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Drug repositioning is a popular approach in the pharmaceutical industry for identifying potential new uses for existing drugs
and accelerating the development time. Non-small-cell lung cancer (NSCLC) is one of the leading causes of death worldwide.
To reduce the biological heterogeneity effects among different individuals, both normal and cancer tissues were taken from the
same patient, hence allowing pairwise testing. By comparing early- and late-stage cancer patients, we can identify stage-specific
NSCLC genes. Differentially expressed genes are clustered separately to form up- and downregulated communities that are used as
queries to perform enrichment analysis. The results suggest that pathways for early- and late-stage cancers are different. Sets of up-
and downregulated genes were submitted to the cMap web resource to identify potential drugs. To achieve high confidence drug
prediction, multiple microarray experimental results were merged by performing meta-analysis. The results of a few drug findings
are supported by MTT assay or clonogenic assay data. In conclusion, we have been able to assess the potential existing drugs to
identify novel anticancer drugs, which may be helpful in drug repositioning discovery for NSCLC.

1. Introduction

Lung cancer is the leading cause of death worldwide [1,
2]. According to medical classification, lung cancer can
be divided into two major classes: small cell lung cancer
(SCLC) and non-small-cell lung cancer (NSCLC). NSCLC
accounts for more than 85% of all lung cancer cases, and
adenocarcinoma is the most common subtype. The question
of how to search for suitable potential drugs for NSCLC
is an important issue in biomedical research. However, the
process of new drug development is cost-intensive and time-
consuming.

A previous study [3] established a systematic strategy to
identify potential drugs and target genes for lung cancer.
The findings from this study suggested that eight drugs from
DrugBank and three drugs from NCBI could potentially
reverse the expression of certain up- and downregulated
genes. These results are supported by IC50 experimental
data. However, the previous study can be extended in several
aspects that were addressed in the present study.

Cancer is a multistage progression process that results
from genetic sequences mutations, where early- and late-
stage cancer-associated genes (CAG) are potentially very
different. Therefore, the aim of this paper is to explore
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Table 1: Summary of microarray datasets.

GEO ID Organization name Number of samples (early-stage) Number of samples (late-stage)
GSE7670 Taipei Veterans General Hospital 8 11
GSE10072 National Cancer Institute, NIH 15 9
GSE19804 National Taiwan University 35 13
GSE27262 National Yang-Ming University 25 n/a

a strategy to identify stage-specific potential drugs forNSCLC
through an integrated analysis of microarray profiling. In
order to reduce the effect of biological heterogeneity among
different individuals, normal as well as cancer tissues were
taken from the same patient.

To address the target drug problem, there is a need
to address the following issues. First, there is concern that
different individuals may correspond to different sets of dif-
ferentially expressed genes. Second, it is known that cancer is
a heterogeneous disease; different stages of cancer correspond
to different drug targets involving stage-specific CAG.Third,
results derived from different microarray profiling vary from
study to study; therefore, a rigorous approach is needed
to address this problem. Fourth, reliability of drug finding
prediction remains to be verified.

In order to reduce the biological heterogeneity effect
among different individuals, tumor/adjacent nontumor pair-
wise arrays for NSCLC were employed in the present study,
thus allowing pairwise statistical tests. To deal with the
second issue, the samples were divided into early-stage and
late-stage ones, which are denoted as stage IA/IB and stage
III/IV, respectively. For the third issue, meta-analysis was
adopted to integrate multiple microarray profiles. Finally,
potential drug predictions were validated via biochemical
assays.

Many proteins are associated with human diseases,
although very often their precise functional role in disease
pathogenesis remains unclear. A strategy to gain a better
understanding into the interaction and function of these
proteins is to make use of the protein-protein interaction
(PPI) data and construct a network for disease-associated
proteins. In our previous work [3, 4], it was hypothesized
that the PPI networks, derived from differentially expressed
genes (DEGs), could be analyzed topologically to prioritize
potential drug targets.

We performed gene set enrichment analysis (GSEA) for
pathway analysis and thenmade use of drug-gene interaction
databases and the Connectivity Map (cMap) to find potential
drugs for the treatment of NSCLC. It is conjectured that a
small drug molecule may potentially reverse the disease sig-
nature if the molecule-induced signature is significantly neg-
atively correlated with the disease-induced signature found
in the cMap [4]. In fact, potential new treatments for cancers
have been successfully identified via the cMap, including
acute leukemia, colon cancer, hepatocellular carcinoma, neu-
roblastoma,NSCLC, and renal cell carcinoma [5–7]. Both up-
and downexpressed genes are potential therapeutic targets;
therefore, identification of potential drugs to treat lung cancer
by using an in silico screening approach followed by MTT
assay or clonogenic assay validation might accelerate drug
discovery.
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Figure 1: Workflow of this study.

In Section 2, we give a description of the input data and
themethods used in this paper. In Section 3, results for cluster
analysis, enriched pathways, and cMap drug predictions are
reported. We conclude in the final section.

2. Methods

This study proposes an in silico strategy to narrow down the
search for lung cancer genes for target identification and drug
discovery; the workflow of this study is shown in Figure 1.

