3)
together with Equation (5) following the approach by [20]
(Theorem 9.2.1 page 182). To this end, the following theorem
is stated.

Theorem 1. Given that JðuÞ subject to system (3) with ðS0,
E0, I0, C0, R0, B0Þ ≥ ð0, 0, 0, 0, 0, 0Þ, then there exists an opti-
mal control u∗ and corresponding ðS∗, E∗, I∗, C∗, R∗, B∗Þ that
minimizes JðuÞ over U .

Proof. To use the existence results from [21] (Theorem 4.1.
pages 68-70), we first need to check the following
properties:

(1) The set of controls and corresponding state variables
is nonempty

(2) The measurable control set is convex and closed

(3) Each right-hand side of the state system is continu-
ous, bounded above by a sum of the bounded control
and the state, and can be written as a linear function
of u with coefficients depending on time and the state

(4) The integrand gð f , uÞ of the objective functional is
convex

(5) There exist constants C1, C2 > 0, and β∗ ≥ 1 such that

the integrand of the objective functional satisfies g

≥ C1ðju1j2 + ju2j2 + ju3j2Þ
β∗/2

− C2

The existence results in [20] (Theorem 9.2.1 page 182) for
the state system verify that the first property is satisfied. By
definition of convex set, the control set U is convex and
closed; hence, the second property is also satisfied. Since the
state solutions of a linear state system in ui are bounded,
then, the right hand side is bounded by a linear function.

Finally, there are C1, C2 ≥ 0 and β ≥ 1 satisfying A1I + A2C

+ A3B + K1u
2
1ðtÞ + K2u

2
2ðtÞ + K3u

2
3ðtÞ ≥ C1

ðju1j2 + ju2j2 + ju3j2Þ
β∗/2

− C2 because the state variables are
bounded. Hence, the existence of optimal control follows
from the existence results by Fleming and Rishel [21].

2.2. Characterization of the Optimal Controls. The represen-
tation of the optimal controls relies on Pontryagin’s Maxi-
mum Principle [17]. To apply this, we need to convert the
optimal control problem into the problem of minimizing
point-wise a Hamiltonian, H, with respect to u. Let x be the
set of state variables, U be the set of controls, L be the set of
adjoint variables and f be the right-hand side of the differ-
ential of the ith state variable. Then, the Lagrangian func-
tion of our problem consists of the integrand of the
objective functional, and the inner product of the right-
hand side of the state equations and the adjoint variables

3Computational and Mathematical Methods in Medicine



(L1, L2, L3, L4, L5, L6Þ. In more compact form, we define
the Lagrangian by

H = A1I + A2C + A3B + 〠
3

i=1

Ki

2
u2i + Lf t, x tð Þ, ui tð Þð Þ: ð7Þ

The expanded form of the Lagrangian is given by

H = A1I + A2C + A3B +
K1
2
u21 +

K2
2
u22 +

K3
2
u23

+ L1 Λ + ωR − μh + 1 − u3ð Þ β1I + β2C +
ϕB

K + B

� �� �
S

� �

+ L2 1 − u3ð Þ β1I + β2C +
ϕB

K + B

� �
S − μh + δð ÞE

� �

+ L3 qδE + 1 − lð ÞαC − μh + d1 + η1 + η1u1ð ÞIð Þ
+ L4 1 − qð ÞδE − μh + lη2 + η2u1 + 1 − lð Þαð ÞCð Þ
+ L5 η1 + η1u1ð ÞI + lη2 + η2u1ð ÞC − μh + ωð ÞRð Þ
+ L6 r 1 −

B
Kb

� �
B + 1 − u3ð Þε1I + 1 − u3ð Þε2C − μb + σ + σu2ð ÞB

� �
:

ð8Þ

Theorem 2. Given that u∗i is the set of optimal control and
x∗ the corresponding set of solution of the state system (3)
that minimizes J over Ω, then there exist adjoint variables
L such that

dL
dt

= −
dH
dx

, adjoint conditions and

L tf
� �

= 0, transversality conditions: Furthermore,

dH
du

= 0, at u∗,  optimality conditions:

