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ABSTRACT The interaction between a ligand and a protein involves a multitude of conformational states. To achieve a partic-
ular deeply bound pose, the ligand must search across a rough free-energy landscape with many metastable minima. Creating
maps of the ligand binding landscape is a great challenge, as binding and release events typically occur on timescales that are
beyond the reach of molecular simulation. The WExplore enhanced sampling method is well suited to build these maps because
it is designed to broadly explore free-energy landscapes and is capable of simulating ligand release pathways that occur on
timescales as long as minutes. WExplore also uses only unbiased trajectory segments, allowing for the construction of Markov
state models (MSMs) and conformation space networks that combine the results of multiple simulations. Here, we use WExplore
to study two bromodomain-inhibitor systems using multiple docked starting poses (Brd4-MS436 and Baz2B-ICR7) and synthe-
size our results using a series of MSMs using time-lagged independent component analysis. Ranking the starting poses by exit
rate agrees with the crystal structure pose in both cases. We also predict the most stable pose using the equilibrium populations
from the MSM but find that the prediction is not robust as a function of MSM parameters. The simulated trajectories are synthe-
sized into network models that visualize the entire binding landscape for each system, and we examine transition paths between
deeply bound stable states. We find that, on average, transitions between deeply bound states convert through the unbound
state 81% of the time, implying a trial-and-error approach to ligand binding. We conclude with a discussion of the implications

of this result for both kinetics-based drug discovery and virtual screening pipelines that incorporate molecular dynamics.

INTRODUCTION

Much effort in computational medicinal chemistry is
devoted to finding the correct pose for a given ligand. Dock-
ing algorithms examine a large set of possible binding
modes and use empirical scoring functions to determine
which of these has the lowest free energy. The accuracy of
a given docking algorithm is typically tested by measuring
the root mean-square distance (RMSD) between the lowest
free-energy pose to a single crystal structure pose for a large
ensemble of protein-ligand systems (1-3). Such pose pre-
dictions can be very important for the development of lead
molecules in the drug discovery process because they pro-
vide an intuition for structure-activity relationships. How-
ever, in general, multiple binding poses can exist with
similar probabilities—especially in nonoptimized protein-
ligand systems during screening—and a single-pose para-
digm can neglect valuable information that can aid the
drug discovery process. For instance, alternative poses
with slightly higher free energies can be stabilized during
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ligand design (4). Also, the connectivity between states
can be taken into account to design inhibitors with long resi-
dence times (5,6), increasingly seen as a desirable objective
in drug design (7,8).

It can thus be beneficial to examine multiple ligand bind-
ing poses during the design process. The set of all binding
poses can be viewed as points on a multidimensional
ligand-binding free-energy landscape that each occur with
some finite probability (9). A map of this landscape that
shows a large ensemble of possible poses and how they
are connected with both each other and the unbound state
would be a valuable tool in ligand design. A complete,
accurate map would allow for the prediction of binding
mechanism, free energy, and kinetics and could be used to
predict how the stability of these states would change as
chemical modifications are made to the ligand. Unfortu-
nately, construction of these maps is challenging because
structural data from experiment is limited to only the most
stable states and molecular simulation is easily trapped by
deep metastable free-energy minima.

Recent progress in both hardware and software for molec-
ular simulation is providing our first glimpses to the paths of
ligand (un)binding and their kinetics (10). Ligand release
kinetics can be efficiently predicted in some cases using
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random acceleration molecular dynamics (11); however,
this method cannot produce absolute binding kinetics, and
the external force can affect the ensemble of pathways
in ways that are hard to predict. Ligand release paths
have been determined using the metadynamics method,
in which a biasing potential is introduced along an order
parameter that describes the binding or release process
(12). This has allowed for the characterization of extremely
rare ligand release events, such as the unbinding of
dasatinib from Src kinase with a mean first passage time
(MFPT) of ~20 s (13) and the unbinding of a type II inhib-
itor from p38 MAP kinase with an MFPT of ~7 s (14).
Although techniques have been developed to subtract the
effect of biasing forces on estimates of free energy and ki-
netics (15), there is no clear way to subtract the impact of
the biasing force on the transitions between different
microstates.

A number of enhanced sampling methods for ligand-
protein interactions employ only unbiased dynamics, which
are suitable for building maps of the binding landscape. The
adaptive multilevel splitting method uses a series of loops
that begin and end in the bound state, progressing farther
and farther toward the unbound state as the simulation pro-
gresses (16). This has been used to study the release of ben-
zamidine from trypsin, which has an MFPT of 1.6 ms (17).
Adaptive Markov state modeling, in which on-the-fly Mar-
kov state models (MSMs) are used to direct the seeding of
new simulations, has also been used on the trypsin-benzami-
dine system (18). Another method, weighted ensemble
(WE) (19), uses a set of parallel trajectories that are
balanced between regions of space using cloning and merg-
ing operations. This has been used in conjunction with the
Northrup-Allison-McCammon method (20) to estimate
binding rates using Brownian dynamics (21) and coarse-
grained models (22).

The WExplore enhanced sampling method (23) is a
variant of WE that has been used to study long-timescale
ligand release processes. WExplore is particularly suited
to study high-dimensional systems because it builds a set
of hierarchical Voronoi polyhedra on the fly to divide the
space into regions and to guide the cloning and merging op-
erations in the WE framework. WExplore has characterized
unbinding paths of a series of molecular fragments from the
FK-506 binding protein (24) and has extensively sampled
the trypsin-benzamidine system, discovering three distinct
ligand release pathways (25). This method was also used
to sample both binding and release pathways of a series of
host-guest systems for the SAMPL6 challenge (26), with
release pathway timescales as long as 830 s. Finally,
WExplore studied release pathways of the N-(1-[1-
oxopropyl]-4-piperidinyl)-N’-(4-[trifluoromethoxy]phenyl)-
urea ligand from the enzyme-soluble epoxide hydrolase,
experimentally determined to have an MFPT of 660 s
(27). WExplore is well suited to map ligand binding land-
scapes in that it is both 1) built on unbiased dynamics
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and 2) capable of sampling ligand release events occurring
on timescales of seconds to minutes.