2.1. Input Data Set. The microarray data for lung cancer
was downloaded from GEO [8] and summarized in Table 1.
Experiments GSE7670 [9] and GSE10072 [10] use the HG-
U133A array, where GSE19804 [11] and GSE27262 [12] use
HG-U133 plus 2.0 chip.

Each sample consisted of cancerous and noncancerous
lung tissues obtained from a cohort of patients. To infer
differentially expressed genes (DEGs), two pair tests (normal
as well as cancer tissues are taken from the same patient)
were conducted.Themain advantage of using paired samples
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is that it could reduce the biological heterogeneity effect.
In the late stages of cancer, it is very common to find cell
invasion, metastasis, and drug-resistance related genes [13].
To investigate this issue, we divided the samples into early-
and late-stage ones. Early-stage samples were taken from
patients with stage I, IA, and IB cancers, whereas late-stage
data were obtained from stage III and IV patients.

2.2.Microarray Data Analysis. Microarray technology allows
for high-throughput screening and analysis of tens of thou-
sands of genes at the same time. Some genes are activated
or inhibited, and some are DEGs, which due to certain
regulatory factors, result in changes in gene expression levels
by a few times, ten times, or more. Given sets of microarray
data, one can identify DEGs among a large number of gene
expressions and understand the mechanism of lung cancer
formation induced by these DEGs.

There aremanymicroarray data analysismethods, such as
using the concept of false discovery rate (FDR) to screen for
significant genes [14], using ANOVA to explore the impact of
microarray gene expression values within a single factor [15],
and clustering analysis. Among the many statistical methods,
significance analysis of microarray (SAM) [16, 17], empirical
Bayes analysis of microarrays (EBAM) [18], and empirical
Bayes statistics (eBayes) [19] are three commonly employed
approaches to screenDEGs.Thepublicly availablemicroarray
data analysis package Bioconductor [20, 21] was adopted to
perform such calculations.

The statistical method eBayes was chosen in this study
because it was found that eBayes, SAM, and EBAM achieve
a similar level of cancer gene prediction accuracy [22]. The
selected DEGs were divided into two groups, an upregulated
group (up probes in Figure 1) and a downregulated group
(down probes), according to the gene expression fold change
(FC) values.

Among the DEGs, genes were classified as either up- or
downregulated genes if the log

2
FC was less than or greater

than zero, respectively. Any gene expression level with fold
change less than 5.64 (log

2
50) was reset to 5.64 in order to

facilitate the cMap search.

2.3. Cluster Analysis. We adopted BioGrid version 3.2.101 in
our analysis, which consists of 209,838 PPI records. In a PPI
network, a densely connected area is referred to as a cluster,
which is a functional module. Nodes having a high degree
of connection are defined as hubs and are more likely to
be essential. Members of a cluster are usually involved in
similar biological processes, and protein complexes can be
identified through the clustering of a network [23, 24]. It is
suggested that a protein complex is a biologically functional
module composed of subunits performing similar functions
[25]. Given two proteins,𝐴 and 𝐵, with a PPI, if both𝐴 and 𝐵
are obtained from the eBayes prediction as upregulated, then
the PPI among𝐴 and 𝐵 is the so-called up PPI. Communities
constructed fromupPPI are called upregulated communities.

To investigate the functional modules in which potential
lung cancer related proteins are involved, a set of highly
confident human PPIs were input to the CFinder software
[26] to perform an analysis based on the clique percolation

clustering approach [27]. A 𝑘-community was set with 𝑘

being equal to three (complete subgraphs of size 𝑘). Any two
𝑘-communities are adjacent if they share 𝑘−1 commonnodes.
A 𝑘-community (𝑘 ≥ 4) is constructed bymerging all possible
adjacent (𝑘 − 1)-communities.

2.4. Gene Set Enrichment Analysis (GSEA). DAVID [28]
is a web-based resource which provides batch annotation
and GO [29] term enrichment analysis to highlight the
most relevant GO terms associated with a given gene list.
The ConsensusPathDB (CPDB) [30] tool provides gene set
analysis andmetabolite set analysis.TheDAVID tool is based
on the Fisher exact test, while the CPDB tool is based on
the Wilcoxon test. To find the enriched pathways of our lung
cancer gene signature, we performed an overrepresentation
pathway analysis using both DAVID and CPDB. Under the
threshold of a 𝑃 value of less than 0.005, enriched path-
ways from the overrepresentation analysis including up- and
downregulated 𝑘-communities were obtained from CFinder
analysis. Significant pathway results were ranked according to
the 𝑃 value. Thus, enriched GO terms for these two protein
groups were obtained. We used both tools in this stage for
cross-verification.

2.5. Potential Target Genes and Drug Discovery. Both of the
up- and downregulated communities are derived from the
CFinder tool and were used to query the cMap database,
where potential drugs with 𝑃 values of less than 0.05 are
retained. To identify target genes, the FDA-approved drugs
and the chemical-protein links data from STITCH [31] were
merged. The Gene Name Service was then used to translate
the protein ID to its corresponding HUGO-approved gene
symbol and Entrez gene ID. Drugs obtained from the cMap
output were mapped and finally identified with known drug
targets in the cancer up- or downregulated PPI network.

