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Abstract: The availability of critical information about training and competition is fundamental
on performance. Principal components analysis (PCA) is widely used in sports as a multivariate
technique to manage big data from different technological assessments. This systematic review
aimed to explore the methods reported and statistical criteria used in team’s sports science and to
propose a criteria standard to report PCA in further applications. A systematic electronic search was
developed through four electronic databases and a total of 45 studies were included in the review
for final analysis. Inclusion criteria: (i) of the studies we looked at, 22.22% performed factorability
processes with different retention criteria (r > 0.4–0.7); (ii) 21 studies confirmed sample adequacy
using Kaiser-Meyer-Olkim (KMO > 5–8) and 22 reported Bartlett’s sphericity; (iii) factor retention was
considered if eigenvalues >1–1.5 (n = 29); (iv) 23 studies reported loading retention (>0.4–0.7); and (v)
used VariMax as the rotation method (48.9%). A lack of consistency and serious voids in reporting
of essential methodological information was found. Twenty-one items were selected to provide a
standard quality criterion to report methods sections when using PCA. These evidence-based criteria
will lead to a better understanding and applicability of the results and future study replications.

Keywords: PCA; factor analysis; statistic; big data

1. Introduction

The ability to assess performance is one of the primary roles of sports scientists and analysts [1].
Consequently, the use of notational analysis in sport has become an essential tool to identify critical
patterns and events that could lead to a successful outcome. That is why the sports scientist and
performance analyst figure has recovered particular relevance [2–4], providing information that
could enhance the observation, recall, analysis, and feedback quality of athletes, trainers and coaches.
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In this sense, some statistical techniques allow the information collected in areas of competence—suchas
tactical and technical behavior, adaptations, and acute and chronic responses at a physical and
physiological level—to be analyzed simply and reported to head coaches in an effective, efficient and
objective way. This in turn allows for quick decision making which is crucial for the maintenance and
improvement of sports performance [4]. The information resulting from these kinds of analyses could
lead to new training techniques, match strategies, recovery protocols, injury prevention programs,
and other decisions based on daily monitored data.

The development of new technology has led to the availability of a high amount of data obtained
during training and competition. Some devices such as electronic performance, tracking systems,
and microelectromechanical systems have allowed up to a thousand data per second in an amount of
up to 400 variables depending on the technology used [5]. These data sets or combinations of data
sets whose volume, complexity, variability, and speed of growth hinder their capture, management,
processing, or analysis using conventional technologies and tools is called big data [6]. In the practical
setting, where the fast evaluation of training/competition loads is necessary to assess performance
and inform exercise prescription, big data should be reduced. In sport, this data management has
been done through multivariate data analysis techniques such as exploratory factor analysis (EFA) to
explain many measured variables using a smaller number of extracted factors [7–9]. These variables can
then be used in the following analysis, such as cluster or regression analysis, to gain a better explanation
of some sport behaviors and adaptations [10,11]. Despite the several factor extraction methods
(e.g., maximum likelihood, alpha factoring, generalized least-products, unweighted least-squares,
or principal axis factoring), principal component analysis (PCA) is one of the most used statistical
techniques in sport [12].

PCA is defined as a data reduction technique usually used in sports to identify key performance
indicators. Coaches, trainers, and athletes tend to select the variables to monitor performance according
to their professional experience and other athlete’s information (evidence-based or not), but with the
potential of excluding essential variables [13]. This justifies the need for the use of objective methods of
selecting these critical variables. In this case, the PCA technique allows sports scientists and researchers
to select and extract the variables that explain a high percentage (>70%) of the total variance of a
certain amount of data during a specific time window (e.g., session, micro cycle, season). The potential
of reducing a big group of correlated variables in a series of uncorrelated ones allows for simplifying
of athletes and team behavior [4]. PCA has been used in different sports to extract the most relevant
physical, physiological, technical, or tactical variables that explain performance. Researchers have
explored the use of this statistical model to understand the behavior of sports such as rugby [9,14],
soccer [15], and basketball [16]. However, the studies using PCA usually do not provide sufficient data
to allow researchers and stakeholders to make interpretations or understand how and why the final
results were obtained.

