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Abstract

We introduce a novel machine learning approach for investigating speech processing with

cochlear implants (CIs)—prostheses used to replace a damaged inner ear. Concretely, we

use a simple perceptron and a deep convolutional network to classify speech spectrograms

that are modified to approximate CI-delivered speech. Implant-delivered signals suffer from

reduced spectral resolution, chiefly due to a small number of frequency channels and a phe-

nomenon called channel interaction. The latter involves the spread of information from

neighboring channels to similar populations of neurons and can be modeled by linearly com-

bining adjacent channels. We find that early during training, this input modification degrades

performance if the networks are first pre-trained on high-resolution speech—with a larger

number of channels, and without added channel interaction. This suggests that the spectral

degradation caused by channel interaction alters the signal to conflict with perceptual expec-

tations acquired from high-resolution speech. We thus predict that a reduction of channel

interaction will accelerate learning in CI users who are implanted after having adapted to

high-resolution speech during normal hearing. (The code for replicating our experiments is

available online: https://github.com/clips/SimulatingCochlearImplants).

1 Introduction

Cochlear implants (CIs) are neural prostheses that can partially restore hearing to individuals

with sensorineural hearing loss. This type of hearing loss results from damage to sensory cells

within the cochlea, an inner-ear organ that converts pressure waves into nerve impulses. CIs

rely on an external microphone to capture sound signals from the environment and filter

them into frequency bands whose amplitude envelopes modulate digital pulse sequences.

These are then used to excite neurons through appropriately placed electrodes within the

cochlea, where designated locations are responsible for processing specific frequency ranges.

The CI-delivered signal suffers from reduced spectral resolution, caused by (1) a limited

number of electrodes; and (2) channel interaction [1, 2], which results from a group of neurons
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being stimulated by more than one electrode. Partly because of this, certain speech perception

tasks present difficulties for CI users. For example, CIs make it harder to detect vocal emotion

[3, 4], perceive tones [5], or to recognize speech in the presence of competing talkers [6, 7].

Recent work attempts to explain such task-specific differences in terms of the acoustic cues

attended to by CI users and normally hearing (NH) subjects. For example, [8] found that the

former have difficulties in telling apart speech which differs in fundamental frequency or vocal

tract length of the speakers—cues which NH listeners rely on to distinguish pitch (fundamen-

tal frequency) and speaker height (vocal tract length). In a similar vein, [9] measured sensitiv-

ity to cues involved in the detection of phonemic contrasts. They report that CI users rely on

coarse-grained cues related to the overall amplitude of the signal, rather than fine-grained dif-

ferences between formants. NH subjects, in contrast, attend to both types of cues.

The performance differences between NH listeners and CI users, then, follow from differ-

ences in how the two populations process speech. And it stands to reason that differences in

processing are, to some extent, a result of the input received by the learners. In other words,

the fact that CI-delivered speech is characterized by a coarse spectral resolution, rendering

more fine-grained features inaccessible, could conceivably push CI users to attend to coarse-

grained acoustic cues; while NH individuals attend to coarse- and fine-grained features

because the intact cochlea happens to transmits a greater level of spectral detail.

This, in turn, suggests that postlingually deaf CI users (PD-CI users), who receive CIs after

a period of normal hearing, need to change the manner in which they process speech following

implantation. This transition is likely to require neural re-wiring—which is presumably why

the speech recognition performance of PD-CI users improves gradually, for well over a year,

following implantation [10]. In the current study, we train neural networks under conditions

that mimic those of PD-CI users, with initial exposure to high-resolution speech (correspond-

ing to a period of normal hearing), followed by exposure to low-resolution speech (corre-

sponding to the period after implantation). In doing so, we examine the effect of channel

interaction on the transition from high- to low-resolution speech.

By channel interaction, we mean the (partial) summation of electrical fields generated by

neighboring electrodes, leading to a distortion of amplitude envelopes for frequency channels

assigned to specific electrodes, prior to neural activation [11]. This is an important cause of

variability in speech recognition outcomes among CI users, with higher levels of channel inter-

action being associated with poor performance [12].