The idea of drug repositioning is a recently developed
approach in the pharmaceutical industry that endeavors to
identify new uses for existing drugs and has achieved certain
successes [32]. Furthermore, this approach has the potential
to accelerate the development time for drugs, as well as
reducing side effects. There are many works on identifying
repositioned drugs, which are based on various methods:
the graph-based inference method [33, 34], the microarray
expressionmethod [35], the differential expressed correlation
method [36], and the integration of phenotypic, chemical
indexes and PPI method [37], and using the drug-gene-
disease relationship [38]. We also note that CancerResource
[39] is a very comprehensive resource for drug repositioning
study.

Several issues arise from combining different datasets,
such as the problem of data heterogeneity, different sample
sizes, and the data dependence problem. In principle, these
issues can be tackled by employing a meta-analysis approach.
Meta-analysis (MA) [40, 41] is a set of statistical methods
for summarizing the results of several studies into a single
estimate.The strength ofMA is that it is capable of identifying
relationships across a number of different studies.

For the drug prediction study, cMap provides an enrich-
ment score, 𝜌, and a 𝑃 value to quantify each cMap drug.



4 BioMed Research International

The 𝜌 value lies between −1 and 1; therefore it can be treated
as a sample correlation coefficient and serve as an effect size
index for MA [41]. In practice, 𝜌 is transformed to the Fisher
𝑧 scale, and all the analyses are conducted using the converted
values. After the analyses are completed, the 𝑧 values are
transformed back to the original metric. The transformation
to Fisher’s 𝑧 is given by

𝑧 =
1

2
ln
1 + 𝜌

1 − 𝜌
(1)

and the variance of 𝑧 is defined by 𝑉
𝑧
= 1/(𝑁 − 3), where𝑁

denotes the sample size.
The weight assigned to each study in a fixed-effect model

is given by

𝑊
𝑖
=

1

𝑉
𝑌𝑖

, (2)

where 𝑊
𝑖
is the within-study variance for study 𝑖. The

weighted mean (𝑀) is computed as

𝑀 =
∑
𝑘

𝑖=1
𝑊
𝑖
𝑌
𝑖

∑
𝑘

𝑖=1
𝑊
𝑖

. (3)

For unweighted calculations, 𝑊
𝑖
equals one. The variance of

the summary effect (𝑉
𝑀
) is given by

𝑉
𝑀
= (

𝑘

∑

𝑖=1

𝑊
𝑖
)

−1

. (4)

For unweighted calculations, the 𝑍-score for normal distri-
bution is defined by

𝑍 =
𝑀

SE
𝑀

, (5)

where SE
𝑀
denotes the standard error and is equal to√𝑉

𝑀
.

For weighted calculations, the 𝑍-score is defined by

𝑍 =
∑
𝑘

𝑖=1
𝑊
𝑖
𝑌
𝑖

√∑
𝑘

𝑖=1
𝑊
2

𝑖

. (6)

From (7), one can determine the one-tailed test 𝑃 value.
The 95% lower and upper limits for the summary effect

would be computed as

LL
𝑀
= 𝑀 − 1.96 × SE

𝑀
,

UL
𝑀
= 𝑀 + 1.96 × SE

𝑀
.

(7)

The formula for the random-effects model is given in a
monograph written by Borenstein et al. [41]. The above
analyses allow us to determine the confidence interval of the
CC, 𝑟.

Besides the use of 𝜌, the use of the Fisher combined test
(FCT) [40] is another option. The Fisher summary statistic
method combines the 𝑃 values and is defined by

𝐹
𝑖
= −2

𝑁

∑

𝑗=1

log (𝑝
𝑖𝑗
) (8)

which tests (chi-square 𝜒2) the null hypothesis for gene 𝑖,
where indices 𝑖 and 𝑗 denote the 𝑖th gene from the 𝑗th dataset,
respectively. However, cMapmay return a zero𝑃 value, hence
rendering (8) infinite; therefore, it was not used in the present
analysis.

There are two models in meta-analysis: the fixed-effect
model and random-effect model [41]. In the fixed-effect
model it is assumed that there is only one true effect size
and that all differences among the studies or batches are
due to sampling errors only. In contrast, the random-effect
model allows the effect size to vary from study to study. Each
study estimates a different effect size. These two models are
considered in our work.

In other words, a test for homogeneity of distribution
was performed. As it is rather common to find that the
effect size may vary from one study to the next, we employ
the MA method, such as the 𝑄 statistics and 𝐼

2 statistics,
to quantify the heterogeneity, to test it, and to incorporate
it into the weighting scheme. We use a 𝑃 value of 0.1 for
𝐼
2 statistics as the criterion for statistical significance. A 𝑃

value larger than or equal to 0.1 means that there is little
variation between batches; then a fixed-effect model might
be appropriate; otherwise choose random-effect model [41].
Degree of heterogeneity is characterized by the 𝐼2 value. A
value of 𝐼2 less than 25% implies no heterogeneity, whereas a
value larger than 75% means extremely high heterogeneity.

If the studies are homogenous, then it is likely that the
various studies are testing the same hypothesis. If these
estimates are heterogeneous, then it is probable that each
study is not testing the same hypothesis.Therefore, it may not
be appropriate to combine all the study results into onemeta-
analysis. In such case, we would need to conduct a separate
meta-analysis, such as meta-regression analysis for different
subsets of studies [41].

