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A B S T R A C T

Fabry disease is the most frequently occurring form of lysosomal disease in Japan, and is characterized by a wide 
variety of conditions. Primarily, the three major types of concerns associated with Fabry disease observed during 
adulthood that must be prevented are central nervous system, renal, and cardiac complications. Cardiac com-
plications, such as cardiomyopathy, cardiac muscle fibrosis, and severe arrhythmia, are the most common 
mortality causes in patients with Fabry disease. To predict cardiac complications of Fabry disease, we extracted 
RNA from the venous blood of patients for cap analysis of gene expression (CAGE), performed likelihood ratio 
tests for each RNA expression dataset obtained from individuals with and without cardiac complications, and 
analyzed the correlation between cardiac functional factors observed using magnetic resonance imaging data 
extracted using artificial intelligence algorithms and RNA expression. Our findings showed that CHN1 expression 
was significantly higher in male Fabry disease patients with cardiac complications and that it could be associated 
with many cardiac functional factors. CHN1 encodes a GTPase-activating protein, chimerin 1, which is specific to 
the GTP-binding protein Rac (involved in oxidative stress generation and the promotion of myocardial fibrosis). 
Thus, CHN1 is a potential predictive biomarker of cardiac complications in Fabry disease; however, further 
studies are required to confirm this observation.

1. Introduction

Fabry disease (OMIM #301500) is classified as a lysosomal storage 
disease derived from the dysfunction of the enzyme alpha-galactosidase 
(GLA) localized in lysosomes, and is one of the most frequently occur-
ring lysosomal diseases. Globotriaosylceramide, a substrate of glyco-
sphingolipids, accumulates in the lysosomes of endothelial and smooth 
muscle cells, renal and cardiac cells, autonomic ganglia, sweat glands, 
cornea, and the central nervous system due to GLA dysfunction, 
resulting in various symptoms such as cerebral infarction, arrhythmia, 
cardiac hypertrophy, renal failure, hypohidrosis, angiokeratoma, 
corneal crowding, cataracts, and limb pain. This disease is inherited as 

an X-linked recessive trait, with male patients generally exhibiting se-
vere symptoms; however, female patients are also frequently affected 
with symptoms as severe as male patients, although symptom onset may 
be delayed [1].

Cardiovascular complications, such as arrhythmia and heart failure, 
are the leading causes of death of Fabry disease. Cardiac magnetic 
resonance imaging (MRI) is an important diagnostic toolfor the evalu-
ation of cardiac conditions. Characteristic findings include fibrosis of the 
left ventricular myocardium, as determined by late‑gadolinium 
enhancement. The cardiac complications of Fabry disease are difficult to 
detect which delays treatment. Therefore, an improved method to di-
agnose Fabry disease is required.
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Cardiac MRI is the gold standard for evaluating myocardial function, 
volume, and scarring. Additionally, cardiac MRI is the optimal tech-
nique for comprehensive tissue characterization, including the assess-
ment of myocardial edema, myocardial siderosis, myocardial perfusion, 
and diffuse myocardial fibrosis. Cardiac MRI is therefore an 

indispensable tool for evaluating congenital heart diseases and heart 
failure [2].

Herein, MRI was used for analysis for the following reasons: MRI 
does not require radiation exposure, children over a certain age can be 
subjected to testing, and it is more objective than ultrasound examina-
tion for evaluation of cardiac function.

Radiomic studies using MRI and gene expression profiling include 
studies on brain tumors [3,4] and breast cancer [5]. In addition, no 
radiomic studies on MRI and gene expression profiling for genetic dis-
order exist, except for studies on brain MRIs in patients with juvenile- 
onset cognitive impairment, white matter dystrophy [6], and single- 
gene disorders strongly associated with autistic spectrum disorders [7].

In this study, we used artificial intelligence (AI) and next-generation 
sequencing to investigate the prognostic factors of cardiac complications 
in Fabry disease. AI is an excellent tool for image recognition, and 
“segmentation” technology was used to analyze images of cardiac 
complications observed in Fabry disease, and evaluate its results with 
those of genetic analysis to detect prognostic factors for cardiac 
complications.

2. Materials and methods

2.1. Profiles of patients and individuals from the control group

The study population included 23 male patients with Fabry disease 
who visited the Jikei University Hospital between 2015 and 2021. Fabry 
disease was diagnosed using enzyme assays or genetic analysis. The 
patients were classified into: group A: Fabry disease with cardiac com-
plications (n = 15); group B: patients without cardiac complications (n 
= 8); and group C: healthy patients (n = 5). Groups A and B included a 
certain number of patients with central nervous system and renal com-
plications. Since these complications increase in frequency with age and 
are considered independent of cardiac complications, patients with 
these complications were also included in groups A and B. Cardiac 
complications were defined as left ventricular hypertrophy determined 
using echocardiography, late gadolinium enhancement observed using 
cardiac MRI, and a history of distinct arrhythmias (e.g., atrial fibrillation 

Table 1 
Profiles of study participants.