ð9Þ

Proof. The adjoint system is obtained by taking the partial
derivative of the Lagrangian H with respect to state vari-
ables. That is,

dL1
dt

= μh + 1 − u3ð Þ β1I + β2C +
ϕB

K + B

� �� �
L1

− 1 − u3ð Þ β1I + β2C +
ϕB

K + B

� �
L2,

dL2
dt

= μ + δð ÞL2 − qδL3 − 1 − qð ÞδL4,
dL3
dt

= 1 − u3ð Þβ1SL1 − 1 − u3ð Þβ1SL2

+ μh + d1 + η1 + η1u1ð ÞL3 − η1 + η1u1ð ÞL5
− 1 − u3ð Þε1L6 − A1,

dL4
dt

= 1 − u3ð Þβ2SL1 − 1 − u3ð Þβ2SL2 − 1 − lð ÞαL3
+ μh + lη2 + η2u1 + 1 − lð Þαð ÞL4 − lη2 + η2u1ð ÞL5
− 1 − u3ð Þε2L6 − A2,

dL5
dt

= μh + ωð ÞL5 − ωL1,

dL6
dt

=
1 − u3ð ÞϕKS
K + Bð Þ2 L1 − L2ð Þ − r − μb − σ − σu2 −

2B
Kp

 !

� L6 − A3,
ð10Þ

with transversality conditions (or final time conditions)

L1 Tð Þ = 0,

L2 Tð Þ = 0,

L3 Tð Þ = 0,

L4 Tð Þ = 0,

L5 Tð Þ = 0

L6 Tð Þ = 0:

ð11Þ

The characterizations of the optimal controls u∗ðtÞ and
corresponding u∗1 ðtÞ, u∗2 ðtÞ, u∗3 ðtÞ, that is, the optimality
equations, are based on the following conditions:

∂H
∂u1

=
∂H
∂u2

=
∂H
∂u3

= 0: ð12Þ

where

∂H
∂u1

= K1u1 tð Þ − η1IL3 − lη2CL4 + η1I + η2Cð ÞL5 = 0,

∂H
∂u2

= K2u2 tð Þ − σBL6 = 0,

∂H
∂u3

= K3u3 tð Þ + β1I + β2C +
ϕB

K + B

� �
SL1

− β1I + β2C +
ϕB

K + B

� �
SL2 − ε1I + ε2Cð ÞL6 = 0,

ð13Þ

subject to the constraints 0 ≤ u1ðtÞ ≤ u1 max, 0 ≤ u2ðtÞ ≤
u2 max, 0 ≤ u3ðtÞ ≤ u3 max: Hence, on solving system (13),
we have
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Thus, using the bounds of the control u1ðt), its optimal
control is given by

Equivalently, we can represent the optimal control as

u∗1 = min 1,  max 0,
η1L3I + η2CL4 − η1I + η2Cð ÞL5

K1

� �� �
:

ð16Þ

Also,

u∗2 tð Þ =

σBL6
K2

, if 0 ≤
σBL6
K2

≤ 1,

0, if σBL6
K2

≤ 0,

1, if σBL6
K2

≥ 1:

8>>>>>>>><
>>>>>>>>:

ð17Þ

This can also be represented as

u∗2 = min 1, max 0,
σBL6
K2

� �� �
: ð18Þ

Similarly,

u∗3 tð Þ =
z∗, 0 ≤ z∗ ≤ 1,

0, if z∗ ≤ 0,

1, if z∗ ≥ 1:

8>><
>>:

ð19Þ

where

This can also be represented as

u∗3 = min 1, max 0, z∗f gf g: ð21Þ

3. Numerical Results

In this section, the optimality system which is characterized
by the state system (3), as well as the adjoint system (10),

was solved numerically by using Runge-Kutta order four
schemes since they provide more stable solutions as com-
pared to the counterpart Euler’s method. Euler’s method is
inadequate even for well-conditioned problems if a high
degree of accuracy is required, owing to the slow first-order
convergence. So, it is generally more convenient to use
Runge-Kutta fourth-order methods. The aim was to validate
the analytical results obtained in the previous sections. The

u∗1 tð Þ = η1L3I + η2CL4 − η1I + η2Cð ÞL5
K1

,

u∗2 tð Þ = σBL6
K2

,

u∗3 tð Þ = β1I + β2C + ϕB/K + Bð Þ + μhð ÞSL2 − β1I + β2C + ϕB/K + Bð Þ + μhð ÞSL1 + ε1I + ε2Cð ÞL6
K3