2.6. Cell Culture. All cell-culture-related reagents were pur-
chased from Invitrogen. Human lung cancer cell lines A549
and H460 were purchased from the American Type Cul-
ture Collection/Bioresource Collection and Research Center
(BCRC) (Taiwan).These cells have performed STR-PCR pro-
file at BCRC. A14was a derivative of A549 cells stably selected
with a p53 shRNA construct. Human lung adenocarcinoma
cell lines, CL1-0 and CL1−5, were kind gifts fromDr. Pan-Chyr
Yang. H1299 stable clones (transfected with EGFR-WT (wild
type) and EGFR-L858R mutant) were kindly provided by Dr.
Yi-Rong Chen. All cells were cultured in RPMI 1640 with
10% fetal bovine serum (FBS), 2 mM of L-glutamine, and 1%
penicillin/streptomycin and maintained in a 37∘C, 5% CO

2

incubator.

2.7. MTT Cell Viability Test. Cell viability was determined
using anMTTassay. Cellswere seeded in a 96-wellmicroplate
for 16∼20 hrs and treated with the indicated drugs. After drug
treatment for 72 hrs, 50 𝜇LMTT solution (2mg/mL) per well
was added and incubated at 37∘C. Two hours later, 150𝜇L
liquid per well was removed and DMSO was added and the
absorbance at 570 nm was detected using an ELISA reader
(InfiniteM1000, TECAN, Switzerland).The untreated groups
were considered to be 100% viable.
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Table 2: Statistics of DEGs for early- and late-stage NSCLC.

Early-stage NSCLC
GSE7670 GSE10072 GSE19804 GSE27262 Common DEGs #PPI

DEGs 642 642 642 642
UP DEGs 213 213 214 212 211 41
DOWN DEGs 429 429 428 430 426 105

Late-stage NSCLC
GSE7670 GSE10072 GSE19804 GSE27262 Common DEGs #PPI

DEGs 780 780 780 n/a
UP DEGs 257 258 257 n/a 254 166
DOWN DEGs 523 522 523 n/a 520 133
#PPI denotes the total number of PPI among common DEGs.

Table 3: Total number of 𝑘-communities identified by CFinder.

Early-stage NSCLC
𝑘 Up group Number of genes Down group Number of genes
3 2 6 6 12
4 0 0 1 4

Late-stage NSCLC
𝑘 Up group Number of genes Down group Number of genes
3 31 37 6 16
4 3 8 0 0

2.8. Clonogenic Assay. Two NSCLC cell lines, A549 and
H460, were seeded in 6-well plates with 500 cells/well for
7–10 days. Each well contained 1.5mL RPMI medium as
culture condition and tested drugs were added 24 hrs after
the seeding of the cells.Themedium and drugs were changed
once on day four. After treatment, cells were washed with
PBS, and the colonies were fixed (acetic acid :methanol,
1 : 3) and stained with 0.5% crystal violet in methanol. After
removing the excess crystal violet and rinsing with tap water,
the colonies were counted manually.

3. Results

3.1.MicroarrayDataAnalysis. In this studymultiplemicroar-
ray source datawere employed for analysis. Robustmultiarray
average (RMA) was used for gene expression normalization.
The eBayes analysis was subsequently conducted on the
previous results. DEGs were predicted by an eBayes with an
adjusted 𝑃 value of 0.005. By integrating with the BioGrid
[42] PPI data, a list of binary interactions among DEGs was
determined for the up and down groups.

There may be concern regarding the use of different
microarray platforms being subjected to heterogeneity prob-
lem.Wenote that the following two steps can tackle such con-
cern: (i) selecting commonDEGs among all the platforms for
further analysis and (ii) employing meta-analysis approach
and performing test of heterogeneity to determine whether
the fixed-effect model or random-effect model is needed.

A total of 642 and 780 genes were identified as the com-
mon DEGs for the early- and late-stage cancer, respectively.
The results of the total number of DEGs, “UP” and “DOWN”
DEGs for early- and late-stages of cancer, are reported in

Table 2. The second last column in the table denotes the total
number ofUP andDOWNDEGs for differentGSEplatforms.
It is noted that the number of “DOWN” DEGs identified is
larger than “UP” DEGs in both of early- and late-stages, in
which the ratio is about 2 to 1.

3.2. Cluster Analysis. Genes which do not highly interact
with other genes are assumed to be less important and
consequently such geneswere removed before the subsequent
analysis. Hence, byCFinder, any genewhich did not belong to
a 𝑘-community was excluded.We also counted the number of
𝑘-communities in the NSCLC PPI network and found there
was no community with 𝑘 larger than five. Table 3 summa-
rizes the number of 𝑘-communities identified byCFinder. For
early-stage, a total of six and sixteen genes belong to the two
up- and seven downregulated 𝑘-communities, respectively,
whereas a total of forty-five and sixteen genes belong to
the thirty-four up- and six downregulated 𝑘-communities,
respectively, for late-stage.

Only genes belonging to the communities identified by
CFinder were selected for the next stage of analysis.