Here, we use WExplore to sample the ligand binding land-
scapes for two protein-ligand complexes and test its ability to
predict global free-energy minima when starting from inac-
curate starting points. We focus on two bromodomains: small
epigenetic reader domains composed of four left-handed
a-helices, which recognize e-N-acetylated lysine residues.
There are currently 61 known distinct human bromodomains
that are contained in 46 different proteins (28). Bromodo-
mains have been of intense therapeutic interest in recent
years (29-40) because bromodomain inhibitors have been
proposed as treatments for cancer, diabetes, and inflamma-
tion. Much attention has been given to the bromodomain
and extraterminal (BET) family, including Brd4, for which
the first inhibitor was discovered in 2010 (41).

The first complex studied here involves Baz2B (bromo-
domain adjacent to zinc finger domain protein 2B), which
has a relatively small lysine binding pocket and is consid-
ered one of the least-druggable bromodomain targets (29).
Drouin et al. (34) developed a chemical probe, “ICR,”
that is selective for bromodomains Baz2A and Baz2B. We
study here the interaction between Baz2B and an intermedi-
ate compound “ICR7” (Protein Data Bank (PDB): 4XUB),
which has slight differences from ICR and is ~10-fold less
potent for Baz2B binding (half maximal inhibitory concen-
tration, IC50 = 1.1 uM). We also examine the well-studied
Brd4 protein, which has two distinct bromodomain sub-
units. Zhang et al. (30) developed an inhibitor “MS436”
that preferentially binds to the first bromodomain
(Brd4(1)) over the second (K; = 40 nM). The interaction
of MS436 with Brd4(1) (PDB: 4NUD) is the second com-
plex studied here.

Starting from two very different docked poses for each
system, we use WExplore molecular dynamics sampling
to generate unbinding pathways. We obtain pathways that
connect the docked bound states to alternative binding
poses, as well as quasibound and unbound states. The simu-
lation results are then synthesized into MSMs that are
visualized as networks and used to predict the globally
stable bound poses, which can differ from both starting
points. Transition paths that connect the two ligand orienta-
tions are analyzed, and we quantify the fraction of transition
paths that interconvert on the protein surface versus inter-
converting in the bulk. We conclude with a discussion of
the implication of these results for the screening of future
bromodomain inhibitors.

METHODS
Docking

Docking is performed using Autodock Vina (3) and AutoDockTools from
MGLTools package 1.5.6. Coordinates of the protein are taken from
PDB: 4XUB (34) and PDB: 4NUD (30) for Baz2B and Brd4, respectively.
We use a cubic grid with 80° points, 0.375 A spacing, and a center taken



from the center of geometry of the ligand in the crystal structure. Crystal-
lographic waters are not included in the docking procedure. We retain the
top nine models and use these to choose two starting structures for each
protein-ligand system that we label poses A and B. More on how these
poses are chosen is given in Starting Poses.

Molecular dynamics sampling

The CHARMM36 force field is used for all minimization and molecular
dynamics simulation, and dynamics are run using the CHARMM program
(42) with an OpenMM interface for GPU dynamics. Ligands are parameter-
ized with CGenFF (43,44), and four systems total are built for proteins
Baz2B and Brd4, each with poses A and B. Each system is solvated using
TIP3 waters and a cubic box with a cutoff of 12 /f\, and ions are added to
neutralize the system: for Brd4, three chlorine atoms are added, and for
Baz2B, no ions are required. The systems are then energy minimized using
harmonic restraints on the protein and ligand atoms: 500 steps of steepest
descent followed by 500 steps of the adopted basis Newton-Raphson
method. The minimization is then repeated with the restraints removed.
Each system is heated gradually from 50 to 300 K by increments of
25 K, with 5000 dynamics steps at each temperature. The systems are
then equilibrated with 500 ps of simulation, and the resulting conformation
is used to initialize our WExplore simulations.

During dynamics, covalent bonds to hydrogen atoms are constrained
with the SHAKE algorithm with a tolerance of 10~®. Nonbonded interac-
tions are computed with the particle mesh Ewald method using a Gaussian
width (k) of 0.32 and 96 grid points along the x, y, and z directions. Lennard-
Jones interactions are calculated up to an 8.5 A cutoff. A constant temper-
ature is maintained using a Langevin heatbath with a reference of 300 K and
a friction coefficient of 1.0 ps—'. A constant pressure is maintained with a
Monte Carlo barostat coupled to a reference pressure of 1.0 atm. The MC
barostat uses volume moves attempted every 50 time steps. A 2 fs time
step is used for all simulations performed here.

WEXxplore

WExplore (23) is an enhanced sampling technique built on the WE method
(19). In this technique, an ensemble of trajectories is run forward in time
and is periodically managed by a central process that can clone or merge
trajectories to sample over a set of regions as evenly as possible. A set of
regions is defined in conformation space, and trajectories are cloned in un-
der-represented regions (e.g., saddle points) and merged in over-represented
regions (e.g., high-probability basins of attraction). The WE method has
largely been implemented by defining these regions along one or two order
parameters (22,45-47), and the key advance of the WExplore method was
to define regions in a high-dimensional-order parameter space using hierar-
chical Voronoi polyhedra (for more information, see (23)). We have found
WExplore to be useful for discovering new regions of conformational space
(48), and it works best for low-entropy to high-entropy transitions, such as
ligand unbinding pathways (10,24,25,27).