:

ð14Þ

u∗1 tð Þ =

η1L3I + η2CL4 − η1I + η2Cð ÞL5
K1

, if 0 ≤
η1L3I + η2CL4 − η1I + η2Cð ÞL5

K1
≤ 1,

0, if  η1L3I + η2CL4 − η1I + η2Cð ÞL5
K1

≤ 0,

1, if  η1L3I + η2CL4 − η1I + η2Cð ÞL5
K1

≥ 1:

8>>>>>>>><
>>>>>>>>:

ð15Þ

z∗ =
β1I + β2C + ϕB/ K + Bð Þð Þ + μhð ÞSL2 − β1I + β2C + ϕB/ K + Bð Þð Þ + μhð ÞSL1 + ε1I + ε2Cð ÞL6

K3
: ð20Þ
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implementation of the scheme was done using MATLAB
package. Plots of the numerical solution are used to investi-
gate the effect of control efforts on the population of interest.

3.1. Iterative Method. For a model without control, i.e., u1
= u2 = u3 = 0, and thus, the adjoint system does not exist,
we applied a forward-in-time iterative method over the state
system (1) under initial conditions Sð0Þ = S0, Eð0Þ = E0, Ið0Þ
= I0, Cð0Þ = C0, Rð0Þ = R0, Bð0Þ = B0. However, for a model
with control whose optimality conditions include a set of dif-
ferential equations with initial conditions and another set
with terminal conditions, we implemented the forward-
backward sweep method based on the fourth-order Runge-
Kutta algorithm as in [17]

(a) Set an initial guess for the control variables u0i ði = 1
, 2, 3Þ

(b) Solve forward-in-time the initial value problem of the
state system (3)

(c) Solve backwards-in-time the terminal value problem
of the adjoint system (10)

(d) Calculate the new controls (2.13, 2.15, 2.18) with
the new values of the state and adjoint solutions
and then update the controls. The update of the
controls can be the average between old and new
controls

(e) Iterate the process until the solutions converge with a
sufficiently small level of tolerance

3.2. Control Scenarios. In order to assess the impact of each
control on eradication of shigellosis, the following seven con-
trol strategies were examined:

Strategy A: control with treatment only
(u1 ≠ 0, u2 = 0, u3 = 0)

Strategy B: control with sanitation only
(u1 = 0, u2 ≠ 0, u3 = 0)

Strategy C: control with education only
(u1 = 0, u2 = 0, u3 ≠ 0)

Strategy D: control with treatment and sanitation
(u1 ≠ 0, u2 ≠ 0, u3 = 0)

Strategy E: control with treatment and education
(u1 ≠ 0, u2 = 0, u3 ≠ 0)
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Figure 1: Impacts of treatment on shigellosis transmission dynamics.
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Strategy F: control with sanitation and education
(u1 = 0, u2 ≠ 0, u3 ≠ 0)

Strategy G: control with all the three controls: treatment,
sanitation, and education (u1 ≠ 0, u2 ≠ 0, u3 ≠ 0)

The parameters used for simulation are as seen in
Table 8. In addition, the following initial values which were
used for simulation of the optimal control are Sð0Þ = 20,
Eð0Þ = 40, Ið0Þ = 30, Cð0Þ = 50, Rð0Þ = 70, and Bð0Þ = 90.
Furthermore, the coefficients of the state and controls
that were used are A1 = 0:4, A2 = 0:8, A3 = 0:3, K1 = 0:1, K2
= 0:7, and K3 = 0:5. It should be born in mind that the
values of the weights used in the simulations are purely
theoretical as they were arbitrarily chosen only to
illustrate the control strategies proposed in this paper.
Likewise, other values used for simulation are u1 = u2 =
u3 = 1 and T = 60 days.