3.3. Enriched Biological Pathways. Pathway annotation of
communities was given by implementing DAVID and CPDB.
According to REACTOME [43] and KEGG [44] databases,
pathways with their 𝑃 values less than 0.05 and ranked
among the top ten are reported. Using the annotation tool
in DAVID database REACTOME, Table 4 lists the enriched
pathways information for early- and late-stage NSCLC. The
“Count” and “%” columns denote the number of overlapped
genes in the filtered community genes and the corresponding
pathway and the percentage of overlapped genes, respectively.
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Table 4: Summary of pathways returned by REACTOME using DAVID for early- and late-stage NSCLC.

Early-stage NSCLC
Term Count % 𝑃 value
Hemostasis 6 27.3 2.87𝐸 − 04

Signaling in immune system 6 27.3 7.22𝐸 − 04

Integrin cell surface interactions 3 13.6 0.0223
Metabolism of carbohydrates 3 13.6 0.0295

Late-stage NSCLC
Term Count % 𝑃 value
Cell cycle, mitotic 21 34.4 8.49𝐸 − 12

Cell cycle checkpoints 10 16.4 3.08𝐸 − 06

Cdc20: phospho-APC/C-mediated degradation of cyclin A 6 9.8 8.20𝐸 − 04

APC-Cdc20-mediated degradation of Nek2A 4 6.6 0.00211
DNA replication 5 8.2 0.0239

Table 5: Summary of the top ten pathways returned by REACTOME using CPDB for early- and late-stage NSCLC.

Early-stage NSCLC
Pathway name Effective size % of overlap 𝑃 value
Cell surface interactions at the vascular wall 94 6.4% 1.53𝐸 − 08

Nephrin interactions 23 13% 1.02𝐸 − 05

Hemostasis 463 1.5% 1.45𝐸 − 05

Glycolysis 28 10.7% 1.87𝐸 − 05

Gluconeogenesis 32 9.4% 2.82𝐸 − 05

PECAM1 interactions 12 16.7% 0.00022
Integrin cell surface interactions 66 4.5% 0.00025
Glucose metabolism 67 4.5% 0.00026
Regulation of signaling by CBL 18 11.1% 0.00052
CD28 dependent PI3K/Akt signaling 21 9.5% 0.00071

Late-stage NSCLC
Pathway name Effective size % of overlap 𝑃 value
Cell cycle 442 5.9% 5.15𝐸 − 21

Cell cycle, mitotic 355 6.8% 1.02𝐸 − 20

Mitotic M-M/G1 phases 214 8.4% 3.88𝐸 − 17

APC/C-mediated degradation of cell cycle proteins 38 26.3% 4.87𝐸 − 15

Regulation of mitotic cell cycle 38 26.3% 4.87𝐸 − 15

M phase 183 8.2% 3.57𝐸 − 14

Mitotic prometaphase 110 10.9% 5.59𝐸 − 13

Mitotic anaphase 130 9.2% 4.22𝐸 − 12

Mitotic metaphase and anaphase 131 9.2% 4.63𝐸 − 12

Resolution of sister chromatid cohesion 101 10.9% 5.80𝐸 − 12

As we noted from Table 4, GSEA suggested that hemostasis,
signaling in immune system, integrin cell surface interaction,
and metabolism of carbohydrates are enriched pathways for
early-stage cancer, whereas cell cycle and DNA replication
pathways are ranked among the top for late-stage cancer. It
is noted that these late-stage cancer pathways are dominated
by cell-cycle related processes.

Cancer is a multistage progression process that results
from mutations in genetic sequences. Accumulation of ge-
netic mutations could lead to a defective DNA repair mech-
anism, consequently giving rise to genetic instability and
uncontrolled cell growth [45].

Numerous studies have reported that homeostasis and
cancer formation are related [46–49]. Integrins are the recep-
tors that mediate cell adhesion to the extracellular matrix
(ECM). Varner and Cheresh [50] pointed out in 1996 that
ECM receptors, integrins, regulate the cellular proliferation
machinery in tumor cells. In the seminal review paperwritten
by Hanahan and Weinberg [51], it was reported that integrin
can influence cell behavior and transform cells into an active
proliferative state. Recent studies have also suggested that
integrins are involved in cancer progression [52, 53] and lung
squamous cell carcinoma [54]. Furthermore, elevated glucose
consumption is observed in tumor formation [55–57].
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Table 6: Summary of top pathways returned by KEGG using DAVID for early- and late-stage cancer.

Early-stage NSCLC
Term Count % 𝑃 value
Leukocyte transendothelial migration 4 18.2 0.00294
Glycolysis/gluconeogenesis 3 13.6 0.00982
Epithelial cell signaling inHelicobacter pylori infection 3 13.6 0.0125
Cell adhesion molecules (CAMs) 3 13.6 0.0432
Tight junction 3 13.6 0.0444
Focal adhesion 3 13.6 0.0911

Late-stage NSCLC
Term Count % 𝑃 value
Cell cycle 12 19.7 3.22𝐸 − 10

Oocyte meiosis 8 13.1 7.47𝐸 − 06

Progesterone-mediated oocyte maturation 6 9.8 2.68𝐸 − 04

DNA replication 3 4.9 0.0250
p53 signaling pathway 3 4.9 0.0791

Table 7: Summary of top pathways returned by KEGG using CPDB for early- and late-stage cancer.