In WExplore, trajectories are assigned to regions using distance measure-
ments to a set of characteristic conformations of the system (called “im-
ages”), which are dynamically defined over the course of the simulation.
To measure distances between conformations, we first align the two confor-
mations using a set of residues in the binding pocket that are within 8 A of
the ligand in its initial pose; the distance between the conformations is then
the RMSD between the sets of ligand atoms without any further alignment.
This captures ligand rotation, translation, and reorganization and is suitable
for building diverse ensembles of ligand-bound poses. As in previous work,
we use a four-level region hierarchy with critical distances of 2.5, 3.5, 5.0,
and 10 A (25,27); we also use 10,000 dynamics steps (4t = 20 ps) between
cloning and merging operations.

This method bears some similarity to Markov state modeling approaches
because both are run using entirely unbiased dynamics. However, an advan-

Mapping the Ligand Binding Landscape

tage of the WE family of methods is that observables can—in principle—be
calculated without invoking a Markovian assumption by assigning a statis-
tical weight to each trajectory that governs how strongly it contributes to
statistical averages. For instance, in this work, the unbinding trajectory
flux that determines the unbinding rate constant, k., is directly calculated
using the sum of the weights of unbinding trajectories. In practice, some ob-
servables are slow to equilibrate and are more efficiently calculated using a
Markov model. In this work, Markov models are used to calculate the equi-
librium probabilities of each state to make predictions for the most probable
binding poses.

The weights of trajectories are initialized to be equal and are modified
only during cloning and merging events, as follows. When a trajectory is
cloned, its weight is divided among the clones, thus conserving probability.
When two trajectories A and B are merged, the resulting trajectory C has
weight we = wy + wp, and it takes on conformation A with probability
wal/wc and conformation B with probability wg/wc. Here, following previ-
ous work (25), to improve sampling efficiency, we impose maximal and
minimal weights that walkers can achieve: wy,,, = 0.1 and wp,;, = le 12
This is enforced by disallowing cloning or merging operations that would
violate these rules.

For each of the four systems, we perform three WExplore simulations
with 48 trajectories each. These are run for 730 cycles, which are comprised
of 20 ps of sampling for each trajectory followed by merging and cloning
operations. In aggregate, we report on 701 ns per WExplore simulation
or 8.4 us total. The simulations were performed using nodes equipped
with four NVIDIA K80 graphics processing units, which complete the dy-
namics for a single cycle in an average of 7.9 min. The combined set of sim-
ulations reported here required ~6.9 node weeks or 27 graphics processing
unit weeks.

Exit rates and ensemble definitions

To calculate the exit rates, we employ an ensemble-splitting strategy (49),
in which two basins (bound and unbound) are used to define binding and
unbinding ensembles. Here, we define a system to be in the unbound basin
if the closest distance between the ligand and the protein is greater than
10 A. The bound basin (although no definition is required in this work)
could be defined as the set of structures in which the ligand RMSD is
less than 2.0 A from the starting pose after alignment to the binding site.
Our simulations are run in the “unbinding ensemble,” in which trajectories
are initialized in the bound basin and are terminated in the unbound basin.
The trajectory flux from the unbinding ensemble into the unbound basin is
equal to the unbinding rate constant (ko) and can be calculated as the sum
of the weights of the exiting trajectories divided by the elapsed time. Simi-
larly, the binding rate could be determined by running simulations in the
“binding ensemble,” in which trajectories are initialized in the unbound ba-
sin and terminated in the bound basin, although this is not done here. We
have found previously that, although rate measurements from trajectory
flux can vary significantly between WExplore simulations, the average
over an ensemble of simulations can compare well to experimentally deter-
mined off rates (25,27).

MSM and network modeling

Because our simulation results broadly sample the ensemble of ligand
bound poses, including complete exit trajectories, there is considerable
overlap between those that start in pose A and those that start in pose B.
We use coclustering to synthesize the two data sets and use these models
to visualize our pose network, predict globally stable states, and determine
properties of A <> B transition ensembles.

For the pose networks, we cluster using a set of ligand-protein distances.
This allows all poses to be distinguished on a structural basis, creating a
detailed view of the free-energy landscape. For both Baz2B and Brd4,
the set of distances was constructed using two sets of atoms (a set of
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selected ligand atoms and the set of protein Ca atoms that are within 20 A
of the center of mass of the ligand) and choosing every possible combina-
tion of atoms between the two sets. The selected atoms for each ligand was
a set of heavy atoms—13 for MS435 and 15 for ICR7, selected manually—
that cover all functional groups of the ligand (Fig. S1). The set of ligand-
protein distances (962 for Brd4-MS435 and 1035 for Baz2B-ICR?7) is
used as a base set of features to describe our data set.