3.2.1. Strategy A: Control with Treatment Only. We simu-
lated the optimality system using treatment as a solely
available intervention. Following the application of this
strategy, it can be seen from Figure 1(a) that there is a sig-
nificant decrease in the number of infectious population at
a given time. A similar decline can be visualized in

Figures 1(b) and 1(c) for carrier and bacterial populations,
respectively. It can be noted that treatment plays a pivotal
role in reducing the number of shigellosis infections. How-
ever, the results show that treatment alone is not sufficient
to bring this disease to an end, thus calling for other
means to work in conjuncture with treatment to contain
this disease.

3.2.2. Strategy B: Control with Sanitation Only. From
Figures 2(a) and 2(b), it can be noted that there is no decrease
in the number of infectious and carrier population, respec-
tively, as a result of the application of sanitation. This sug-
gests that efforts such as water chlorination and treating
sewage disposal are not aimed at killing bacteria within
infected individuals (I and C). However, it can be observed
from Figure 2(c) that sanitation reduces the concentration
of Shigella bacteria in the environment. This reduction might
have been accelerated by sanitation activities such as water
chlorination, proper sewage disposal, and high personal
hygiene; all these efforts tend to limit the transmission of
the epidemic shigellosis. Similarly, the results show that
this strategy alone is not sufficient to eliminate the disease,
especially in endemic places, thus calling for other means
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Figure 2: Impacts of sanitation on shigellosis transmission dynamics.
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to work in conjuncture with sanitation to bring this dis-
ease to an end.

3.2.3. Strategy C: Control with Education Only. Figures 3(a)–
3(c) show that the application of this strategy yields a prom-
ising result to contain shigellosis. For example, from
Figures 3(a) and 3(b) one can observe that a strict application
of this strategy for a period between 10 and 20 days is enough
to dwindle the number of shigellosis cases resulting from
infectious as well as carrier population to zero. On the other
hand, one can note in Figure 3(c) that immediate application
of the same strategy from the very beginning of the control
will clear the bacterial population. The finding suggests that
public health education is essential to clear away the
epidemic.

3.2.4. Strategy D: Control with Treatment and Sanitation
Only. Figure 4(a) shows that with the application of strat-
egy D, there is a considerable decrease in the number of
infectious individuals. Likewise, Figure 4(b) shows that
the carrier population decreases significantly with the
application of the same strategy. Note from Figure 4(c)
that the bacterial population is also affected by the imple-

mentation of this strategy. This is because, with the use of
this strategy, the number of bacterial concentration tends
to reduce. Even though this strategy minimizes the num-
ber of infectious, carrier, and bacterial populations, how-
ever, it seems that it is not feasible enough to eradicate
shigellosis in the long run. As such, there is a need for
additional control effort to curb the disease.

3.2.5. Strategy E: Control with Treatment and Education
Only. Figures 5(a) and 5(b) show a sharp decrease in the
number of infectious and carrier population at a given
time. The disease-free state is attained earlier than 10 days
of implementing this strategy. Application of the strategy
is also seen as more useful to control the bacterial popula-
tion from the environment(see Figure 5(c)). It can be
noted that a combination of treatment and education cam-
paign plays an important role in minimizing shigellosis
infections.

3.2.6. Strategy F: Control with Sanitation and Education Only.
It can be seen from Figures 6(a) and 6(b) that with applica-
tion of strategy F, there is a dramatic decrease in the number
of infectious and carrier population at a given time. Total
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Figure 3: Impacts of education on shigellosis transmission dynamics.
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clearing of Shigella bacteria is witnessed in Figure 6(c). This
implies that sanitation and education can be better used as
control means of shigellosis infections.

3.2.7. Strategy G: Control with Treatment, Sanitation, and
Education. It can be seen from Figures 7(a) and 7(b) that
with the application of strategy G, there is a significant
decrease in the number of infectious and carrier popula-
tion at a given time. In the same vein, it can be observed
from Figure 7(c) that the application of this strategy suits
best to eradicate shigellosis. This result is a bit more
promising than when the same controls were regarded sin-
gly or a combination of two strategies except possibly for a
combination of treatment and education efforts which
yield almost the same results. This result affirms the signif-
icance of applying multiple controls to contain shigellosis
infections.