Early-stage NSCLC
Term Effective size % of overlap 𝑃 value
Leukocyte transendothelial migration 118 3.4% 6.37𝐸 − 05

Glycolysis/gluconeogenesis 66 4.5% 0.000250
Epithelial cell signaling inHelicobacter pylori infection 68 4.4% 0.000273
HIF-1 signaling pathway 106 2.8% 0.00100
Tight junction 134 2.2% 0.00197
Cell adhesion molecules (CAMs) 147 2.0% 0.00257

Late-stage NSCLC
Term Effective size % of overlap 𝑃 value
Cell cycle 124 9.7% 2.39𝐸 − 12

Oocyte meiosis 110 7.3% 1.38𝐸 − 07

Progesterone-mediated oocyte maturation 86 7.0% 7.25𝐸 − 06

DNA replication 36 8.3% 0.00100
Epstein-Barr virus infection 203 2.5% 0.00512
Viral carcinogenesis 206 2.4% 0.00544
p53 signaling pathway 68 4.4% 0.00620
Measles 134 3.0% 0.00630
Hepatitis B 146 2.7% 0.00849

Late-stage cancer patients commonly have cell invasion
and metastasis. Malignant cells have the ability to invade
adjacent normal tissue structures. Malignant tumor cells
break off from the tumor and enter blood vessels or the
lymphatic system and migrate to other parts of the body and
initiate another tumor. Biomedical studies have suggested
that the development of the metastatic process involves an
interaction between cell cycle signaling, adhesion pathways,
and epithelial-mesenchymal transition program [13]. It is
also known that signal transduction pathways, such as p53,
MAPK, Notch, and ROS, are heavily involved in metastasis

[58]. In particular, mutations in p53 and K-RAS appears only
later in tumor progression [45].

Defects in the cell cycle mitotic checkpoint generate
aneuploidy and might facilitate tumorigenesis [59]. Mitotic
progression and sister-chromatid segregation are controlled
by the anaphase promoting complex/cyclosome (APC/C).
APC/C forms a protein complex with its mitotic coactivator,
CDC20, which controls mitotic progression [59]. CDC20
protein level may directly affect cell fate during prolonged
mitotic arrest [60] and its turnover rate may be a key factor
in cancer patient response to antimitotic therapies [61].
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Using the CPDB tool, the top ten most significant path-
ways for early-stage NSCLC and late-stage NSCLC returned
by REACTOME are listed in Table 5. Again, GSEA suggested
that hemostasis, cell surface interaction, and metabolism of
carbohydrates, that is, glycolysis and gluconeogenesis, are
the enriched pathways for early-stage cancer. For late-stage
cancer, again it is found that the cell cycle pathways are
ranked among the top pathways. Essentially, results returned
by DAVID and CPDB are consistent with each other.

From Table 5, it is found that PECAM1 [62–64] and
CBL are frequently altered in lung cancer [65], and CD28
is associated with NSCLC formation [66]. PECAM1 interac-
tions are related to angiogenesis.

Using the KEGG database, pathways with 𝑃 value less
than 0.05 returned by DAVID are listed for early-stage
and late-stage cancer in Table 6. Again, enrichment analysis
suggested that glycolysis/gluconeogenesis and cell signaling
are the enriched pathways for early-stage cancer. It is known
that integrin is a key regulator of cell adhesion [53].

It was also found that the cell cycle pathway and DNA
replication pathway were ranked among the top pathways
for late-stage cancer. It is known that cancer is due to
uncontrolled cell mitosis, and this uncontrolled process is a
common element in all types of cancer.

Cell adhesion molecules (CAMs), a diverse system of
glycoproteins, have been found to play an important role in
cancer progression and in the application of cancer therapy
[67–69]. Tight junctions are cellular structures located at the
apicobasal region of epithelial cell membranes [70]. It has
been experimentally found that lung tumors show changes
in the expression in tight junction proteins [71]. Other studies
have also indicated that tight junction proteins show aberrant
expression in breast cancer [72] and correlate with metastasis
[73–75].

We noted that the significant enriched pathways found
in Table 6 (late-stage) are also identified in the work by
Liu et al. [76]. Except oocytemeiosis, the other four pathways
are involved in two NSCLC subtypes: adenocarcinoma and
squamous cell carcinoma.

Using the CPDB tool, significant pathways returned by
KEGG are listed in Table 7. Again it was found that the
cell cycle pathway and DNA replication pathway are ranked
among the top pathways for late-stage cancer.

The hypoxia-inducible factor-1 (HIF-1) is an oxygen-
sensitive transcriptional activator and is causally involved in
NSCLC [77–79].

Again, the cell cycle pathway ranked first (among the top
of the list) both in REACTOME and KEGG using CPDB. In
other words, analyses using DAVID and CPDB are in good
agreement. Relative to DAVID, CPDB tends to return more
pathway information.