The mechanisms via which performance is affected clearly have to do with spectral resolu-

tion: In a task designed to measure the level of spectral detail utilized by subjects (spectral-rip-

ple discrimination), higher levels of channel interaction were associated with poor outcomes

[2]. Moreover, increasing the number of available electrodes past eight does not increase per-

formance [1], suggesting that channel interaction makes adjacent electrodes less distinguish-

able. Thus, by decreasing spectral detail in the implant-delivered signal, channel interaction

seems to inherently limit speech recognition performance.

Given this, one should naturally expect better performance if channel interaction was

reduced. Here, we surmise that a reduction in channel interaction should also lead to faster

learning in PD-CI users. Our basic argument is that post-implantation, PD-CI users may have

to change the manner in which they process speech in order to accommodate the decreased

spectral resolution in the implant-delivered signal. If channel interaction were eliminated, the

signal would contain more detail, and PD-CI users would presumably have to make fewer

adjustments to transition to speech processing with the implant.

To explore this, we train deep neural networks under conditions modeled on those faced by

PD-CI users and CI users who are born deaf—and thus learn to process CI-delivered signals

without first having adapted to an intact cochlea. In the following section, we specify our
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objective and method more closely. In section 3, we provide more details about the speech rec-

ognition tasks, data, and pre-processing steps. Finally, we present the results in sections 4—6,

ending with a general discussion in section 7.

2 Research question and general method

Our research question can be phrased as follows: Does channel interaction slow learning dur-

ing the period after implantation in PD-CI users, compared to congenitally deaf CI users

(CD-CI users)?

In contrast to PD subjects, CD-CI users are born deaf—and, if implanted early enough,

develop good speech recognition abilities [13]. Crucially, CD-CI users are only exposed to the

degraded implant-delivered signal, while PD-CI users first learn to process speech delivered

through the intact cochlea (while normally hearing) and then adapt to the CI after implanta-

tion. During the adaptation process, PD-CI users presumably integrate novel aspects of the

CI-delivered signal—including the mode of neural stimulation (electrical current) and a

reduction in spectral resolution. In this paper, we focus on spectral degradation caused by

channel interaction, and we hypothesize that it slows adaptation to CIs in PD-CI users, with a

comparatively smaller impact on learning in CD-CI users.

This effect could result from PD-CI users changing auditory processing strategies in order

to transition from high-resolution input (delivered through the intact cochlea) to the spectrally

degraded CI-delivered signal—for example, to emphasize coarse- rather than fine-grained

spectral cues. Such a change in processing strategies is likely to require a certain amount of

time. However, if the implant-delivered signal was less-coarse grained and thus more similar

to high-resolution input, less time should be required, as that should reduce the amount of

adaptation required on the part of PD-CI users. Thus, if we increase spectral resolution by

reducing or removing channel interaction from the implant, we should expect faster adapta-

tion to CIs.

Importantly, we expect this effect to be absent in CD-CI users: Since this population never

learns to process speech delivered through the intact cochlea, they should be able to adapt to a

degraded spectral resolution without having to modify existing processing strategies. Thus,

while channel interaction should equally degrade maximum performance in PD- and CD-CI

users after both populations have adapted to the implant, its impact on the learning process

should be stronger in PD-CI users.

To gather evidence for the hypothesized effect, we train neural networks on (1) high-resolu-

tion (high-res) spectrograms (Xh) with a large number of channels, intended as an approxima-

tion of what the intact cochlea delivers to the brain; (2) low-resolution (low-res) spectrograms,

with a smaller number of channels suffering from channel interaction (Xl), to approximate CI-

delivered input; and (3) medium-resolution (med-res) spectrograms—essentially low-res spec-

trograms without channel interaction (Xm), to approximate CI-delivered input if channel

interaction was eliminated from the implants. We derive Xh by computing amplitude spectro-

grams with a large number of channels, Xm by constructing spectrograms with fewer channels,

and Xl by linearly combining neighboring channels in Xm.

We conduct experiments in a postlingually deaf (PD) condition, where we train first on Xh,
followed by further training on either Xl or Xm; and a congenitally deaf (CD) condition, where

we train only on Xl or Xm. Networks trained on high-res speech should generalize poorly to Xl
and perform better on Xm. Given sufficient training on Xl and Xm, CD and PD networks might

eventually perform similarly on both input types. But at early epochs, before the PD networks

have adapted to the decreased spectral resolution, we expect a larger performance difference in

the PD condition.
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This outcome would show that the spectral degradation introduced through channel inter-

action slows learning in deep neural networks as they adapt to low-res speech—after they were
pre-trained on high-res speech. Assuming that deep learning is a reasonable model for pattern

recognition in the brain, it would also suggest that decreased spectral resolution prevents

PD-CI users from quickly adapting to CIs. Caution is surely required in making the connec-

tion to human processing; but since deep neural networks have proven useful for understand-

ing brain-based sensory pattern recognition [14], we consider them as an exploratory tool for

investigating learning dynamics with CIs.