3.2.8. Control Trajectories. It can be seen from Figure 8 that
the time-dependent controls (u1, u2, u3) have also been
simulated. Initially, all the time-dependent controls u1, u2
, u3 are at the upper bounds, that is, u1 = u2 = u3 = 1. Each
control remains constant for some time and starts to
decrease gradually before it reaches the final time of appli-

cation. The control u1 remains constant for about 12:66
days and becomes zero at 31:98 days, while the control
u2 remains constant for about 4:38 days and becomes zero
at 18:9 days, whereas the control u3 remains constant for
about 30:3 days and becomes zero at 60 days. These
results suggest that to prevent an outbreak, individuals in
the community should continually employ treatment, san-
itation effort, or education campaign at the beginning of
the season. Still, as time goes on, medical doses should
be minimized to reduce costs as well as its associated side
effects. Sanitation of the environment should gradually
decrease as well due to cost implication. However, the
education campaign should be maintained at a relatively
high level for the entire time of its implementation com-
pared to other controls because its effect is evidenced for
a considerable length of time.

4. Cost-Effectiveness Analysis

To analyze the cost-effectiveness of the strategies, we
employ a more classical approach, the incremental cost-
effectiveness ratio (ICER) in [22]. The ICER is applied to
achieve the goal of comparing the costs and the health
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Figure 4: Impacts of treatment and sanitation controls on shigellosis transmission dynamics.
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outcomes of two alternative intervention strategies that
compete for the same resources. In ICER, when comparing
two competing intervention strategies incrementally, one
intervention should be compared with the next less effec-
tive alternative. It is termed as the additional cost per
additional health outcome. In other words, ICER may be
stated as the ratio of the difference of costs between two
strategies to the difference between the total numbers of
their infections averted. That is,

ICER Xð Þ = Cost of interventionX − cost of interventionY
Effect of interventionX − effect of interventionY

=
ΔCT
ΔE

,

ð22Þ

where X and Y are the two intervention strategies being
compared. ΔCT is the incremental cost and ΔE is the
incremental effect. Moreover, CT represents the total costs
incurred by implementing a particular strategy. E denotes
the effectiveness of a specific strategy. The total number
of infections averted (E) is estimated for each strategy by
subtracting total infections with control from without
control.

From this study, the total cases averted (A) by the inter-
vention during the time period tf are given by

A = tf I 0ð Þ + C 0ð Þ + B 0ð Þð Þ −
ðtf
0
I∗ tð Þ + C∗ tð Þ + B∗ tð Þð Þdt,

ð23Þ

where each I∗ðtÞ, C∗ðtÞ, B∗ðtÞ is the optimal solution associ-
ated with the optimal controls ðu∗1 , u∗2 , u∗3 Þ and Ið0Þ, Cð0Þ, B
ð0Þ is the corresponding initial condition. The initial condi-
tion is obtained as the equilibrium of system (3) with no post-
exposure intervention (u1 = u2 = u3 = 0), which does not
depend on time, so

tf I 0ð Þ + C 0ð Þ + B 0ð Þð Þ =
ðtf
0
I 0ð Þ + C 0ð Þ + B 0ð Þð Þdt ð24Þ

represents the total infectious cases over a period of tf years.
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Figure 5: Impacts of treatment and education controls on shigellosis transmission dynamics.
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The total cost associated with a strategy is given by

CT =
ðtf
0
C1u1 tð Þ I tð Þ + C tð Þð Þ + C2u2 tð ÞB tð Þð

+ C3u3 tð Þ S tð Þ + E tð Þ + I tð Þ + C tð Þð ÞÞdt,
ð25Þ

where C1 correspond to the per person unit cost following
treatment intervention, C2 correspond to the per pathogen
unit cost following sanitation intervention, and C3 corre-
spond to the per person unit cost following education inter-
vention. To proceed with ICER calculations, the alternatives
that are more expensive and less ineffective are then
excluded. This is done after simulating the optimal control
model and then ranking strategies in order of increasing
effectiveness measured as the total infections averted.