Considering the inherent subjectivity of this factor analysis process, there may be some
methodological issues when the data is analyzed and interpreted [17]. Some of these methodological
decisions may result in different outcomes [18], leading to possible erroneous interpretations of the
analysis and potentially wrong conclusions [19]. In a sport setting, these mistakes can provoke some
faulty programming and load prescription and in-field decisions that could impact global performance.
Therefore, it is crucial to explore and systematize the methodological choices and criteria for data
mining selection, the suitability of the data set, factor extraction, factor retention rules, and factor
rotations. Besides, principal component extraction criteria and final interpretation and labeling of the
analysis outcomes should be reported [12]. Thus, this systematic review aimed explore the methods
reported and statistical criteria used in team sports science and b) to propose a criteria standard to
report PCA in further applications.
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2. Materials and Methods

This systematic review was conducted based on the principles of the Preferred Reporting Items
for Systematic Reviews and Meta-Analyses (PRISMA) guidelines [20]. After compiling the studies,
they were classified by year, identifying those that met the inclusion criteria for final selection and
extraction (see Figure 1). Two authors independently reviewed studies for their eligibility. Discrepancies
between authors were resolved using consensus. Given the study type (i.e., systematic review article),
ethical approval was not necessary.

2.1. Information Sources and Search Strategy

An electronic systematic review of literature search was computed through four different databases:
PubMed (n = 67), Web of Science (n = 154), SPORTDiscus (n = 68) and Scopus (n = 179). This search
was performed on November 1st, 2019, before 9:00 a.m., to identify studies investigating PCA use in a
team sport. The authors did not discriminate by journal names or manuscript authors. The search
strategy used the combination of terms related to population (team sport, soccer, football, basketball,
rugby, hockey, futsal, handball) and intervention (principal component analysis and exploratory factor
analysis). The search was made using combinations of the keywords using the Boolean operators
“and” (inter-group Boolean operator) and “or” (intra-group Boolean operator, only for the second).
All references were extracted and imported into an open-source research tool (5.0.64, Zotero, Fairfax,
VA, USA) to systematize studies.

2.2. Studies Selection

The following inclusion criteria were considered. Studies containing keywords in the title or
abstract, and studies published from 2000 to 2020. A single author accessed the original primary data
from the studies (title, authors, date, and database) to an Excel spreadsheet (Microsoft Excel, Microsoft,
Redmond, DC, USA) and removed the duplicate records. After duplicate removal, two authors
contrasted results independently considering inclusion and exclusion criteria. The authors were
not blinded to the title or authors of the publications. Any disagreements on the final inclusion
or exclusion decisions were solved through consensus when screening and excluding studies.
Abstracts, conference papers, and other reports were not included. Documents published in the English
language were included, and other languages (e.g., Spanish, German, and Italian) were included if a
translation could be performed.

2.3. Data Collecting

Two different authors performed the studies’ selection and extraction following the PRISMA
protocol (see Figure 1). Specific exclusion criteria were used to discard studies. This included low quality,
irrelevance to the primary purpose of this systematic review, language limitations, different evaluation
methods, full text not available, book chapters, abstracts, studies involving factors other than team
sports, no use of technology tools assessment methods, no competitive, elite, or professional players
involved and severe lack of information (e.g., no sports specification, no participant characteristics,
no PCA results or variance were reported). The protocol followed for selecting the studies was as
follows: (i) identification of potential studies; (ii). elimination of duplicates; (iii)title, abstract, and year
analysis; (iv). quality of method and relevance with the review’s objective analyzed; and (v) selected
studies explored in full text. Studies with a lack of information were excluded.

The methodological approach involved analyzing the criteria used to perform exploratory analysis
considering retention loading criteria, data suitability testing, extraction method used, factor and
loading retention criteria selected, and rotation method if performed (see Table 1). The EFA outcomes
were resumed considering number of articles in each sport (discipline), sample size, number of
extracted factors, percentage of variances explained and number of variables extracted (see Figure 2).
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Table 1. Methodological criteria used on exploratory factor analysis in team sports.