3 Materials and methods

Tasks and data

We train neural networks on gender and isolated word recognition, choosing the former

because it presents difficulties for CI users [8, 15] and the latter because CI users can perform

it with high accuracy [16]. If similar patterns appear across both tasks, despite the different

performance patterns with CIs, we can be relatively confident in their robustness.

We frame gender recognition as binary classification of utterances intomale or female,
based on data from the Texas Instruments Massachusetts Institute of Technology (TIMIT)

corpus [17]. TIMIT contains recordings of 630 speakers (70% male, 30% female) from 8 U.S.

dialect regions. Each speaker read 10 different sentences, yielding 6,300 utterances spanning

several seconds each (5.4 hours of speech).

The isolated word recognition task involves the classification of utterances into 30 word-

classes, with data from the Google Speech Commands (GSC) corpus (https://research.

googleblog.com/2017/08/launching-speech-commands-dataset.html, data were downloaded

on 08/08/2018). Collected via crowd-sourcing, the GSC contains 65,000 one-second utterances

of 30 short words (18 hours of speech). 20 core words were pronounced five times by most

speakers, and an additional 10 words (treated as unknown words) were pronounced once. For

each corpus, we use a randomly selected 20% of the data for validation, and another 20% for

testing. All WAV files have a sampling rate of 16,000.

Featurization

We train neural networks on input that is approximately similar to what the brain uses for

speech recognition. Generally, the auditory system processes nerve impulses distributed across

time and frequency—with the decomposition into distinct frequency components imple-

mented mechanically by the inner ear (NH subjects), or digitally by the implant (CI users).

Modern CIs work with 12—22 electrodes, and signals are decomposed into as many frequency

components. The intact human cochlea, in contrast, contains thousands of sensory hair cells,

where topographically coherent cell groups correspond to functional channels. The band-

widths of these cochlear channels have been investigated in various behavioral experiments,

and the methods used continue to evolve [18]. In auditory models, 30 channels are often used

to cover the frequency range relevant for speech [19, 20].

In this study, we approximate speech delivered through CIs and the intact cochlea via mel-

scaled amplitude spectrograms (computed over windows of 50ms, strided by 10ms). Each

spectrogram is a matrix with dimensionality N × T, where N is the number of channels and T
is the number of frames, with xn,t being the amplitude at time t and channel n. The channels,

whose spacing and bandwidths conform to the perceptually motivated mel scale, cover the

range between 200 and 7,000 Hz, similar to most CIs. A medium-resolution (med-res) condi-

tion with N = 16 channels approximates CI-delivered input in the hypothetical case that
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channel interaction was completely eliminated; and a high-resolution (high-res) condition

with N = 32 channels approximates signals delivered through the intact cochlea.

We thus feed the networks with mel-scaled amplitude spectrograms, covering a frequency

range similar to most CIs, with a number of channels similar to implants (med-res) or to the

intact cochlea (high-res). In order to obtain low-resolution (low-res) input that approximates

the signals transmitted through CIs, however, we still need to operationalize channel interac-

tion—which can be approximated as a summation of potentials from individual electrodes

[21]. Thus, given row xn,� in a med-res spectrogram x with N frequency bands, we obtain a

low-res spectrogram with added channel interaction by linearly combining rows:

xn;� ¼

xn;� þ xnþ1;�; if n ¼ 1

xn;� þ xn� 1;�; if n ¼ N

xn;� þ xnþ1;� þ xn� 1;�; otherwise

8
>>><

>>>:

To ensure that data points from all three input conditions are represented as a 32 × Tmatri-

ces, we duplicate each row in the low- and med-res spectrograms. Equally sized spectrograms

are (1) necessary to train the same neural network on high- and either low- or med-res input

and (2) roughly analogous to the contrast between the intact cochlea and CIs. With the latter,

electrodes cover broad swaths of neurons; while in the intact cochlea, groups of sensory hair

cells cover fewer neurons. Similarly, in the low- and med-res spectrograms, broad areas con-

tain information from a single channel; and in the high-res spectrograms, smaller areas con-

tain information from more narrow channels.