We calculate the ICER based on the strategies: A, B, C, D,
E, F, and G (see details in Section 3.2). Parameter values from
Table 8 are used to estimate the total cost and total infections
averted that are presented in Table 1. We present some
details on how to get results for Table 1. Consider strategy
A, where the estimated total number of infections is
8,071,400. On the other hand, the total number of
infections when there is no control strategy (status quo)

was estimated to be 12,336,000. Therefore, to get the total
number of averted infections for strategy A, subtract the
total number of infections when there was no control
strategy (status quo) to the total number of infections when
strategy A was considered, i.e., 12,336,000 − 8,071,400 =
4,264,600. Thus, for strategy A, the number of averted
infections E = 4,264,600. Moreover, the cost for a status quo
strategy is $0. While, the total costs for strategy A are $50,
both of them were estimated by formula (25), where C1 =
0:4, C2 = 0:8, and C3 = 0:3; in the same fashion, one can
complete filling Table 1.

Table 2 incorporates ICER; it is prepared as follows: first,
we rearrange control strategies from Table 1 in increasing
order of effectiveness (E). Next, we compute incremental
effectiveness ΔE as well as incremental costs ΔCT. The ICER
is calculated by dividing incremental costs ΔCT to incremen-
tal effectiveness ΔE. We calculate ICER for strategies A and B
as follows:

ICER Bð Þ = 400880
3909600

= 0:1025,

ICER Að Þ = 1064:4 − 400880ð Þ
4264600 − 3909600ð Þ = −1:1262:

ð26Þ
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Figure 6: Impacts of sanitation and education controls on shigellosis transmission dynamics.
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Comparing strategy B and strategy A, the ICER of strat-
egy A is less than ICER of strategy B. Hence, strategy B is
more costly and less effective than strategy A. Therefore, we
exclude strategy B from the set of alternatives and recalculate
ICER again for the remaining strategies.

Having dropped strategy B, we deduce Table 3, whose
ICER are calculated as

ICER Að Þ = 1064:40
4264600

= 2:4959 × 10−4,

ICER Dð Þ = 262750:00 − 1064:40ð Þ
6834600 − 4264600ð Þ = 0:1018:

ð27Þ

Similarly, it is noted that the ICER of strategy A is less
than ICER of strategy D. Hence, strategy D is more costly
and less effective than strategy A. Therefore, we exclude strat-
egy D from the set of alternatives and continue to compare
strategies A and C.

From Table 4, we have

ICER Að Þ = 1064:40
4264600

= 2:4959 × 10−4,

ICER Cð Þ = 3279:3 − 1064:4ð Þ
12327018:6 − 4264600ð Þ = 2:7472 × 10−4:

ð28Þ

Similarly, this comparison indicates that strategy A is
cheaper than strategy C. Therefore, strategy C is rejected
and continues to compare strategy A with strategy F.

From Table 5, we have

ICER Að Þ = 1064:40
4264600

= 2:4959 × 10−4,

ICER Fð Þ = 3212:2 − 1064:4ð Þ
12328226 − 4264600ð Þ = 2:6636 × 10−4:

ð29Þ
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Similarly, this comparison indicates that strategy A is
cheaper than strategy F. Therefore, strategy F is rejected
and continues to compare strategy A with strategy E.

From Table 6, we have

ICER Að Þ = 1064:40
4264600

= 2:4959 × 10−4,

ICER Eð Þ = 3852:6 − 1064:4ð Þ
12329683:5 − 4264600ð Þ = 3:4572 × 10−4:

ð30Þ

Again, the comparison indicates that strategy A is
cheaper than strategy E. Therefore, strategy E is ignored

and continues to compare strategy A with the last strategy,
which is G. From Table 7, we have

ICER Að Þ = 1064:40
4264600

= 2:4959 × 10−4,

ICER Gð Þ = 2914:6 − 1064:4ð Þ
12330926 − 4264600ð Þ = 2:2937 × 10−4:

ð31Þ

Finally, the comparison result reveals that strategy G is
cheaper than strategy A. Therefore, strategy G (treatment,
education, and sanitation) is the best of all possible strategies
due to its cost-effectiveness and healthy benefits.