We then use time-lagged independent component analysis (tICA)
(50,51) to identify coordinates that change slowly as a function of
time. As WExplore uses a set of trajectories that are cloned and merged
at each time step, knowledge of the trajectory history is required for the
tICA analysis. This was accomplished by construction of a branching tree
of trajectories using the wepy package (52), allowing each point to be
traced backward in time in a unique fashion. Many tICA clustering pa-
rameters were used in this work to examine the robustness of our cluster
predictions. We varied the number of dimensions used in tICA analysis
(ngca = 3, 5, 10), the tICA lag-time (7qca = 0.2, 1 ns), the Markov
model lag-time (4t < 7 < 5041), and the number of clusters (n., =
500, 800, 1200). Because the initial sampling is heavily concentrated
around the initial points chosen from docking, we also discard a fraction
of the initial data (0 < f; < 0.7). Parameters used in specific tICA cluster
sets are given in Table SI, and for each set, we construct 48 Markov
models (six 7 values and eight discard fractions). We construct another
48 Markov models without tICA clustering for each of n. = 500, 800,
and 1200. These use k-means clustering directly on the set of ligand-
protein distances. In total, we compute predictions of the globally stable
state using 720 different Markov models for each of the Brd4 and Baz2B
systems.

For the network models, each cluster is represented as a node,
and nonzero off-diagonal elements of the transition matrix (denoted
here as #,; for transitions from i to j) are represented as edges. As in previous
work (25,27,53), the weight of an edge between nodes i and j (e;) is as
follows:

1 t: ti:
e; = 100= [ =<2 +L>, 1)
! 2 <Zktik Zkl}'k

that is, the average of the conditional transition probabilities in either
direction between i and j multiplied by 100. Determination of transition
matrices, weight calculations, and graph construction were performed
with the CSNAnalysis package v0.5 (54). Network layouts are created in
Gephi using the Force Atlas algorithm with repulsion strength 200,
attraction strength 10, and maximal displacement 10. The layout is
minimized first while allowing for node overlap, followed by a brief
minimization while preventing overlap, with the maximal displacement
reduced to 1.0.

RESULTS

The Results describes the construction of the initial bound
poses (Starting Poses) and the analysis of the WExplore
sampling runs. The runs are first analyzed by determining
the exit rate separately for each starting pose (Ranking
Poses by Exit Rates), which does not involve a Markovian
assumption but provides only coarse detail on which
binding mode is preferred for each ligand-protein complex.
A series of MSMs are constructed (MSMs for Pose Predic-
tion), from which we estimate binding affinities and stable
poses. A single Markov model is then chosen for further
analysis: visualization of pose networks (Bound Pose
Networks) and analysis of pose interconversion pathways
(Pose Interconversion Pathways).
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Starting poses

We use Autodock Vina (3) to generate a set of nine possible
bound poses for both Baz2B and Brd4 (Figs. S2 and S3).
From this set, we select two poses that show large differ-
ences in their global orientation while maintaining high
predicted affinities. We also take care not to choose poses
with very low RMSD to the crystal structure because we
aimed to test whether we could predict the crystal structure
when using an inaccurate starting point. Two such starting
points are used for each complex as initial structures for
WExplore MD sampling (Fig. 1). RMSD to the crystal
structure for all four starting structures ranges from 3.1 to
10.5 A. Pose A for Baz2B has roughly the same orientation
as the crystal structure but is shifted further into the binding
pocket. The N6 atom of the methyl-pyrazole group, which
in the crystal structure forms a hydrogen bond with
Asn1944, is roughly 3 A deeper, forming a hydrogen bond
with the Tyr1901 side chain. The N5 atom on the central
imidazole ring moves down to form a similar interaction
with Asn1944. Pose A for Brd4 is also shifted ~3 A deeper
into the pocket. Pose B in both cases is bound in a
completely different orientation. In Baz2B, the nitrile group
is bound to the recognition pocket, with the triazole and
imidazole rings spreading in different directions. In Brd4,
the ligand is rotated ~180°, with the 2-aminopyridine ring
deeply bound in the pocket.

Ranking poses by exit rates

Exit points (where the system enters the unbound basin) are
obtained in each of the 12 WExplore simulations. We obtain
a total of 371 exit points for Baz2B and 124 for Brd4, which
reflects the higher affinity of the MS436 ligand (Table 1).
These exit points all represent structures that have at least
10 A of clearance between the ligand and the protein. As
seen in Fig. S4, they are heterogeneous and are widely
distributed in space surrounding the protein.

Using the sum of the weights of these exit points, we
determine off-rates for each protein and starting pose. A
small, threefold difference was observed in k. between
ligand poses in the Baz2B system, with pose A predicted
to be slower. For Brd4, we predict pose A to have a slower
off rate than pose B by a factor of ~600. Thus, as a
pose-ranking technique, the exit flux would predict pose A
to be more stable than pose B in both cases. However, as
in previous work, the exit fluxes have high run-to-run vari-
ability, as seen by the large error estimates in both Wy
and k¢ in Table 1.

It is important to keep in mind that the link between a
pose-specific ko and the thermodynamic probability of a
binding pose is not straightforward. In other words, long
exit times do not imply that a particular pose is stable or
that it is a relevant template to use for drug design. The
most probable ligand pose will form a basin of attraction
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front top

Initial poses from docking. (eft) Front and top views of starting poses A and B of the Baz2B-ICR7 system. Residues Tyr1901 and Asn1944 are

shown in licorice representation. (right) Front and top views of starting poses A and B of the Brd-MS436 system. Protein residues Tyr97 and Asn140, which
are homologous to those shown in Baz2B, are shown in licorice. In both cases, the crystal structure pose is shown in red, and poses A and B are shown with

colors according to atom type. To see this figure in color, go online.

in the free-energy landscape, and a set of nearby poses—
although they themselves may be unstable—will commit
to that basin with high probability and thus have a similarly
low ko value. Thus, to understand the link between
pose-specific kg and pose probability, we must understand
how poses are connected with both each other and with
the unbound state.