Fabry disease Healthy 
control (C)

Cardiac complication

Positive 
(A)

Negative 
(B)

Number 15 8 5
Mean age 42.5 y 

(9–56 y)
24 y (9–36 
y)

35 y (22–55 
y)

Mean onset age 16.6 y 
(3–43 y)

9.8 y (5–16 
y)

–

Age at start of ERT 32.6 y 
(9–47 y)

16.5 y 
(8–22 y)

–

Type of cardiac 
complication

LVH 12 (80 %) – –
LAD 6 (40 %) – –
Valvular 
disease

5 (33 %) – –

LGE 3 (20 %) – –
Arrhythmia 11 (73 %) – –

CNS complication 5 (33 %) 1 (12.5 %) –
Renal complication 3 (20 %) 1 (12.5 %) –
Mean DS3 score 10.5 points 6.0 points NA

y; years-old
LVH; left ventricular hypertrophy
LAD; left atrial dilation
LGE; Late Gadolinium Enhancement
Gadolinium delay: delayed excretion after gadolinium contrast on MRI with 
implications for myocardial fibrosis.
CNS complications, such as complications of the central nervous system, refer to 
distinct complications or imaging changes, such as microcerebral hemorrhage or 
cerebral infarction, excluding parenchymal brain signal changes.
Renal complications were defined as overt proteinuria and decreased renal 
function.
DS3; Fabry Disease Severity Scoring System: CNS; central nervous system.

Fig. 1. Flow chart of this study. 
The same three genes were detected as candidates for prognostic predictors of cardiac complications in patients with Fabry disease. 
CAGE; Cap analysis of gene expression, AI; artificial intelligence, AUC; area under the receiver operating characteristic curve.
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and ventricular tachycardia). Classification of cardiac complications 
revealed a higher rate of left ventricular hypertrophy and arrhythmia 
(Table 1). The Fabry disease clinical severity score, DS3 shown at the 
bottomof the Table1, is characterized by its ease of scoring compared to 
that of the scoring system used by the multiple sclerosis society of India. 
The DS3 scoring system comprises five domains and 12 items based on 
four clinical assessment domains (peripheral nerves, kidneys, heart, and 
central nervous system) and one interview domain for the patient. The 
evaluation of DS3 requires estimated glomerular filtration rate, pro-
teinuria, echocardiogram findings, electrocardiogram, and head imag-
ing test results. Based on correlation with the Clinical Global Impression 
of Severity (CGI), a score of <8 is considered mild, <12 is moderate, and 
≥ 12 is severe.

2.2. Summary of the study depicted using a flow chart

We extracted RNA from the sera of 28 subjects using the PAX gene 
blood RNA system (PreAnalytiX™ from Quigen and BD) and stored it at 
− 80 ◦C, and transported samples to DNAFORM (Yokohama, Kanagawa, 
Japan) for CAGE analysis based on the following criteria: using likeli-
hood ratio tests we listed the highly expressed genes, and identified 
genes that showed significant differences in expression among the ABC 
and AB groups. (Fig. 1).

2.3. CAGE library preparation and sequencing

CAGE library preparation, sequencing, mapping, and gene expres-
sion analyses were performed using the DNAFORM software. The 
quality of the total RNA extracted from the blood was assessed using the 
Bioanalyzer system (Agilent) to ensure that the RNA integrity number 
was over 7.0. After the depletion of globin mRNA using the Globin-Zero 
Gold kit (Illumina), cDNA was synthesized from total RNA using random 
primers. The ribose diols in the 5′ cap structures of RNAs were oxidized, 
and then biotinylated. Biotinylated RNA/cDNA was selected using 
streptavidin beads (cap-trapping). After RNA digestion using RNase 
ONE/H and adaptor ligation to both ends of the cDNA, double-stranded 

cDNA libraries (CAGE libraries) were constructed. The CAGE libraries 
were sequenced using single-end reads of 75 nt using the NextSeq 500 
system (Illumina). Reads obtained (CAGE tags) were mapped to the 
human hg38 genome using BWA [8] (version 0.7.17), and unmapped 
reads were mapped using the HISAT2 [9] (version 2.0.5).

CAGE tag clustering was performed using the RECLU pipeline [10]. 
Tag count data were clustered using a modified Paraclu program. 
Clusters with count per million (CPM) <0.1 were disregarded. Regions 
with 90 % overlap between replicates were extracted using BEDTools 
[11] (version 2.12.0). The clusters with irreproducible discovery rate 
was ≥0.1, those longer than 200 bp were disregarded.

Differentially expressed genes among the three groups were detected 
using the DESeq2 package [12] (version 1.20.0) from size factor- 
normalized count data using the likelihood ratio test function. In-
dividuals from each group were treated as replicates. Genes with Ben-
jamini–Hochberg adjusted p-values (padj) <0.05 were treated as 
differentially expressed (i.e., candidate genes). For each differentially 
expressed gene, a pairwise comparison of expression levels between 
groups was also conducted. Genes with non-adjusted p < 0.05 were 
treated as differentially expressed in the pairwise comparison.