Integrins are the receptors that mediate cell adhesion to
ECM.The extracellular matrix (ECM) is a network of macro-
molecules that underlies all epithelia and endothelia and that
surrounds all connective tissue cells. This matrix provides
mechanical strength and also influences the behavior and
differentiation state of cells in contact with it.

Table 8: The number of IC50 verified drugs and potential drugs
identified by using ES, cMap 𝑃 value less than 0.1 and 0.5 for early-
and late-stage NSCLC.

Effect size Early-stage Late-stage
ES 2/24 6/30
cMap 𝑃 value < 0.1 3/13 5/26
cMap 𝑃 value < 0.5 8/56 7/65
Numbers before and after the slash sign (/) denote the numbers of IC50
verified drugs and potential drugs, respectively.

Table 9: IC50 values of potential drugs for early- and late-stage
NSCLC.

Effect size Stage cMap drug name MTT Clonogenic

ES

Early Mebendazole <1 >10
Prenylamine >5 >10

Late

Mebendazole <1 >10
Spiperone >10 <10
Anisomycin <0.1
Pyrvinium <0.1
Mefloquine >5
Niclosamide >5

𝑃 value < 0.1

Early
Trichostatin A <1
Monensin <1

Cloperastine <10

Late

Trichostatin A <1
Mefloquine >5
Pyrvinium <0.1
Securinine >5

Nortriptyline <10

3.4. Potential Drugs andTheir Target Genes for NSCLC. Both
the up- and downregulated communities extracted from
CFinder were analyzed by cMap. Under the constraint of an
enrichment score (ES) of less than zero, and cMap drugs
associated with 𝑃 value, that is, cMap 𝑃 value less than 0.1 or
0.5, potential drugs were inferred by performingMA. Fisher’s
summary statistic method was used for combining cMap 𝑃

value.
After performingmeta-analysis using ES as the effect size,

twenty-four potential drugs were found with a 𝑃 value for
MA being less than 0.05 for early-stage cancer. The results
are listed in Table 8. Among the twenty-four drugs, two drugs
tested byMTT or clonogenic assay were validated as effective
(i.e., mebendazole and prenylamine).

From Table 8, among the 30 potential drugs (𝑃 value
for MA is less than 0.05) for late-stage cancer, there were
six drugs tested by MTT or clonogenic assay and validated
as effective, that is, mebendazole, spiperone, anisomycin,
pyrvinium, mefloquine, and niclosamide.

We performed the heterogeneity test on the 24 drugs for
early-stage and the 30 drugs for the late-stage cancer using
the 𝐼2 statistics. It is found that both of the fix-effect model
and the random-effect model are required according to the
𝐼
2 statistics test with a 𝑃 value less than 0.1 [41].

We used available drugs in the list for in vitro cyto-
toxic validations (Table 9). Certain drugs showed effective
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Table 10: The number of common drugs for early-stage and late-stage using the enrichment score (ES) and cMap 𝑃 value (less than 0.1) for
meta-analysis.

Effect size ES 𝑃 value
Early-stage Late-stage Early-stage Late-stage

ES
Early-stage 0.421 0.156 0.136
Late-stage 16 0.132 0.217

𝑃 value < 0.1
Early-stage 5 5 0.182
Late-stage 6 10 6

cytotoxic effects for lung cancer cells. However, the very
limited data showed that there were inconsistencies in MTT
and clonogenic assays. For example, mebendazole showed
a good IC50 in MTT (<1 𝜇M) but not in the clonogenic
assay (>10 𝜇M). On the other hand, spiperone showed a
relatively effective IC50 (<10 𝜇M) in clonogenic assay rather
than in MTT assay (>10 𝜇M). This phenomenon is still hard
to explain in the current status.

Dose-dependent figures for four of the representable
drugs are shown in Figure 2. The reasons to use two most
commonly used lung cancer cell linesA549 andH460 include
the following: (i) they have different histologic subtypes, that
is, A549 is adenocarcinoma andH460 is large cell carcinoma,
although both belong to non-small-cell carcinoma; (ii) the
origin of A549 cell was obtained from lung tissue and H460
was from lung pleural effusion, whichmay represent different
stages of lung cancer; and (iii) both cells are EGFR wild type
that could be tested by the drugs potentially effective for
intrinsic EGFR-TKI resistance.

We conducted meta-analysis using the 𝑃 values from
cMap drugs obtained from individual arrays. As shown in
Table 10, the first row lists the early- and late-stage ES and 𝑃
value used for meta-analysis. Entries in the lower diagonal
denote the number of common drugs for MA choosing ES
and 𝑃 value as the effective sizes, and, in contrast, entries in
upper-diagonal show its Jaccard index (JI) score. Given two
sets𝐴 and 𝐵, JI(𝐴, 𝐵) is defined as |𝐴∩𝐵|/(|𝐴|∪|𝐵|− |𝐴∩𝐵|),
where |𝐴 ∩ 𝐵|, |𝐴| and |𝐵| denote the cardinality of 𝐴 ∩ 𝐵, 𝐴
and 𝐵, respectively.