MSMs for pose prediction
Special considerations for WE data sets

As all of the WExplore simulations are run with the natural
energy function (e.g., no biasing forces), we can employ
MSM analysis to divide our conformation space into a set
of states and estimate their equilibrium probabilities.
Although this is possible with WE data sets, the directed
cloning and merging operations introduce some special con-
siderations into how the transition count matrices should be
constructed. To illustrate this, consider a WE simulation as a
branching “trajectory tree,” with each trajectory growing
upward in time (Fig. 2). Cloning events can be viewed as
branchpoints of this tree, and merging events result in the

termination of a branch, with its weight transferred to
another point in the tree. For a given transition matrix lag
time (7t = ndt), a count matrix can be constructed by
the set of all possible tree paths P = {(ay — bg), (a1 —
by), ...}, where a and b are connected by a path of length
n. So, once all of the structural data is clustered, the cluster
assignments are used to label the tree, and the transition
count matrix could be constructed as

tp =Y 8(ca—1)(ch — j), @)

a,be P

where c, is the cluster assignment of conformation x in the
trajectory tree and 6(x) is a 0 function. However, this transi-
tion matrix construction is problematic because it gives all
paths equal weight, regardless of the statistical weight of
the trajectory determined by the WE algorithm. To appre-
ciate this, consider the set of trajectories that begin in the
bottom state in Fig. 2. The rightmost trajectories have
been cloned and would thus be over-represented compared
to the others if the transition matrix was constructed accord-
ing to Eq. 2. In fact, because low-probability unbinding

TABLE 1 Pose-Specific Dissociation Kinetics Determined by Exit Point Weights
Number of exits
Run 1 Run 2 Run 3 Total Exits Weotal koge (s™1* MFPT, "
Baz2B Pose A 38 78 53 169 0.035 + 0.016 24 + 1.1 x 10° 420 + 190 ns
Pose B 68 58 76 202 0.10 + 0.04 6.6 + 27 x 10° 150 = 60 ns
Brd4 Pose A 25 28 24 77 54 +42x 1078 3.6 29 280 + 220 ms
Pose B 24 9 14 47 32 +26x%x107° 22 + 18 x 10° 0.46 + 0.37 ms

“Errors shown are the standard error of the mean.
®Error in MFPT is calculated as dpppr = 6k(,ff(MFPT)2.
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FIGURE 2 Trajectory tree schematic. Merging and cloning events in WE
simulations can be represented as a branching tree. Cloning events are
branching points, and merging events result in the termination of one
branch and the transfer of its weight to another branch (curved arrows).
To construct a transition count matrix with a lag time of 7, all possible com-
plete paths between t = nT and ¢t = (n + 1)7 should be considered. There are
five such paths in this schematic. To see this figure in color, go online.

trajectories are systematically amplified in the simulations
here, the transition count matrix would be systematically
biased toward the unbound states. For this reason, it is
proper to follow the standard approach of WE simulations,
in which trajectories contribute to observables according to
their statistical weight. These weights account for the
cloning and merging steps in the WExplore algorithm and
are shown for the final states in Fig. 2:

t; = thé(ca — l')(S(C/, —j), 3)

abe P

where wy, is the weight of the trajectory at point b in the tree.
In the next section, we compare both of these approaches.

Estimates of binding affinity

We construct a series of Markov models for the unweighted
(Eq. 2) and weighted (Eq. 3) transition count matrices. For
each model, we calculate the equilibrium probabilities (p;)
for each state i and estimate the binding affinity (Kp) using
the sum of the probabilities of the unbound states:

Zie Upi

Kp, =C ) 4)
° 1 - ZieUpi

where a state i is in U if the minimal distance between the
ligand and the protein is greater than 5 A and C is the con-
centration of ligand, which here is equal to 4.3 mM, calcu-
lated as 1 /N4V, where N, is Avagadro’s number and Vis the
box volume in liters. The minimal ligand-protein distance
for each cluster is determined using an average of
10 randomly chosen structures from each cluster. It is
important to note that our simulations are strictly in the un-
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binding ensemble, that is, trajectories are initialized in the
bound state and are terminated once they achieve a minimal
ligand-protein distance greater than 10 A (ie., enter the
unbound basin). Our simulations neglect trajectories that
begin and end in the unbound basin; for this reason, we
expect unbound states to be undersampled, and we view
the K, calculated by Eq. 4 as a lower bound.

As expected, we observe significant differences between
Kp values calculated using the weighted and unweighted
transition count matrices. The K, values for all parameter
sets are shown as heat maps in Figs. S5-S8, although they
do not vary significantly between the parameter sets. The
most significant variation between parameter sets is for
the weighted transition count matrices of Brd4-
MS436, which have K, values ranging from 1.3 nM (for
naca = 5, Tuca = 0.2 ns, n. = 500) to 820 nM (for
naca = 5, Taca = 1 ns, n. = 500). The average (on a loga-
rithmic scale) minimal and maximal K, values for the two
systems and two count matrices are summarized in Table
S2. The weighted count matrix shows excellent agreement
with the K; for Brd4-MS436. For Baz2B-ICR7, only the
IC50 was measured, although the IC50 and K; values were
almost equal for a closely related compound (34). All of
the Markov models that we construct predict a binding
constant that is higher by at least a factor of 20, which is dis-
cussed further in the Discussion. In both cases, the weighted
count matrices (Eq. 3) achieve a much better agreement with
experimental binding constants than the unweighted
matrices (Eq. 2), and these are used for all subsequent
analyses.