5. Conclusion

In this study, a basic model that traces the evolution of shig-
ellosis is developed and presented; an optimal control prob-
lem has been obtained by modifying the basic model. We
have established the existence of an optimal control problem
and later analyzed the full optimal control system. We have
solved the optimality system numerically and established its
findings. The findings from optimal control show that the
strategy that includes all three controls (treatment, sanita-
tion, and education) plays a crucial role in diminishing the
outbreak. Similarly, it was observed that any strategy under
consideration that incorporated public health education
seemed more beneficial than the one that ignored it. More-
over, we have assessed the cost-effectiveness of the control

Table 1: Number of infections averted and total cost of each
strategy.

Strategies Infections Infection averted (E) Costs ($) (CT)

Status quo 12,336,000 — 0

A 8,071,400 4,264,600 1064.4

B 8,426,400 3,909,600 400,880

C 8981.4 12,327,018.6 3279.3

D 5,501,400 6,834,600 262,750

E 6316.5 12,329,683.5 3852.6

F 7774 12,328,226 3212.2

G 5074 12,330,926 2914.6
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Table 2: Incremental cost-effectiveness ratios of different optimal control strategies.

Strategies E ΔE CT ΔCT ICER (ΔCT/ΔE)
B 3,909,600 3,909,600 400,880 400,880 0.1025

A 4,264,600 355,000 1064.4 -399,815.6 -1.1262

D 6,834,600 2,570,000 262,750 261,685.6 0.1018

C 12,327,018.6 5,492,418.6 3279.3 -259,470.7 −4:7242 × 10−2

F 12,328,226 1207.4 3212.2 -67.1 −5:5574 × 10−2

E 12,329,683.5 1457.5 3852.6 640.4 0.4394

G 12,330,926 1242.5 2914.6 -938 -0.7549

Table 3: Incremental cost-effectiveness ratios of different optimal control strategies excluding strategy B.

Strategies E ΔE CT ΔCT ICER (ΔCT/ΔE)

A 4,264,600 4,264,600 1064.4 1064.4 2:4959 × 10−4

D 6,834,600 2,570,000 262,750 261,685.6 0.1018

C 12,327,018.6 5,492,418.6 3279.3 -259,470.7 −4:7242 × 10−2

F 12,328,226 1207.4 3212.2 -67.1 −5:5574 × 10−2

E 12,329,683.5 1457.5 3852.6 640.4 0.4394

G 12,330,926 1242.5 2914.6 -938 -0.7549

Table 4: Incremental cost-effectiveness ratios of different optimal control strategies excluding strategies B and D.

Strategies E ΔE CT ΔCT ICER (ΔCT/ΔE)

A 4,264,600 4,264,600 1064.4 1064.4 2:4959 × 10−4

C 12,327,018.6 8,062,418.6 3279.3 2214.9 2:7472 × 10−4

F 12,328,226 1207.4 3212.2 -67.1 −5:5574 × 10−2

E 12,329,683.5 1457.5 3852.6 640.4 0.4394

G 12,330,926 1242.5 2914.6 -938 -0.7549

Table 5: Incremental cost-effectiveness ratios for optimal control strategies A, E, F, and G.

Strategies E ΔE CT ΔCT ICER (ΔCT/ΔE)

A 4,264,600 4,264,600 1064.4 1064.4 2:4959 × 10−4

F 12,328,226 8,063,626 3212.2 2147.8 2:6636 × 10−4

E 12,329,683.5 1457.5 3852.6 640.4 0.4394

G 12,330,926 1242.5 2914.6 -938 -0.7549

Table 6: Incremental cost-effectiveness ratios for optimal control strategies A, E, and G.

Strategies E ΔE CT ΔCT ICER (ΔCT/ΔE)

A 4,264,600 4,264,600 1064.4 1064.4 2:4959 × 10−4

E 12,329,683.5 8,065,083.5 3852.6 2788.2 3:4572 × 10−4

G 12,330,926 1242.5 2914.6 -938 -0.7549

Table 7: Incremental cost-effectiveness ratios for optimal control strategies A and G.

Strategies E ΔE CT ΔCT ICER (ΔCT/ΔE)

A 4,264,600 4,264,600 1064.4 1064.4 2:4959 × 10−4

G 12,330,926 8,066,326 2914.6 1850.2 2:2937 × 10−4
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strategies established using the ICER method and noted that
the most cost-effective strategy was the one that incorporates
all three control efforts (treatment, sanitation, and
education).
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