For early-stage cancer, there are five common drugs (JI is
0.156) predicted by both ES and cMap 𝑃 value meta-analysis,
whereas there are ten commondrugs (JI is 0.217) for late-stage
cancer. The number of common drugs for both early- and
late-stage cancer are around five or six, assuming ES versus
𝑃 value. There are sixteen (JI = 0.421) and six (JI = 0.182)
common drugs predicted by ES and 𝑃 value meta-analysis,
respectively.This seems to indicate that MA tends to return a
higher overlapping between early- and late-stage results.

We submitted the selected drugs to DrugBank and NCBI
to search for up- and downregulated target genes. The
results of the number of target genes are summarized in
Table 11, which are potential therapeutic targets for future
lung cancer clinical trials. For early-stage cancer, no target
gene is reported by using the GSE7670 platform; therefore,
we report common drug target genes among the rest of

Table 11: The results of up- and downregulated target genes within
𝑘-communities obtained from DrugBank and NCBI.

GSE7670 GSE10072 GSE19804 GSE27262
Early-stage

Up 0 7 10 15
Down 0 5 7 14

Late-stage
Up 1 4 7 n/a
Down 2 1 7 n/a

the other three microarray platforms. For late-stage cancer,
we report common drug target genes among any two of the
three platforms.

Table 12 summarizes the up- and down communities’
drug target genes. As it is shown in the table, certain genes
are predicted by both effect size studies. For instance, up
community genes, RPL26L1, FEN1, and IDH1, are found in
both studies.

Figure 3 depicts the PPI network of upregulated target
genes using Cytoscape [80]. The upregulated target gene
RPL26L1 directly interacts with six proteins; Figure 4 repre-
sents the PPI network of downregulated target gene, PPARG.
This gene directly interacts with eleven proteins.

4. Conclusion

We applied the meta-analysis technique to infer therapeu-
tic drugs for NSCLC treatment by integrating microarray
expression profiles. Since cancer is a multistage progressive
disease, early- and late-stage CAG are potentially very differ-
ent; therefore, stage-specific DEGs were identified. PPI data
were then employed to construct dense PPI modules. The
up- and downregulated communities were used as queries to
perform functional enrichment analysis and potential drug
identification using cMap. Drugs can act on not merely the
transcription level, but rather on the protein, posttranscrip-
tion, or posttranslation levels. Large-scale drug screening
needs fast and efficient ways. In the current status, using gene
expression change to infer drug repositioning is the most
suitable way, which has been claimed in the rationale of cMap
original paper [81]. It is still difficult to see themodulations of
protein level in such a large-scale, high throughput method.



10 BioMed Research International

0 0.1 1 10

Anisomycin
Vi

ab
ili

ty
 (%

 o
f u

nt
re

at
ed

 co
nt

ro
l)

160

140

120

100

80

60

40

20

0

(𝜇M)

(a)

0 0.1 1 10

Mefloquine

Vi
ab

ili
ty

 (%
 o

f u
nt

re
at

ed
 co

nt
ro

l)

140

120

100

80

60

40

20

0

(𝜇M)

(b)

0 0.1 1 10

Vi
ab

ili
ty

 (%
 o

f u
nt

re
at

ed
 co

nt
ro

l)

Niclosamide120

100

80

60

40

20

0

(𝜇M)

(c)

Vi
ab

ili
ty

 (%
 o

f u
nt

re
at

ed
 co

nt
ro

l)

0 0.1 1 10

TSA160

140

120

100

80

60

40

20

0

(𝜇M)

(d)

Figure 2: Dose-dependent plots for four of the representable drugs, that is, anisomycin, mefloquine, niclosamide, and trichostatin A (TSA).

Table 12: The results of up- and downregulated target genes within 𝑘-communities using ES and cMap 𝑃 value as the effect size.

Effect size
ES

Early-stage Up-community gene Down-community gene
FEN1, IDH1, PSMB2, PSMB5, RPL26L1 NR3C1, PPARG

Late-stage PSMB2 NR3C1, PPARG
𝑃 value < 0.1

Early-stage EZH2, FEN1, IDH1, and RPL26L1 NR3C1, PPARG
Late-stage Not available NR3C1, PPARG

Enrichment analysis suggests pathways that are early- and
late-stage specific. This supports the use of the meta-analysis
technique to derive reliable results when combining multiple
gene expression datasets.

Enrichment scores and 𝑃 values obtained from cMap
were adopted as the effect size indices for target drug
meta-analysis. Certain common drugs were found by using
the enrichment score and 𝑃 value meta-analysis technique.

A fraction of our drug findings results are supported by IC50
experimental data.

Our findings suggest that certain up- and downregulated
genes are potential drug targets. Furthermore, the drugs
derived from DrugBank and NCBI are potential lung cancer
therapeutic drugs.

In summary, we have developed a pipeline to infer thera-
peutic drugs for disease treatment by integrating microarray,
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Figure 3: The upregulated target genes (circles) PPI partners
(squares); solid line represents PPI.

PPI, and the cMap resources. Meta-analysis was adopted to
integrate multiple datasets. Up- and downregulated commu-
nities were used as queries to perform functional enrichment
analysis and potential drug prediction. Overrepresented
cancer stage-specific pathways are determined. The target
drug results are supported by IC50 measurement data. It is
expected that the approach developed in the current work
should be of value for future studies into understanding
the molecular mechanism of lung cancer formation and
identifying therapeutic drug targets.
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