Prediction of lowest free-energy poses

For each set of Markov model parameters, we determine the
lowest free-energy pose in each network and calculate the
RMSD of this state to the crystal structure. The RMSDs
shown are averages over 10 randomly chosen structures
for the lowest free-energy cluster. These low free-energy
pose RMSDs are shown as heat maps for all of the tICA
parameter sets examined in Figs. S9-S12. RMSD heat
maps for two sets of clustering parameters are shown for
both systems in Fig. 3. Fig. 3 A shows the results for
naca = 5, Tuca = 0.2 ns, and n. = 1200. For this set of
parameters, structures similar to pose A are not always
predicted to be more stable than those similar to pose B,
but we find large regions of stability where the lowest
free-energy pose has a low RMSD (<2.5 A) to the crystal
structure. In Fig. 3 B, the number of tICA dimensions is
increased from 5 to 10, and the predictions for the most
stable pose are changed considerably. In general, we find
that predictions for the lowest free-energy pose are sensitive
to tICA clustering parameters (see Figs. S9-S12).

To generally examine whether our pose prediction
improves as a function of lag time (7) or the percentage of
initial data excluded from analysis (p...), we averaged
the low free-energy pose RMSDs along these axes. We
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find a clear trend for Baz2B that increasing predictions
improve with increasing p,..; (Fig. 3 C). For Brd4, we find
that the predicted RMSD initially deteriorates and then im-
proves with increasing p,,.;. Interestingly, we find that the
average quality of predictions for both Baz2B and Brd4
does not improve with longer Markov model lag times
(Fig. 3 D). We also find that we consistently achieve better
results for the Baz2B-ICR7 system compared to the Brd4-
MS436 system.

To investigate whether the tICA vectors are reporting on
long-timescale interactions, we use the tICA vectors to color
the pose networks described in the next section (Figs. S13
and S14). In both cases, the first tICA vector (which reports
on the longest timescale process) corresponds to transitions
between the pose A region and the rest of the network. The
second tICA vector corresponded to transitions between the
unbound/quasibound states and the deeply bound states.
Vectors 3-5 described transitions between disparate com-
munities within the quasibound ensemble, the only excep-
tion being Baz2B-tICA4, which also describes transitions
between two adjacent deeply bound communities (see

10 20 50

Lag time (At)

Pose Interconversion Pathways for more details). We
conclude that the tICA analysis is working as intended, as
the vectors capture the longest-timescale motions in our
system. To compare, we also generate a separate set of
Markov models without using tICA in which the set of
ligand-protein distances was directly clustered. This is help-
ful because it eliminates the need to define Tca and ngca.
However, we obtain similar mixed results for the RMSD
predictions, in which only small domains of robustness
are found and different results can be obtained with different
numbers of clusters (Fig. S15).

To investigate these poses in more detail, we randomly
pick a set of 100 structures from the clusters from
naca = 5, Tuca = 0.2 ns, and n. = 1200 that are predicted
to be the most stable for higher p,,.;. The median structure
from this set (with the lowest ligand RMSD to the other
members) is shown, along with density maps that are calcu-
lated from all set members, in Fig. 4. We see a significant
amount of variation within the set of structures for both
systems. For Brd4, we see that the median structure is bound
significantly lower than the crystal structure pose, in line
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with starting pose A. We do not reproduce the orientation of
the solvent-exposed pyridine ring observed in the crystal
structure, although this could be due to interactions between
other copies of Brd4 in the crystal lattice (Fig. S16). Poses
sampled from the lowest free-energy cluster have RMSD
values to crystal ranging from 2.4 to 5.5 A. We find better
agreement for the Baz2B-ICR7 system, with RMSD values
ranging from 1.2 to 4.9 A. The median structure reproduces
the crystal structure interactions in the binding pocket, and
this is consistent across the majority of structures examined.
The density becomes more spread out for the solvent-facing
triazole ring, which is observed partly in an unstacked orien-
tation relative to the benzonitrile group. This is in line with
NMR measurements of the ICR7 compound, which indicate
that the triazole and benzonitrile groups do not exhibit a
stacked conformation in solution (34). However, the lack
of stability of the bound, stacked conformation could still
indicate that ring-stacking interactions are not sufficiently
strong in our parameterization of the force field for ICR7.

Bound pose networks

We use conformation space networks to visualize the land-
scape of bound poses for both systems (Fig. 5). We again
focus on a single set of MSM parameters (ngca = 3,
Taca = 0.2 ns, n. = 1200, pere; = 70, and 7 = 0.2 ns), and
although the parameters affect the weights of specific states
in the network, the overall topology of the network is robust.
Edges are given a weight according to Eq. 1 using the
weighted transition matrix elements from Eq. 3. For visuali-
zation, only edges with a weight greater than 0.4 are shown,
and nodes that are not connected to the giant component of
the network are discarded. After filtering, the Baz2B network
shows 1195 nodes (99%) and 15,848 edges (66%), and the
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Brd4 network shows 1157 nodes (96%) and 7442 edges
(49%). These numbers illustrate that the Baz2B system is
much more interconnected than Brd4, which is also clear
from visual inspection of the networks.

The nodes in Fig. 5, A and B are colored according to the
RMSD of the ligand to the crystal structure after aligning to
the Ca atoms in the binding site. In both cases, starting pose
A has a much lower RMSD to the crystal than pose B, as
shown in Fig. 1. The lowest free-energy pose for this set
of MSM parameters is indicated in both cases, as described
above. Because of the nature of the network layout minimi-
zation algorithm, nodes that are far apart tend to interconvert
more slowly than nodes that are close together. Tight groups
of nodes can thus be considered to be in the same basin of
attraction and to interconvert relatively quickly. For both
systems, we find the lowest free-energy pose to be in the
same basin of attraction as the lowest RMSD pose to the
crystal structure.