Code Reference Sport
Factorability Data Suitability Testing

Extraction
Method

Retention Criteria

Rotation MethodRetention Loading
Criteria

Sample Adequacy
Criteria

Sphericity
Criteria Factor Loading Cross-Loading

1 Sampaio et al. [21] Basketball r > 0.5 KMO = 0.78 NR PCA >1 >0.4 NR NR
2 Andrade et al. [22] Basketball NR NR Bartlett’s PCA >1 NR NR VariMax
3 Gómez et al. [23] Soccer r > 0.5 KMO = 0.65 NR PCA >1.5 >0.6 NR VariMax
4 Ricotti et al. [24] Soccer NR NR NR PCA NR NR NR NR
5 Liu [25] Basketball NR NR NR PCA NR NR NR NR
6 yin [26] Basketball NR KMO = 0.8 Bartlett’s PCA NR NR NR NR
7 yin [27] Basketball NR KMO = 0.8 Bartlett’s PCA NR NR NR NR
8 Parrington et al. [28] Australian Football r > 0.4 KMO > 0.05 Bartlett’s PCA >1 >0.6–0.7 NR NR
9 Laffaye & Tombleson [29] Team sports NR NR NR PCA >1 NR NR VariMax
10 Ra et al. [30] Soccer NR NR NR PCA NR NR NR NR
11 Weaving et al. [14] Rugby NR KMO = 0.5–0.75 Bartlett’s PCA >1 NR NR NR
12 Carpita et al. [31] Soccer NR NR NR PCA NR NR NR NR
13 Arruda et al. [32] Soccer NR NR NR PCA NR NR NR NR
14 Zago et al. [33] Soccer NR NR NR PCA >1 NR NR NR
15 Leiva & Amú-Ruiz [34] Team Sports NR NR NR PCA NR NR NR NR
16 Torrents et al. [35] Soccer NR NR NR PCA >1 NR NR Direct Oblimin
17 Ric et al. [36] Soccer NR NR NR PCA >1 NR NR NR
18 Abdullah et al. [37] Soccer NR KMO = 0.77 Bartlett’s PCA >1 >0.7 NR VariMax

19 Abdullah et al. [38] Soccer
Hockey r > 0.5 KMO = 0.65–0.69 Bartlett’s PCA >1 >0.6 NR VariMax

20 Negra et al. [39] Soccer and Handball NR KMO = NR NR PCA >1 NR NR NR
21 Abdullah et al. [40] Soccer r > 0.5 KMO = 0.7–0.73 Bartlett’s PCA >1 >0.6 NR VariMax
22 Los Arcos et al. [41] Soccer >0.55 NR NR PCA >1 NR NR Nonorthogonal
23 Alias et al. [42] Field hockey NR KMO = 055–0.58 Bartlett’s PCA >1 >0.7 NR VariMax
24 Williams et al. [43] Rugby NR KMO > 0.05 Bartlett’s PCA >1 >0.7 NR VariMax
25 Weaving et al. [44] Rugby NR KMO = 0.59 Bartlett’s PCA >1 >0.7 NR VariMax
26 Maliki et al. [45] Soccer NR KMO = 0.77 Bartlett’s PCA >1 NR NR VariMax
27 Razali et al. [46] Hockey NR KMO = 0.54 Bartlett’s PCA NR >0.7 NR VariMax
28 Parmar et al. [9] Rugby NR NR NR PCA >1 NR NR VariMax
29 Henderson et al. [47] Rugby NR NR NR PCA NR >0.4 NR NR
30 Svilar, Castellano, Jukic, et al. [48] Basketball NR KMO = 0.84–0.85 Bartlett’s PCA >1 >0.7 NR VariMax
31 Teramoto et al. [49] Basketball NR KMO = 0.78 Bartlett’s PCA >1 >0.6 NR Direct Oblimin
32 Robbins et al. [50] Ice hockey NR NR NR PCA NR NR NR NR
33 Floría et al. [51] Basketball NR NR NR PCA NR NR NR NR
34 Maliki et al. [52] Soccer NR KMO = NR Bartlett’s PCA >1 >0.65 NR VariMax
35 Weaving et al. [53] Rugby NR NR NR PCA >1 >0.7 NR VariMax