Note that our spectrograms approximate rather than simulate CIs. For example, the

implants use amplitude envelopes to modulate digital pulse trains, whereas we use raw ampli-

tude spectrograms. Due to the exploratory nature of this study, however, we abstract from

additional complexity. See Figs 1 and 2 for example spectrograms.

Fig 1. Example spectrograms (TIMIT corpus). Spectrograms based on a single utterance from the TIMIT corpus, in

high-res (32 channels), med-res (16 channels), and low-res (16 linearly combined channels).

https://doi.org/10.1371/journal.pone.0212134.g001

Fig 2. Example spectrograms (GSC corpus). Spectrograms based on a single word from the GSC corpus, in high-res

(32 channels), med-res (16 channels), and low-res (16 linearly combined channels).

https://doi.org/10.1371/journal.pone.0212134.g002
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Network architectures

One of the simplest neural networks available is the perceptron (PER)—a flat architecture

which directly classifies each input vector, without first transforming the input through one or

more hidden layers. We implement the PER as a single softmax layer, with two neurons for

gender recognition and thirty neurons for the word recognition task. Concretely, the probabil-

ity that an input vector x is a member of class i (belonging to a stochastic variable Y, with two

values for gender recognition and thirty values for word recognition) is be defined as:

pðY ¼ ijx; yÞ ¼
eWi�xþbi
P

je
Wj �xþbj

ð1Þ

where the set of trainable parameters θ contains the weight matrixW as well as the bias b, and

each input x is a spectrogram, converted from the original matrix into a vector format. This is

done by concatenating the rows (= frequency bands) in a given spectrogram, with dimension-

ality N × T, to create an input vector with length NT. Due to its simplicity, the PER is an

appealing model choice, but it also comes with disadvantages: (a) It is a flat architecture, limit-

ing performance; and (b) each column in the weight matrixW and bias b corresponds to

exactly one value in x, so that the patterns detected by the model are bound to particular input

coordinates.

To obtain better performance, and to model the invariance of auditory processing to spec-

tro-temporal details [22], we also report results with a deep convolutional neural network

(CNN), trained to ingest spectrograms in matrix format. The first three layers contain 2D con-

volutions—which facilitate the detection of local patterns at different positions [23] by repeat-

edly applying sets of weights (filters) to n ×m (filter size) sub-regions within the input, strided

by u × v (stride). The convolutional layers are then followed by a fully connected layer, whose

output is fed into a perceptron as in (1). For speedier convergence, we apply the Batch Normal-

ization method [24] after each hidden layer, before the activation function is applied.

Since we compare performance on different featurizations of the same data (high-res, med-

res, low-res), a selection of hyperparameters meant to optimize performance on any of the

three featurizations could confound the results. To address this, we chose hyperparameters so

that the validation error improves steadily, without noticeable fluctuations—but we do not

tweak them for maximum performance. Since the CNN has a fairly large number of tunable

hyperparameters, it is still possible that we accidentally picked settings which favor a specific

featurization. For the PER, however, the only hyperparameters are the learning rate (0.01) and

mini batch size (32), dramatically reducing this risk. Apart from the number of hidden layers

and the application of batch normalization, hyperparameters for the CNN include the activa-

tion function (rectified linear function), regularization (0.1 dropout at each convolutional

layer, 0.5 at the fully connected layer), number of filters in each convolutional layer (5), filter

size (5 × 5), stride (2 × 2), number of hidden units in the connected layer (100), learning rate

(0.1), and mini batch size (32).

For the CNN, we decided to keep the number of filters, filter size, and stride constant across

successive layers in order to reduce the amount of fine-tuning required to get different archi-

tectures to work. This may raise the concern that our results are an artifact of the particular

hyperparameters we have chosen. As mentioned, we use the PER to control for this possibility:

Since the PER’s only hyperparameters are mini batch size and learning rate, we can be confi-

dent that the results are not confounded by our choices for number of filters, filter size, and

stride if a similar pattern emerges with both the PER and the CNN.