2.4. MRI parameters using AI (Fig. 2)

Of the enrolled patients, 16 underwent cardiac MRI, including 11 in 
group A and five in group B. The cardiac MRI data of patients with Fabry 
disease (AB group) were analyzed using an AI algorithm (deep learning) 
with the QIR software.

Cine-MRI images in short- and long-axis views are available for each 
case. Images were acquired using the Steady-state Free Precession 
(SSFP) MR imaging protocol with the following settings: typical thick-
ness 7–8 mm, gap ≤2 mm, TR 40–161 ms, TE 1.36–1.48 ms, flip angle 
50–80◦, FOV 400 or 416 × 512 mm image matrix using the 3.0-T Skyra 
system (Siemens Healthcare) and 1.5-T Avanto system (Siemens 
Healthcare).

In this study, cine-MRI DICOM images were used for the segmenta-
tion and calculation of various quantified parameters using the CASIS 

Fig. 2. AI algorithm to select and calculate MRI parameters. 
The neural network mechanism using GridNet and Post-VAE predicts short-axis cine-MRI image data (classification). Then, it identifies the position of the heart 
(localization) and pixel in the heart (contouring and segmentation). Consequently, calculating the eight MRI parameters. 
Post-VAE: post variational autoencoder.
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QIR version 4 (Dijon, France) software for cardiac MRI studies.
We used cine-MRI are GridNet [13] and post-variational autoencoder 

(Post-VAE) [14] for the segmentation of the left ventricle (LV) in this 
study. GridNet is a novel deep convolutional neural network-based 
novel), fully automatic MRI cardiac segmentation method, and Post- 
VAE is a post-processing technique that automatically transforms the 
erroneous segmentation map into a valid one after segmentation.

LV cine MRI images were acquired over the cardiac cycle, which 
alternates between the relaxing phase (diastole) and contracting phase 
(systole). Segmentation of the LV and myocardium using cine MRI fa-
cilitates the quantification of the ventricular volume, mass, and ejection 
fraction (EF) [15]. In this study, stroke volume (StV), EF, diastolic vol-
ume (DV), systolic volume (SV), end-systolic myocardial mass (SMM), 
and end-diastolic myocardial mass (DMM) were calculated for all car-
diac cine MRI examinations. Additionally, the mean absolute and 
percent thickening of the LV wall (MAT and MPT, respectively) were 
automatically calculated from the average value of LV thickness ob-
tained using 16-segment polar mapping [16–18].

2.5. Statistics

The SAS 9.4 (SAS Institute Inc., Cary, NC, USA) and R software were 
used for statistical analyses.

To summarize the patients characteristics, we used mean values with 
standard deviations or medians with interquartile ranges for continuous 
variables and percentages for categorical variables. The association 
between a given candidate gene and all cardiac parameters on MRI (StV, 
EF, DV, SV, MMS, MMD, MAT, and MPT) over groups A and B was 

examined. MRI measurements were considered a surrogate of Fabry 
disease with/without cardiac complication.

If a candidate gene could be used as a prognostic predictive marker of 
cardiac complication in Fabry disease, then a correlation between some 
parameters of the MRI images and candidate gene should exist, and their 
scatter plot should show a similar trend to that of the four patterns 
displayed in Fig. 3 a (1)–(4).

To compensate for the lack of power due to the small sample size, we 
made use of information on a possibly predictive gene and an MRI 
parameter similar to that used by Yoshida et al. in their study [19].

The strength of the association between a given candidate gene and 
Fabry disease with/without cardiac complication, i.e., the ability of a 
gene as a predictive marker, is evaluated using the number of MRI pa-
rameters that are significantly different between groups A and B. This 
strength was measured as follows: 

1) For each pair of a candidate gene and cardiac parameter from MRI 
images, calculate their rank correlation coefficient (RCCF) and re-
cord its sign [positive (+) or negative (− )].

2) Standardize each value of the candidate gene and of the cardiac 
parameter using respective means and standard deviations through 
groups, and denote their standardized value X and Y, respectively.

3) Select either X + Y or X − Y according to the sign of RCCF (+ or − ), 
and compare the selected variable between groups A and B using the 
exact Wilcoxon test.

4) A two-sided p-value <0.05 was used as a reference criterion. As 
Fabry disease is rare and the sample size was small, the multiplicity 
of tests was not adjusted.