36 Hilgemberg et al. [54] Futsal, Handball,
Basketball and Volleyball NR KMO = NR Bartlett´s PCA NR NR NR VariMax

37 Welch et al. [55] Gaelic football >0.4 NR NR PCA NR NR NR NR
38 Welch et al. [56] Gaelic football NR NR NR PCA NR NR NR NR
39 Verheul et al. [57] Team Sports NR NR NR PCA NR NR NR NR
40 Goncalves et al. [58] Soccer NR KMO > 0.5 Bartlett’s PCA >1 >0.6 NR VariMax
41 Casamichana et al. [15] Soccer NR KMO = NR Bartlett’s PCA >1 >0.7 NR VariMax
42 Gamble et al. [59] Gaelic football NR KMO = 0.73 NR PCA >1 NR NR VariMax
43 Pino-Ortega et al. [60] Basketball r > 0.7 KMO = 0.77 Bartlett’s PCA >1 >0.6 Highest Loading VariMax
44 Oliva-Lozano et al. [10] Soccer r > 0.7 KMO = 0.78 Bartlett’s PCA >1 >0.6 Highest Loading VariMax
45 Rojas-Valverde et al. [61] Basketball r > 0.7 KMO > 0.5 Bartlett’s PCA >1 >0.6 Highest Loading VariMax

KMO = Kaiser-Meyer-Olkin, PCA = principal components analysis, NR = not reported.
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3. Results

Of the 468 papers initially identified from the databases, 116 were excluded after considering the
title, abstract, and year of publication. Once the duplicates were removed, a total of 188 articles were
analyzed, considering exclusion and inclusion criteria. From those remaining studies, only 53 studies
were read in full text, and due to lack of vital information, eight studies were excluded. Table 1 shows
the compilation of analysis for 45 selected studies included in this systematic review and describes the
main methodological aspects used in each protocol.

3.1. Sample Characteristics

The studies selected performed PCA in sports like soccer, basketball, rugby, hockey, Gaelic football,
Australian football, and other combined sports (see Figure 2). The PCA was selected to explore
physical performance variables, technical and tactical variables, locomotion and physical load variables,
and biomechanical and biochemical results. Explaining 80 ± 0.14% of the total variance of data sets,
from 36.59 ± 80.79 variables analyzed by PCA were selected 9.12 ± 5.73 variables, that are distributed
in 3.9 ± 2.53 factors.

3.2. Methodological Criteria Used

The following section discusses the information provided and the information missing in PCA
reporting of the articles published in sports. All of the studies (100%, n = 45) selected PCA as the
exploratory factor analysis (EFA). From those articles included in this systematic review only 22.22%
(n = 10) reported to perform an exploration of correlation matrix of variables prior running PCA
analysis. The retention criteria used for variable selection in this previous step were r > 0.4 = 4.44%
(n = 2), r > 5 = 8.9% (n = 4), r > 5.5 = 2.22% (n = 1) and r > 0.7 = 6.7% (n = 3) (Table 1).

Sample adequacy criteria was confirmed using Kaiser-Meyer-Olkim (KMO) suitability test and
sphericity was explored using Bartlett’s test. KMO reported values were >5 = 17.8% (n = 8), >6 =

4.44% (n = 2), >7 = 17.8% (n = 8) and >8 = 6.7% (n = 3). A total of 48.9% (n = 22) of the studies reported
Bartlett´s Sphericity test suitability confirmation (Table 1).

Factor retention was considered if eigenvalues were >1 in 62.22% (n = 28) of studies and >1.5
in 2.22% studies (n = 1). The following loading retention criteria were used: >0.4 = 4.44% (n = 2),
>0.6 = 20% (n = 9), >0.65 = 2.22% (n = 1) and >0.7 = 17.8% (n = 8). Only 6.7% (n = 3) of articles reported
a criterion when cross-loading was found, and the highest loading was selected. The preferred rotation
method was orthogonal VariMax rotation in 48.9% of cases (n = 22), followed by Direct oblimin used by
4.44% of studies (n = 2) and a nonorthogonal rotation method used by 2.22% of articles (n = 1) (Table 1).