The nodes in Fig. 5, C and D are colored according to the
ligand solvent-accessible surface area (SASA). From these,
we can clearly identify three deeply bound basins of attrac-
tion for Baz2B-ICR7 (yellow and white nodes) and two
deeply bound basins for Brd4-MS436. The “pose A basin”
for Baz2B-ICR7 corresponded to a deeper insertion of the
ICR7 ligand, with roughly the same orientation as the crys-
tal structure. The network shows that the crystal structure
basin is “off pathway” with respect to “pose A” binding
and unbinding transitions. The Brd4-MS436 “pose A basin”
is also more deeply bound than the crystal structure and the
lowest free-energy pose. However, the crystal structure in
this case is “on pathway” with respect to “pose A” binding
and unbinding transitions.

From the SASA network plots, it is also apparent how
many distinct local minima exist with relatively similar
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predicted probabilities. The lowest free-energy poses have
probabilities of 0.015 and 0.027 for Baz2B and Brd4,
respectively. For Baz2B, there are 25 other states with at
least half of this probability, with RMSDs to crystal ranging
from 2.9 to 9.8 A. For Brd4, there are seven other states that
are at least half as probable, with RMSDs to crystal ranging
from 3.0 t0 9.9 A. This abundance of states with similar sta-
bilities underscores the challenge of conclusively predicting
a single stable pose.

Pose interconversion pathways

The pose networks provide a detailed description not
only of binding and unbinding pathways but the intercon-
version of different states. When a ligand interconverts
between different bound poses, will this occur while
the ligand remains loosely associated with the protein?
Or will the ligand first unbind and then rebind in a
different orientation? To answer this question, we label
a set of nodes as “unbound” if the minimal distance be-
tween the ligand and the protein is greater than 5 A.
Note that this must be smaller than the cutoff we use
for terminating unbinding trajectories (10 A). We then

Lowest free
energy pose
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FIGURE 5 Networks of bound poses. The sim-
ulations starting from poses A and B are synthe-
sized into networks in which each node is a
bound pose and the connections show the poses
that are observed to interconvert in the molecular
dynamics simulations. In all networks, nodes are
given a size according to their weight, as deter-
mined by the MSM with ngca = 5, Tuca =
0.2 ns, n. = 1200, p,.; = 70, and 7 = 0.2 ns. (A
and B) Nodes are colored according to their
RMSD to the crystal structure, determined using
the average over 10 randomly chosen structures
from each node. The clusters corresponding to
starting poses A and B are labeled for each
network, as well as the predicted lowest free-en-
ergy pose for this set of MSM parameters. (C
and D) Nodes are colored according to their ligand
SASA. In both networks, quasibound (green) and
unbound (blue/black) nodes form a dense cluster,
with deeply bound states (white/yellow) radiating
outward from this cluster. To see this figure in co-
lor, go online.

Brd4-MS436

divide the remainder of each network into communities
using a modularity optimization algorithm implemented
in Gephi (55). An extended transition matrix (7,) is con-
structed (size 2N x 2N, where N = 1200 is the number
of states) using an auxiliary variable «, where « = 0 if a
trajectory has not yet visited the unbound state and
« = 1 indicates a trajectory has visited the unbound
state. To examine transition paths between communities
A and B, we add probability sinks to 7, by replacing
columns that correspond to A and B with identity vectors
(i.e., probability can get in but cannot get out). By iter-
atively multiplying this matrix against itself, we can
examine its steady state behavior and, for each state i,
measure the committor probabilities p{~, pY~, pY*,
and pé“’, where the subscript indicates the destination ba-
sin and the superscript indicates if the transition path did
(U+) or did not (U—) go through the unbound state. The
probability of an A to B transition path being mediated
by the unbound state is then equal to

Pa-u—-B = ZgA(j) pﬁ*(/‘)

8 5
e S ET O M
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where £4(i) is the probability that a trajectory, initialized in
basin A, will exit into state i. The exit probabilities (£4(i))
are calculated again using a sink matrix, this time using a
sink for each state that is not in basin A. This analysis
(referred to as “hub score analysis™) was previously used
to study interconversion paths in protein-folding conforma-
tion space networks (53,56) and is implemented in the
CSNAnalysis package (54).

Fig. 6 shows the communities in each network (Fig. 6, A
and B) and the probabilities that transition paths between
these communities are mediated by the unbound state
(Fig. 6, C and D). In both networks, the unbound states
are shown as black nodes. It is important to note that the
unbound states are not expected to form a cohesive intercon-
verting community because the ligand can unbind from
anywhere on the protein and a wide variety of unbound
states are observed (as shown in Fig. S4). For Baz2B, there
are three “deeply bound” communities: one for each of
“pose A” (C2) and “pose B” (C1) and an additional com-
munity that includes the lowest free-energy state (C3).
Brd4 has two deeply bound communities, corresponding
to poses A and B. The community indices are ordered
according to their total weight, with community 1 having
the highest total weight.

A

In the bottom left of the matrices in Fig. 6, C and D, we
see the probabilities that interconversion paths between the
highest-weighted communities go through the unbound
state. For Baz2B interconversion between the “pose B”
community (C1, purple), with the “pose A” community
(C2, gray) almost always goes through the unbound state
(p = 0.99). Similarly, paths from “pose B” to C3 (magenta),
which contains the crystal structure pose, go through the
unbound state with p = 0.98. In the dashed rectangle, we
see that paths from “quasibound” communities (C4—-C8)
to deeply bound communities go through the unbound state
with high probability. Remarkably, even paths from C2 to
C3 go through the unbound state with p = 0.504 and from
C3 to C2 with p = 0.579. The lowest unbound mediation
probability is for paths from C1 to C4 (p = 0.130), where
C4 is directly between C1 and the unbound states. With
this exception, we conclude that in the Baz2B network,
interconversion between poses mostly proceeds through
unbinding and rebinding. Significant differences are
observed for the Brd4 mediation probabilities. Each quasi-
bound state has a deeply bound state that it can transition
to directly without passing through the unbound states
(Fig. 6 D: dark gray and black squares in the red rectangle).
However, transitions between the two deeply bound states
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are still mediated through unbound states more often than
not (p = 0.820 for C1-C2 and p = 0.728 for C2-C1).