Fig. 3. Distribution of the levels of gene expression and MRI parameters. 
a. Typical scatter plots with a gene expression to be detected on the x-axis and MRI parameters on the y-axis to distinguish between the A and B groups. 
(1) In the group with cardiac complications (group A, black), X was greater and Y was lower than those in the group without cardiac complications (Group B, white). 
(2) In the group with cardiac complications (group A, black), X was larger and Y was larger than those in the group without cardiac complications (Group B, white). 
(3) In the group with cardiac complications (group A, black), X was smaller and Y was larger than those in the group without cardiac complications (Group B, white). 
(4) In the group with cardiac complications (group A, black), X was smaller and Y was smaller than those in the group without cardiac complications (Group B, 
white). 
b. Scatter plots with gene expression on the x-axis and MRI parameters on the y-axis. 
In CHN, the MRI parameters StV and EF indicated by * have similar distributional patterns to a. (2), and the sum of the respective standardized values (X + Y) shows 
significant differences between groups A and B. 
However, in COX6CP1, no distinction between groups A and B was possible.
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The area under the receiver operating characteristic (ROC) curve 
(AUC) was used as a performance evaluation index. The 95 % confidence 
interval (CI) of the ROC AUC was estimated using the method described 
in [20]. We expected the sensitivity and specificity to be ≥0.8 and ≥
0.75, respectively, to determine the cut-off value of a gene expression 
level. If the expected values were not obtained, ordinary criteria 
neglecting the misclassification cost or prevalence (e.g., Youden index, 
distance to [0,1], sensitivity, and specificity equality) were considered.

3. Results

3.1. Genes with significant differences in RNA expression levels between 
the AB and ABC groups

We tested the likelihood ratios between the A, B, and C groups and 
identified the top 11 genes that differed significantly. Subsequently, out 
of these 11 genes, we identified three, ACVR1, CHN1, and MT1F, that 

significantly differed between the A and B groups (Table 2), and visu-
alized them using the MA-plot for gene expression between groups A and 
B (Fig. 4).

3.2. Genes associated with MRI parameters of cardiac complication in 
Fabry disease

Several typical scatter plots are shown in Fig. 3. In Fig. 3a (2), the 
candidate gene CHN (x-axis) and MRI parameters StV and EF (y-axis) 
have similar distributional patterns to Fig. 3a (2). As described in Sec-
tion 2.5, comparing X + Y using the exact Wilcoxon test distinguished 
group A from B. However, the candidate gene COX6CP1did not show 
any similar distributional pattern to that in Fig. 3a (1)–(4).

After comparing either X + Y or X - Y using the exact Wilcoxon test, p- 
values indicating significant differences between the AB groups for each 
MRI parameter are shown in bold in Table 3. Of the eight MRI param-
eters identified, the top three genes that exhibited significant differences 

Table 2 
Likelihood ratio test results for gene groups detected using CAGE.

Gene symbol A vs B C vs A C vs B Stat p-value p adj

Base 
mean

Log2 fold 
change

p-value Base 
mean

Log2 fold 
change

p-value Base 
mean

Log2 fold 
change

p-value

REXO2 545.841 − 0.091 0.325 600.986 − 0.421 <0.001 586.981 − 0.547 <0.001 24.041 <0.001 0.026*

ACVR1 293.388 − 0.236 0.001* 322.312 − 0.249 0.005 302.446 − 0.438 <0.001 27.352 <0.001 0.007*

CHN1 5.843 − 1.926 <0.001 * 6.626 1.381 0.003 2.856 − 0.112 0.878 23.528 <0.001 0.027*

SLC22A23 103.200 − 0.318 0.231 143.946 − 1.157 <0.001 139.742 − 1.500 <0.001 22.004 <0.001 0.029*

FUNDC2 264.764 0.129 0.594 370.366 − 1.494 <0.001 411.093 − 1.481 <0.001 22.618 <0.001 0.029*

MT1F 247.871 0.575 <0.001 * 208.702 0.048 0.715 260.463 0.502 0.035 20.845 <0.001 0.046*

HMBS 306.051 0.018 0.925 410.716 − 1.278 <0.001 441.341 − 1.322 <0.001 22.400 <0.001 0.029*

COX6CP1 56.134 0.754 0.090 90.876 − 2.348 <0.001 119.720 − 1.825 0.001 22.227 <0.001 0.029*

AC073476.4 492.763 0.129 0.157 435.822 0.565 <0.001 450.766 0.682 <0.001 28.894 <0.001 0.005*

MIR3662 1.249 1.342 0.085 2.938 − 3.563 <0.001 4.285 − 2.454 0.005 21.967 <0.001 0.029*

MIR1244–1 122.957 0.072 0.432 108.833 0.680 <0.001 111.461 0.785 <0.001 36.960 <0.001 0.000*

Eleven genes with significant differences among the A, B, and C groups were extracted from over 3000 genes. * p < 0.05.

Fig. 4. MA-plot showing gene expression between groups A and B. 
The x-axis represents the average gene expression (log CPM) and y-axis represents the ratio of variation in expression between groups (log FC), and each gene is 
plotted as a single point. 
Gray dots: Non-differentially expressed genes; Black dots: Differentially expressed genes; Outlined squares: Three selected candidate biomarkers.
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in various items were selected.
A ROC curve was generated for each gene extracted in Step 3. If 

expression levels were below the limit of quantification, the expression 
was considered 0.

The gene expression levels of ACVR1, CHN1, and MT1F were asso-
ciated with the distribution of seven of eight MRI parameters, suggesting 
that they could be used to distinguish between groups with and without 
cardiac complications. In the likelihood ratio test, ACVR1, CHN1, and 
MT1F were the same genes that showed significant differences between 
the A and B as well as A, B, and C groups (Table 2).