4. Discussion

The main finding was a lack of consistency between articles and serious voids in the methodology
sections’ information. A total of 21 methodological requirements were identified as crucial quality
criteria to report both methods and results when using PCA as a data reduction technique.

Commonly, PCA can result in several number solutions and outcomes based on the researchers’
subjective decisions. When conducting PCA, these methodological decisions could result in different
outcomes depending on the aims of the research, even though these decisions may be critical for the
practical applications of the results obtained. Commonly, the majority of studies did not provide
enough information to allow medical staff, coaches, athletes, and sports scientists to make independent
interpretations or at least understand how the final results were obtained.

To perform EFA properly, it is necessary to follow specific guidelines that will entail high-quality
results [10,12]. The first step is to examine the correlation between variables to extract uncorrelated variables
considered in the EFA. This initial process is known as the factorability of r [17]. Some correlation
coefficients have been proposed as a threshold to select variables. This systematic review found that
only 22.2% of total studies reported correlation matrix inspection with a threshold of r > 5 = 8.9% and
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r > 0.7 = 6.7% as the preferred ones. In this regard, some authors have suggested that r > 5 is practically
significant [62]. If factorability resulted in less than 0.3, this could be a clue that EFA might not be the
appropriate statistical method [17,62].

Before the proper extraction of factors, some tests should be performed to assess the data’s
suitability for factor analysis. The most common ones include KMO for sample adequacy and Bartlett’s
test of sphericity. In this systematic review, KMO values were reported by 46.7% of the studies, and the
most stated values were >5 and >7 in 17.8% of the cases each. When KMO > 5, the data set is considered
suitable for EFA [62,63]. The Bartlett’s Test should be significant to be suitable [62,64]. In this study,
only 48.9% of the articles reported this information.

After this suitability confirmation, the authors may report how the factors will be extracted. It was
found that all scientists selected PCA as the preferred EFA in team sports analysis. This technique
is considered one of the most useful and advantageous statistical methods for extracting the most
representative variables of a data set [18] with a minimal loss of original data [65]. Considering that
existing technology can give a large amount of data per second, this technique is fundamental to
selecting those variables that could better explain team physical, technical, tactical, biomechanical,
and workload-related variables as relevant information in decision making. This is fundamental
because actual sports are required to collect, analyze, and present data as quick and straightforward as
possible to the technical staff to achieve optimal performance [4].

Another consideration is the rotational method selected. Rotation maximizes high item loading
and minimizes low item loadings, increasing simplicity, and interpretability [12]. VariMax orthogonal
rotation is the most common technique used in EFA [66], and this is confirmed in 48.9% of the studies
included in this systematic review.

Despite various rotation methods such as EquiMax, VariMax, QuartiMax, ProMax, and Direct
Oblimin, they are equally useful to recover the underlying factor structure [67] but with particular
differences. Orthogonal rotation methods (VariMax, QuartiMax, EquiMax) assume that the factors are
uncorrelated, and in contrast, oblique rotation methods (e.g., Direct Oblimin, ProMax) assume the
factors are correlated [68].

In sport science where the purpose is to reduce the number of variables that could explain the
physiological, technical, tactical, and physical behavior of team sports players, the VariMax method
could be the preferred technique due to some particularities. The VariMax method uses mathematical
algorithms that maximize the high and low factor loadings while minimizing the mid-value factor
loadings. It has been highlighted as the most widely used orthogonal rotation, considering that
researchers can choose to represent factors as uncorrelated to meet some assumptions of a specific
research purpose (e.g., multiple regression analysis that requires multicollinearity), although, in real
settings, factors are usually correlated. Sports scientists usually perform a subsequent inferential
analysis after performing PCA [16,48,50,60,61] which could be a reason to select VariMax over
other methods.