The models are trained via mini batch gradient descent, on an Nvidia Titan X GPU, by

minimizing the categorical cross-entropy of predicted and true class probabilities. The
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learning rate is adjusted via Adadelta [25], and training is terminated once the validation error

has ceased to decrease for 10 epochs (early stopping with a patience of 10).

Statistical testing

The key statistic of the current study is the difference in performance between neural networks

trained on different featurizations of the same corpus. For example, given the TIMIT corpus,

let Xh be a high-res featurization, and let Xl be a low-res featurization. We might train a net-

work A on Xh and a network B on Xl, obtaining accuracy scores tA, tB by evaluating A and B on

held-out portions of Xh and Xl, respectively. The question of interest then is whether we can

reject the null hypothesis that tA = tB.

We can answer this via approximate randomization testing (ART), a simple approach that

does not rely on assumptions about the data and is thus well-suited for application in machine

learning [26, 27]. ART starts from the labels CA ¼ fc1
A; :::; c

n
Ag and CB ¼ fc1

B; :::; c
n
Bg assigned

by the two networks to each data point in the held-out data. Each pair of labels ciA; c
i
B is then

switched with probability 1

2
, and the difference in performance d0 is re-calculated. The proce-

dure is repeated R times, with r being the number of times that d0 � d. For large R, p ¼ rþ1

Rþ1

approximates the significance level. We set R = 105.

Given N comparisons, we reject the null hypothesis if p � 0:05

N . That is, we apply the Bonfer-

roni method to correct for multiple comparisons, since these increase the chance of incorrectly

rejecting the null hypothesis. In the analyses below, we conduct 18 model comparisons per

corpus, obtaining a rectified significance threshold of p � 0:05

18
.

4 Analysis I: Preliminary comparisons

In this first analysis, we compare (1) the PER to the CNN and (2) performance on high-res

spectrograms (32 channels) to performance on low-res spectrograms (16 channels with chan-

nel interaction). This serves as a sanity check: Due to the larger number of parameters and the

location-independent, more generalizable features detected by the CNN, we expect worse per-

formance with the PER; and due to the diminished level of spectral detail in the low-res featur-

ization, we expect better performance on high-res input. Given our two network architectures

(PER, CNN), the two featurizations (high-res, low-res), and the two tasks (gender, word recog-

nition), we report results for 2 × 2 × 2 = 8 models.

4.1 Results and discussion

Fig 3 shows validation accuracy over training epochs. It is immediately apparent that the CNN

outperforms the PER. Indeed, test accuracy achieved with the former is significantly higher: by

ca. 10 – 15% for gender recognition, and by about 25% for word recognition (p� 0.001). The

larger performance gap on word recognition is likely due to a higher degree of spectro-tempo-

ral variability in the data used for this task, so that the CNN gains a comparatively stronger

advantage.

Turning to the distinction between low- and high-res input (Table 1), we find that high-res

spectrograms lead to better performance in three out of four model comparisons—as is

expected, given the spectrally impoverished nature of the low-res spectrograms. The only non-

significant difference emerges with the CNN, trained on word recognition (Table 1, last col-

umn). Here, we obtain a small negative difference, indicating that our particular instantiation

of the CNN performs slightly better on low- than on high-res spectrograms. Given that this dif-

ference is not statistically significant, it is most likely due to chance—for example, it could result

from chance differences in the randomly initialized network weights. The positive difference
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obtained with the PER (second to last column), in contrast, does reach significance—indicating

that this less powerful architecture performs more poorly if the amount of spectral detail is

reduced.

With gender recognition, we find that both networks perform significantly better on high-

res input, and that the differences are stronger than on the word recognition task. This indi-

cates that loss of spectral detail is comparatively more detrimental for gender and less so for

word recognition. These results make sense in light of performance patterns with CI users,

who can solve isolated word recognition with high accuracy [16] but struggle with gender rec-

ognition [8]—suggesting that the former is more easily solvable with the spectrally impover-

ished CI-delivered signal.

5 Analysis II: Effect of channel interaction

We next compare the performance of networks trained only on med-res spectrograms (16

channels without channel interaction) or low-res spectrograms (16 channels with channel

interaction). These training regimes are idealized analogs of the conditions faced by CD-CI

users—equipped with hypothesized CIs that completely eliminate channel interaction (med-

res spectrograms); or with CIs suffering from channel interaction, similar to the implants cur-

rently in use (low-res spectrograms).