3.3. Sensitivity and specificity of the selected genes are potentially 
associated with cardiac complications

The ROC curves of the three candidate genes of groups A and B are 
shown in Fig. 5. Among the three candidate genes, CHN1 had the largest 
ROC AUC (0.921, 95 % CI 0.806–1.000). MT1F and ACVR1 showed 
similar ROC AUC values (0.842, 95 % CI 0.676–1.000 and 0.833, 95 % 
CI 0.658–1.000, respectively). In CHN1, a sensitivity and specificity of 
0.8 were observed at the cutoff value (0.74). For ACVR1, these were 0.8 
and 0.75, respectively, at the cutoff value (0.56).

3.4. Correlation diagram between age and expression levels of CHN1

No strong correlation existed between CHN1 expression and age. 
(Fig. 6) Thus, aging was not considered a significant inducer of CHN1 
expression in patients with Fabry disease.

4. Discussion

Fabry disease exhibits various syndromes; however, the three major 
complications after adolescence are central neurological syndromes 
including cerebral infarction and cerebral hemorrhage; cardiac com-
plications such as arrhythmia and cardiomyopathy; and renal compli-
cations. Cardiac complications account for more than half of all deaths Ta
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Fig. 5. Sensitivity and specificity of CHN1, ACVR2, MTF1 were estimated using 
the area under the ROC curve. 
As a reference, FUNDC2 expression, which did not differ significantly between 
the AB groups in the likelihood ratio test, was plotted.
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by Fabry disease in Japan and globally. Cardiac complications are 
difficult to predict, and once they become apparent are often irrevers-
ible, even with treatments such as enzyme replacement therapy. 
Therefore, determining the prognosis of cardiac complications is crucial.

Of 11 genes with significant differences in expression levels among 
the three groups, three genes that significantly differed between the 
groups with and without concomitant cardiac complications in Fabry 
disease were identified. The MRI images of 12 patients in the Fabry 
disease group were re-analyzed with the Quantified Imaging Resources 
software using AI and RCCF between eight parameters.

The expression levels of each gene were determined, and significant 
differences were found in many items between the A and B groups. 
Ranking of genes revealed that the top three genes were identical. When 
the sensitivity and specificity of these three genes were tested, CHN1 
was at the top of the list. In addition, AI technology has made remark-
able progress, especially in the field of diagnostic imaging. The AI seg-
mentation used in this study was extremely useful in the digitization of 
myocardium movement in the MRI and calculation of the eight pa-
rameters required for this study.

The CHN1 gene is well-established as the primary cause of Duane’s 
retraction syndrome [21,22], and encodes a GTPase-activating protein 
chimerin 1 specific for the GTP-binding protein Rac, which participates 
in oxidative stress generation and promotion of myocardial fibrosis, and 
for a signaling pathway that has an instrumental role in the early 
development of the central nervous system. Sustained activation of 
signaling pathways involving GTP-binding proteins may lead to cardiac 
hypertrophy and fibrosis [23,24].

Our findings suggest that CHN1 is involved in the development of the 
cardiac complications of Fabry disease which are characterized by 
fibrosis and arrhythmias in the left ventricular myocardial base. The 
cutoff point for identifying gene clusters was 0.28 CPM, a sensitivity of 
0.86, and specificity of 0.875. This point was not higher than that in 
healthy subjects, which appeared to be appropriate because any further 
increase in sensitivity would result in the detection of healthy subjects. If 
the expression of the CHN1 gene would have been higher in older age 
groups, the increase in expression could be attributed to age-related 
changes. However, the distribution of the CHN1 gene in all 28 sub-
jects surveyed and in group A showed no correlation between age and 
expression levels. Thus, the occurrence of cardiac complications in pa-
tients with Fabry disease can be predicted by examining CHN1 
expression.

Gene rankings based on significant differences among the A, B, and C 
three groups and gene rankings based on the strength of the association 

in many items in the MRI parameters were identical for the top three 
genes. The gene expression of ACVR1 (2nd place) and MT1F (3rd place) 
may be related; however, the sensitivity for CHN1 alone was greater and 
more specific than that for the statistical results for the three genes 
combined. Thus, If the prognosis of future cardiac complications, espe-
cially arrhythmia and myocardial fibrosis, can be predicted by exam-
ining the RNA expression of CHN1 alone, it will be possible to predict the 
optimal timing for the initiation of cardiovascular medical intervention 
and enzyme replacement therapy. It is also considered to be a factor that 
has a large influence.

In Fabry disease, in particular, there are many cases of sudden death 
due to fatal arrhythmia, and based on these predictions, appropriate 
interventions, such as prescribing antiarrhythmic drugs and implanting 
cardioverter defibrillator devices, can be timed better, thus improving 
patient prognosis and functionality. It is also likely to have a direct 
impact on the quality of life.

However, future studies with an larger cohort size of between 100 
and 1000 participants are required to determine whether this prognostic 
predictor can be used in clinical settings. To date, many studies have 
already been published on the automatic segmentation of atria and 
ventricles from cardiac MRI data using AI [25–30] and quantitative 
analysis of cardiac function using this method [31,32]; it is anticipated 
that more detailed studies will be conducted in this field in the future.