The authors may also report what criteria will assist in determining how factors will be extracted
after PCA. In this regard, for factor retention, the most used criterion is the Kaiser’s criteria, considering
an eigenvalue >1 as a rule, this is deemed to be significant and constructs variables known as varifactors
or loadings [69]. This criterion defined the number of components to be retained [63]. This is in line
with the present study results in which Kaiser’s criterion was used in 62.2% of the cases. Some authors
suggest a visual analysis of eigenvalues’ screen plot which is based on researcher judgment [17].

Additionally, loading retention criteria is needed to be informed. In this review, the most selected
criteria were >0.6 and >0.7 in 20% and 17.8% of the studies, respectively. Values greater than 0.75 are
usually considered strong; values from 0.5 to 0.75 moderate; and 0.3 to 0.49 are considered weak factor
loadings [70]. It is assumed that loadings >0.7 could be used as selection criteria [62].

As evidenced, for serious quality management when using PCA, some specific methodological
considerations should be considered. Studies may provide sufficient data to allow researchers and
stakeholders to make interpretations and understand how and why the final results were obtained.
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This is why the authors propose a standard quality assessment criterion for evaluating and reporting
PCA in team sport research (see Table 2). The authors have contrasted the actual evidence and
the methodological and statistical standards and propose a 21 items survey that may guide future
researchers to perform and report both methodological proceedings and the study´s outcomes.
This survey must be completed, and the total score must be reported out of 21 items.

Table 2. Standard quality criteria survey for studies reporting principal component analysis in sports.

Item Reported Non-Reported Recommended Criteria

Statistical Analysis Section

Was the initial number of variables reported? Yes = 1 No = 0 -

Was the variable selection criterion reported
based on sports characteristics? Yes = 1 No = 0 -

Was a correlation matrix exploration
(factorability) between variables performed? Yes = 1 No = 0 -

Was a correlation retention loading criterion
(factorability) reported? Yes = 1 No = 0 Factorability > 5

Was the number of variables reported after
correlation matrix exploration (factorability)? Yes = 1 No = 0 -

Were the variables scaled and centered (if
necessary)? Yes = 1 No = 0 -

Was the data suitability (sample adequacy
criteria) test performed? Yes = 1 No = 0 KMO test

Was the data suitability (sample adequacy
criteria) testing result reported? Yes = 1 No = 0 KMO > 5

Was the data suitability (sphericity criteria) test
performed? Yes = 1 No = 0 Bartlett´s Test

Was the data suitability (sphericity criteria)
testing result reported? Yes = 1 No = 0 p < 0.05

Was the extraction method reported? Yes = 1 No = 0 PCA

Were the retention criteria (factors) reported? Yes = 1 No = 0 Eigenvalues > 1

Were the retention criteria (loadings) reported? Yes = 1 No = 0 Loadings > 0.6—0.7

Was the cross-loading retention criterion
reported? Yes = 1 No = 0 Highest loading

Was the rotation method reported? Yes = 1 No = 0 VariMax (may vary)

Was the post PCA following analysis reported? Yes = 1 No = 0 -

Results section

Was the number of factors extracted reported? Yes = 1 No = 0 -

Was the final number of variables reported? Yes = 1 No = 0 -

Were partial and total variance reported? Yes = 1 No = 0 -

Was the percentage of total variance reported? Yes = 1 No = 0 -

Were the eigenvalues reported? Yes = 1 No = 0 -

Were the final variables selection reported? Yes = 1 No = 0 -

Total punctuation 21 0

5. Conclusions

This systematic review found that sports science studies related to team sports usually lack
methodological rigor when reporting principal component analysis. Less than 50% of articles did not
state essential criteria for factorability or data suitability testing retention criteria of factors, loadings,
and procedures when cross-loadings are found. Consequently, a 21 checklist was developed related to
the methodological and results sections as a standard quality criteria recommendation when reporting
PCA in team sports.
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The information resumed in this systematic review allows recommending standard quality criteria
for future studies based on reported methods and literature recommendations. This survey (see Table 2)
will enable sport scientists and medical researchers to screen their methods and results sections to
better report their selected criteria. This will lead to a better understanding and applicability of the
results as well as future study replications.
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