Given that channel interaction in CIs is associated with poor speech recognition perfor-

mance [2], we should likewise expect our operationalization of channel interaction to limit

speech recognition performance in neural networks.

5.1 Results and discussion

Fig 4 shows validation accuracy over epochs, for networks trained on med-res data. Although

the learning trajectories appear broadly similar to those obtained on low-res speech (Fig 3, sub-

plots b an d), final test accuracy is significantly higher in the med-res condition, in three out of

the four model comparisons: by 4.2% (PER, p� 0.001) on gender recognition, as well as by

Fig 3. Validation accuracy over epochs, on high- and low-res spectrograms.

https://doi.org/10.1371/journal.pone.0212134.g003

Table 1. Test accuracy, for networks trained on high- or low-res speech.

Task Model High-Res Low-Res Diff

gender PER 93.1 84.3 8.8 ���

CNN 98.9 96.9 2.0 ��

words PER 43.1 41.1 2.0 ���

CNN 63.1 63.5 -0.4

Diff = high-res accuracy minus low-res accuracy. The stars denote Bonferroni-corrected significance thresholds (�:

p� 0.05; ��: p� 0.01; ���: p� 0.001).

https://doi.org/10.1371/journal.pone.0212134.t001
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1.5% (PER, p� 0.001) and 0.9% (CNN, p� 0.05) on word recognition. For the CNN, no sig-

nificant difference emerged when trained on gender recognition.

By reducing spectral detail, then, our operationalization of channel interaction limits accu-

racy. The observed performance degradations are generally weaker than the ones from the pre-

vious analysis, where we compared high- to low-res spectrograms. This is expected, since the

difference (in spectral resolution) between the med- and low-res data is less strong than

between high- and low-res input.

6 Analysis III: Effect of channel interaction with pre-training

In the foregoing analyses, we started training with randomly initialized parameters (weights

and biases). Now, we use parameters that are pre-trained on high-res input (see Fig 3, subplots

a and c), and we ask how well they generalize to either (1) low-res or (2) med-res spectrograms.

(1) mimics the learning conditions of PD-CI users, who transition to the CI-delivered signal

after having adapted to high-res speech during a period of normal hearing; and (2) mimics a

hypothetical case where PD-CI users, having adapted to high-res input, transition to CIs that

do not suffer from channel interaction.

As before, the networks come in two variants, applied to two different tasks. They are then

trained on low-res or med-res spectrograms, yielding eight pre-trained models.

6.1 Results and discussion

Fig 5 shows validation accuracy, on low- and med-res data, for models whose weights were

pre-trained on high-res spectrograms. Notice how initial validation accuracy is already very

high, compared to networks that were not pre-trained.

Without pre-training, the weights are randomly initialized, and accuracy is at chance level

before training commences. (See Table 2, left side, bottom. Note that as in Table 1, some of the

non-significant differences take small negative values. Since these small negative differences

fail to reach statistical significance, they are most likely due to chance. They could, for example,

result from chance differences in the randomly initialized network weights.) The parameters

Fig 4. Validation accuracy over epochs, on med-res spectrograms.

https://doi.org/10.1371/journal.pone.0212134.g004

Fig 5. Validation accuracy over epochs, for pre-trained networks.

https://doi.org/10.1371/journal.pone.0212134.g005
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acquired from high-res input, however, generalize to both the med- and low-res data, affording

high initial performance (left side, top). Table 2 shows, moreover, that the pre-trained parame-

ters generalize better to the med-res data, with significantly lower initial accuracy on low-res

input—both before training commences, as well as early during learning (after the first epoch).

Once training has finished, the pre-trained networks still generally perform worse on low-res

input, but the differences are not as strong as early during training.

The opposite pattern emerges for the randomly initialized models: Initially, these models

make random guesses, regardless of input conditions. But after training has run its course,

significant differences emerge. For the randomly initialized models, in other words, differ-

ences between med- and low-res input emerge and increase over time, whereas they are pres-

ent from the beginning and decrease over time if the parameters are pre-trained on high-res

spectrograms.

This can be explained by differences in spectral resolution between the input conditions.