To the best of our knowledge, this is the first study to successfully 
demonstrate quantitative analysis of cardiac function by automatic 
segmentation using AI and the radiomics of gene expression profiles of 
genetic disorders using cardiac MRI.

5. Conclusion

The CHN1 gene encoding chimerin 1, which is involved in myocar-
dial fibrosis, was identified as a possible predictor of cardiac compli-
cations in Fabry disease based on AI-based MRI and correlation analyses 
of the transcriptome of RNA extracted from the peripheral blood of 
patients with Fabry disease and healthy individuals.
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and age.

H. Kobayashi et al.                                                                                                                                                                                                                             Molecular Genetics and Metabolism Reports 41 (2024) 101152 

7 



Details of ethics approval

This study was approved by the Research Ethics Committee of the 
Jikei University School of Medicine, Tokyo, Japan.

Data sharing statement

The data are not publicly available because of privacy and ethical 
restrictions.

CRediT authorship contribution statement

Hiroshi Kobayashi: Writing – review & editing, Writing – original 
draft, Project administration, Investigation, Funding acquisition, Data 
curation, Conceptualization. Norio Nakata: Writing – review & editing, 
Visualization, Supervision, Software, Project administration, Method-
ology, Investigation, Data curation, Conceptualization. Sayoko Izuka: 
Resources, Methodology. Kenichi Hongo: Writing – review & editing, 
Supervision, Project administration. Masako Nishikawa: Writing – re-
view & editing, Validation, Supervision, Project administration, Meth-
odology, Investigation, Data curation.

Declaration of competing interest

HK received grants for industry-academia collaborations from 
Sumitomo Pharma Co., Ltd., JCR Pharmaceuticals Co., Ltd., and Amicus 
Therapeutics, Inc. Other authors do not have any conflicts of interest.

Acknowledgements

We thank Dr. Toshihide Kato (K. K. DNAFORM, Research Services) 
for facilitating data analysis. We would also like to thank the patients 
with Fabry disease and healthy volunteers who provided valuable 
samples.

Data availability

The data that has been used is confidential. 

References

[1] R. Izhar, M. Borriello, A.L. Russa, et al., Fabry disease in women: genetic basis, 
available biomarkers, and clinical manifestations, Genes 15 (2024) 37, https://doi. 
org/10.3390/genes15010037.

[2] M. Salerno, B. Sharif, H. Arheden, A. Kumar, L. Axel, D. Li, S. Neubauer, Recent 
advances in cardiovascular magnetic resonance: Techniques and applications, Circ. 
Cardiovasc. Imaging 10 (2017), https://doi.org/10.1161/ 
CIRCIMAGING.116.003951.

[3] G. Li, L. Li, Y. Li, Z. Qian, F. Wu, Y. He, H. Jiang, R. Li, D. Wang, Y. Zhai, Z. Wang, 
T. Jiang, J. Zhang, W. Zhang, An MRI radiomics approach to predict survival and 
tumor-infiltrating macrophages in gliomas, Brain 145 (2022) 1151–1161, https:// 
doi.org/10.1093/brain/awab340.

[4] P. Lohmann, M. Kocher, J. Steger, N. Galldiks, Radiomics derived from amino-acid 
PET and conventional MRI in patients with high-grade gliomas, Q. J. Nucl. Med. 
Mol. Imaging 62 (2018) 272–280, https://doi.org/10.23736/S1824- 
4785.18.03095-9.

[5] A.C. Yeh, H. Li, Y. Zhu, J. Zhang, G. Khramtsova, K. Drukker, A. Edwards, 
S. McGregor, T. Yoshimatsu, Y. Zheng, Q. Niu, H. Abe, J. Mueller, S. Conzen, Y. Ji, 
M.L. Giger, O.I. Olopade, Radiogenomics of breast cancer using dynamic contrast 
enhanced MRI and gene expression profiling, Cancer Imaging 19 (2019) 48, 
https://doi.org/10.1186/s40644-019-0233-5.

[6] Z. Chen, Y.J. Tan, M.M. Lian, M. Tandiono, J.N. Foo, W.K. Lim, N. Kandiah, E. 
K. Tan, A.S.L. Ng, High diagnostic utility incorporating a targeted 
neurodegeneration gene panel with MRI brain diagnostic algorithms in patients 
with young-onset cognitive impairment with leukodystrophy, Front. Neurol. 12 
(2021) 631407, https://doi.org/10.3389/fneur.2021.631407.

[7] V. Frewer, C.P. Gilchrist, S.E. Collins, K. Williams, M.L. Seal, R.J. Leventer, D. 
J. Amor, A systematic review of brain MRI findings in monogenic disorders 
strongly associated with autism spectrum disorder, J. Child Psychol. Psychiatry 62 
(2021) 1339–1352, https://doi.org/10.1111/jcpp.13510.

[8] H. Li, R. Durbin, Fast and accurate short read alignment with burrows-wheeler 
transform, Bioinformatics 25 (2009) 1754–1760, https://doi.org/10.1093/ 
bioinformatics/btp324.