To further investigate the binding landscape, we deter-
mine the probability that quasibound trajectories will
commit to either one of the deeply bound states or to the un-
bound states. A committor probability is determined for
each quasibound state, and a weighted average (using the
equilibrium weights of each state) is shown in Fig. 6 E for
each community. We see significant differences between
the two bromodomain-inhibitor systems, with most of the
Baz2 quasibound communities committing to the unbound
state and all of the Brd4 quasibound communities commit-
ting to deeply bound states. The Brd4-MS436 system can
thus be thought of as a “dual-funnel”-shaped landscape,
with two minima near poses A and B. The quasibound states
exist halfway down this funnel and help guide the ligand
to one of the two deeply bound orientations. In the
Baz2B-ICR7 system, the quasibound states have still not
crossed the rate-limiting step of binding, and the ligand is
still free to reorient or not to bind at all. Although we
only have examined two protein ligand systems, it is
tempting to speculate that “funneling” is a hallmark of
higher-affinity ligands, for which low free-energy, deeply
bound states influence the committor probability of binding
intermediates.

DISCUSSION

Mapping the ligand binding landscape can teach us how
ligands bind, how poses are connected, and which poses
are the most stable. Here, we have shown that WExplore
is able to efficiently build a model of the binding landscape
and sample events with waiting times up to 280 ms (the
release of MS436 from pose A). However, it is limited by
the accuracy of the force field used for both the ligand
and the protein. In particular, we suspect that the para-
meterization of ICR underpredicted the stability of the
ring-stacked conformation. This could have led to the over-
prediction of the Kp in Table S2 and the extremely short
MFPTs of ligand release (420 and 150 ns for poses A
and B, respectively). In contrast, a Baz2B probe with
60 nM affinity, GSK2801, was measured using biolayer
interferometry to have a ko of 6.95 X 1073 s7!, which
would have an MFPT of 144 s (36).

Pose prediction by integrating unbinding simulations into
a network model presents a novel approach to a difficult
problem. Previously, it was shown that long, straightforward
simulations can discover binding poses. Shan et al. directly
simulated binding of two inhibitors to Src kinase, obtaining
four binding events in 150 us of total simulation (57).
Generally, ligand binding occurs more quickly than unbind-
ing and is thus more amenable to direct simulation. How-
ever, the residence time of each pose, which can be
obtained only through simulating ligand release, is also
necessary to rank pose stability. Clark et al. used induced

Mapping the Ligand Binding Landscape

fit docking in combination with metadynamics to determine
pose stability (58). Ten trajectories were run for each pose,
each 10 ns in length. The authors showed an improvement
over induced fit docking alone, and the cost of this approach
(100 ns per ligand per pose) is much cheaper than the
approach presented here (2.1 us per pose). However, the
metadynamics approach can only rank poses and cannot
discover new poses that were not in the induced docking
set. It also requires the definition of an order parameter
that is appropriate to use for each pose and each system,
which is not straightforward. It is worth noting also that
our combined network model approach becomes more accu-
rate as more starting poses are added to the system. One
could imagine, for example, adding short simulations from
a large number of additional starting poses to the networks
constructed here.

The finding that most poses interconvert through the un-
bound state has direct implications for the discovery of new
bromodomain inhibitors. A common approach in virtual
screening is to combine docking with molecular dynamics
simulations to evaluate binding pose stability (59-61).
This is typically done as a filter late in a screening pipeline,
for instance, to select the top 24 compounds in a set of 55
(62). To assess the stability of binding poses, it is common
to use trajectories that are tens to hundreds of nanoseconds
in length. (For comparison, the longest trajectories run here
are 14.6 ns in length). In the regime in which poses intercon-
vert directly without unbinding, a single stability measure-
ment could report on multiple poses. However, as we find
that different poses are typically connected through the un-
bound state, we would recommend testing multiple putative
bound poses for each compound during screening and dis-
carding only compounds that show no stable poses.

This finding has similar implications for kinetics-based
drug design. In the regime in which poses interconvert
directly, all poses will have similar off rates. Interconverting
through the unbound state implies that a weighted average
of pose-specific unbinding rate constants (k') should be
used to determine an apparent rate constant (Korr ):

ok
K — S ©
ieQ "1

where the sum is over the set of all bound states (Q) and 7r; is
the probability of state i. If one bound state is much more
populated than the others (e.g., m; > m; V j+1i), then
KPP ~ i

off = Koff-

Mapping the binding landscape could also aid in our
understanding of biological processes. By studying the land-
scape of natural protein-ligand association processes such as
enzyme substrates, we can observe whether proteins
have evolved to maximize the fraction of successful bind-
ing encounters. Nature-inspired strategies to maximize
binding rates could be useful to help improve binding
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affinities, as well as improve the selectivity profiles of cova-
lent inhibitors.

SUPPORTING MATERIAL

Sixteen figures and two tables are available at http://www.biophysj.org/
biophysj/supplemental/S0006-3495(18)31102-0.
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