The pre-trained weights, being optimized for processing high-res spectrograms, generalize bet-

ter to med- than to low-res spectrograms because the resolution of the former is closer to high-

res input. After training, the strong initial differences between the med- and low-res condi-

tions decrease, suggesting that the pre-trained networks compensate, to some extent, for the

reduced resolution. But early during training, when they process low-res speech as if it was

high-res speech, the stronger spectral degradation severely degrades performance.

The degraded spectral resolution in the low-res data is a direct result of channel interaction

(which is absent in the med-res spectrograms). Thus, not only does our operationalization of

channel interaction lead to reduced accuracy after training, but it also leads to slower initial

performance gains for the pre-trained networks. These results imply that channel interaction

in CIs should not only limit speech recognition performance after CI users have fully adapted

to the implants, but that it should also slow learning in PD-CI users during the transition

period after implantation.

7 Conclusions

In an effort to investigate the impact of channel interaction on learning in CI users, we trained

neural networks on two types of spectrograms, intended to approximate CIs with and without

channel interaction. We generally obtained poorer performance on the former—in spite of

training the networks for as long as is necessary for performance to plateau. This suggests that

channel interaction leads to the irrecoverable loss of crucial spectral detail, corroborating

Table 2. Test accuracy, for pre-trained (top) and randomly initialized (bottom) networks.

Init. Task Model med-r. low-r. Diff med-r. low-r. Diff med-r. low-r. Diff

pre-tr. gender PER 83.0 75.3 7.7 ��� 85.1 79.4 5.7 ��� 87.3 83.1 4.2 ���

CNN 74.6 73.1 1.5 93.5 90.0 3.5 ��� 97.6 97.3 0.3

words PER 41.0 36.5 4.5 ��� 41.5 38.0 3.5 ��� 42.6 41.1 1.5 ���

CNN 62.7 58.4 4.3 ��� 62.6 62.6 1.0 ��� 66.7 65.8 0.9 �

rand. gender PER 50.3 51.1 -0.8 63.4 63.0 0.4 87.1 84.3 2.8 ��

CNN 59.2 59.2 0.0 65.8 63.4 2.4 96.2 96.9 -0.7

words PER 2.9 2.6 0.3 9.7 9.7 0.0 42.4 41.1 1.3 �

CNN 3.3 3.5 -0.2 5.1 5.0 0.1 67.0 63.5 3.5 ���

Left: accuracy before training on med- or low-res spectrograms. Middle: accuracy after the first epoch. Top: accuracy after the final epoch. Diff = accuracy on med-res

spectrograms minus accuracy on low-res spectrograms. The stars denote Bonferroni-corrected significance thresholds (�: p� 0.05; ��: p� 0.01; ���: p� 0.001).

https://doi.org/10.1371/journal.pone.0212134.t002
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previous findings that CI users perform worse in the presence of channel interaction due to a

decrease in spectral resolution [1, 2].

Apart from a performance degradation after training, we also found a negative impact of

channel interaction on the early performance of networks pre-trained on spectrograms

intended to approximate the speech delivered through the intact cochlea (high-res input). We

observed that the effect was absent in models that were not pre-trained; and that the pre-

trained networks recovered with additional training, until they performed similarly to their

randomly initialized counterparts. This second effect, then, arises only if the models have

adapted to high-res input, and it is reversible over time.

The implication for CIs is that spectral degradation caused by channel interaction should

slow learning in PD- but not in CD-CI users. Prior to implantation, only the former adapt to

normal hearing; and this might force them to unlearn certain processing strategies that may be

applicable to normal hearing—but that do not generalize to CIs due to the impoverished

nature of the implant-delivered signal. For example, PD-CI users might need to re-learn which

acoustic features they attend to, with more emphasis on coarse- rather than fine-grained fea-

tures after implantation. If spectral resolution is increased, there should be less need for such

adaptation. Consequently, we predict that techniques for the reduction of channel interaction

[28] will accelerate speech recognition improvement in PD-CI users.

More generally, our study demonstrates how machine learning can be used to shed light on

questions in the field of CI research. Our approach allows us to quickly evaluate the impact of

input modifications on auditory pattern recognition, without the difficulties involved in con-

ducting behavioral studies (e.g. time constraints, ethical considerations). In similar machine

learning experiments, other input properties could be examined. For example, one could

model the electrical pulse trains generated by CIs and investigate how the pulsatile nature of

the signal affects processing.
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