[9] D. Kim, B. Langmead, S.L. Salzberg, HISAT: a fast spliced aligner with low memory 
requirements, Nat. Methods 12 (2015) 357–360, https://doi.org/10.1038/ 
nmeth.3317.

[10] H. Ohmiya, M. Vitezic, M.C. Frith, M. Itoh, P. Carninci, A.R. Forrest, 
Y. Hayashizaki, T. Lassmann, FANTOM Consortium, RECLU: a pipeline to discover 
reproducible transcriptional start sites and their alternative regulation using 
capped analysis of gene expression (CAGE), BMC Genomics 15 (2014) 269, https:// 
doi.org/10.1186/1471-2164-15-269.

[11] A.R. Quinlan, I.M. Hall, BEDTools: a flexible suite of utilities for comparing 
genomic features, Bioinformatics 26 (2010) 841–842, https://doi.org/10.1093/ 
bioinformatics/btq033.

[12] M.I. Love, W. Huber, S. Anders, Moderated estimation of fold change and 
dispersion for RNA-seq data with DESeq2, Genome Biol. 15 (2014) 550, https:// 
doi.org/10.1186/s13059-014-0550-8.

[13] C. Zotti, Z. Luo, O. Humbert, et al., GridNet with automatic shape prior registration 
for automatic MRI cardiac segmentation, in: Statistical Atlases and Computational 
Models of the Heart. ACDC and MMWHS Challenges: 8th international workshop, 
Revised Selected Papers 8, STACOM 2017. Held in Conjunction with MICCAI 2017, 
Quebec City, Canada, September 10–14, 2017, Springer International Publishing, 
2018, pp. 73–81.

[14] N. Painchaud, Y. Skandarani, T. Judge, O. Bernard, A. Lalande, P.M. Jodoin, 
Cardiac segmentation with strong anatomical guarantees, IEEE Trans. Med. 
Imaging 39 (2020) 3703–3713, https://doi.org/10.1109/TMI.2020.3003240.

[15] A.A. Malayeri, W.C. Johnson, R. Macedo, J. Bathon, J.A. Lima, D.A. Bluemke, 
Cardiac cine MRI: quantification of the relationship between fast gradient echo and 
steady-state free precession for determination of myocardial mass and volumes, 
J. Magn. Reson. Imaging 28 (2008) 60–66, https://doi.org/10.1002/jmri.21405.

[16] M.D. Cerqueira, N.J. Weissman, V. Dilsizian, A.K. Jacobs, S. Kaul, W.K. Laskey, D. 
J. Pennell, J.A. Rumberger, T. Ryan, M.S. Verani, American Heart Association 
writing group on myocardial segmentation and registration for cardiac imaging 
standardized myocardial segmentation and nomenclature for tomographic imaging 
of the heart, Circulation 105 (2002) 539–542, https://doi.org/10.1161/ 
hc0402.102975.

[17] M.T.P. Le, N. Zarinabad, T. D’Angelo, I. Mia, R. Heinke, T.J. Vogl, A. Zeiher, 
E. Nagel, V.O. Puntmann, Sub-segmental quantification of single (stress)-pass 
perfusion CMR improves the diagnostic accuracy for detection of obstructive 
coronary artery disease, J. Cardiovasc. Magn. Reson. 22 (2020) 14, https://doi. 
org/10.1186/s12968-020-0600-1.

[18] A. Nojiri, I. Anan, S. Morimoto, M. Kawai, T. Sakuma, M. Kobayashi, H. Kobayashi, 
H. Ida, T. Ohashi, Y. Eto, T. Shibata, M. Yoshimura, K. Hongo, Clinical findings of 
gadolinium-enhanced cardiac magnetic resonance in Fabry patients, J. Cardiol. 75 
(2020) 27–33, https://doi.org/10.1016/j.jjcc.2019.09.002.

[19] E. Yoshida, Y. Terao, N. Hayashi, et al., Promoter-level transcriptome in primary 
lesions of endometrial cancer identified biomarkers associated with lymph node 
metastasis, Sci. Rep. 7 (1) (2017) 14160. https://www.nature.com/articles/s41 
598-017-14418-5.

[20] E.R. DeLong, D.M. DeLong, D.L. Clarke-Pearson, Comparing the areas under two or 
more correlated receiver operating characteristic curves: a nonparametric 
approach, Biometrics 44 (1988) 837–845, https://doi.org/10.2307/2531595.

[21] N. Miyake, J. Chilton, M. Psatha, L. Cheng, C. Andrews, W.M. Chan, K. Law, 
M. Crosier, S. Lindsay, M. Cheung, J. Allen, N.J. Gutowski, S. Ellard, E. Young, 
A. Iannaccone, B. Appukuttan, J.T. Stout, S. Christiansen, M.L. Ciccarelli, A. Baldi, 
M. Campioni, J.C. Zenteno, D. Davenport, L.E. Mariani, M. Sahin, S. Guthrie, E. 
C. Engle, Human CHN1 mutations hyperactive alpha-2-chimerin and cause 
Duane’s reaction syndrome, Science 321 (2008) 839–843, https://doi.org/ 
10.1126/science.1156121.

[22] T.C. Zhou, W.H. Duan, X.L. Fu, et al., Identification of novel CHN1 p variant in a 
large Han Chinese family with congenital Duane retraction syndrome, Sci. Rep. 
16225 (2020) 10, https://doi.org/10.1038/s41598-020-73190-1.

[23] K. Lorenz, J.P. Schmitt, E.M. Schmitteckert, M.J. Lohse, A new type of ERK1/2 
autophosphorylation causes cardiac hypertrophy, Nat. Med. 15 (2009) 75–83, 
https://doi.org/10.1038/nm.1893.

[24] W. Parichatikanond, R. Duangrat, S. Mangmool, vGaq protein-biased ligand of 
angiotensin II type 1 receptor mediates myofibroblast differentiation through TGF- 
beta1/ERK axis in human cardiac fibroblasts, Eur. J. Pharmacol. 951 (2023) 
175780, https://doi.org/10.1016/j.ejphar.2023.175780.

[25] O. Bernard, A. Lalande, C. Zotti, F. Cervenansky, X. Yang, P.A. Heng, I. Cetin, 
K. Lekadir, O. Camara, M.A. Gonzalez Ballester, G. Sanroma, S. Napel, S. Petersen, 
G. Tziritas, E. Grinias, M. Khened, V.A. Kollerathu, G. Krishnamurthi, M.M. Rohe, 
X. Pennec, M. Sermesant, F. Isensee, P. Jager, K.H. Maier-Hein, P.M. Full, I. Wolf, 
S. Engelhardt, C.F. Baumgartner, L.M. Koch, J.M. Wolterink, I. Isgum, Y. Jang, 
Y. Hong, J. Patravali, S. Jain, O. Humbert, P.M. Jodoin, Deep learning techniques 
for automatic MRI cardiac multi-structures segmentation and diagnosis: is the 
problem solved? IEEE Trans. Med. Imaging 37 (2018) 2514–2525, https://doi.org/ 
10.1109/TMI.2018.2837502.

[26] Z. Chen, J. Bai, Y. Lu, Dilated convolution network with edge fusion block and 
directional feature maps for cardiac MRI segmentation, Front. Physiol. 14 (2023) 
1027076, https://doi.org/10.3389/fphys.2023.1027076.

[27] F. Ahmad, W. Hou, J. Xiong, Z. Xia, Fully automated cardiac MRI segmentation 
using dilated residual network, Med. Phys. 50 (2023) 2162–2175, https://doi.org/ 
10.1002/mp.16108.

[28] C. Fan, Q. Su, Z. Xiao, H. Su, A. Hou, B. Luan, ViT-FRD: a vision transformer model 
for cardiac MRI image segmentation based on feature recombination distillation, 
IEEE Access. 11 (2023) 129763–129772, https://doi.org/10.1109/ 
ACCESS.2023.3302522.

H. Kobayashi et al.                                                                                                                                                                                                                             Molecular Genetics and Metabolism Reports 41 (2024) 101152 

8 

https://doi.org/10.3390/genes15010037
https://doi.org/10.3390/genes15010037
https://doi.org/10.1161/CIRCIMAGING.116.003951
https://doi.org/10.1161/CIRCIMAGING.116.003951
https://doi.org/10.1093/brain/awab340
https://doi.org/10.1093/brain/awab340
https://doi.org/10.23736/S1824-4785.18.03095-9
https://doi.org/10.23736/S1824-4785.18.03095-9
https://doi.org/10.1186/s40644-019-0233-5
https://doi.org/10.3389/fneur.2021.631407
https://doi.org/10.1111/jcpp.13510
https://doi.org/10.1093/bioinformatics/btp324
https://doi.org/10.1093/bioinformatics/btp324
https://doi.org/10.1038/nmeth.3317
https://doi.org/10.1038/nmeth.3317
https://doi.org/10.1186/1471-2164-15-269
https://doi.org/10.1186/1471-2164-15-269
https://doi.org/10.1093/bioinformatics/btq033
https://doi.org/10.1093/bioinformatics/btq033
https://doi.org/10.1186/s13059-014-0550-8
https://doi.org/10.1186/s13059-014-0550-8
http://refhub.elsevier.com/S2214-4269(24)00105-8/rf0065
http://refhub.elsevier.com/S2214-4269(24)00105-8/rf0065
http://refhub.elsevier.com/S2214-4269(24)00105-8/rf0065
http://refhub.elsevier.com/S2214-4269(24)00105-8/rf0065
http://refhub.elsevier.com/S2214-4269(24)00105-8/rf0065
http://refhub.elsevier.com/S2214-4269(24)00105-8/rf0065
https://doi.org/10.1109/TMI.2020.3003240
https://doi.org/10.1002/jmri.21405
https://doi.org/10.1161/hc0402.102975
https://doi.org/10.1161/hc0402.102975
https://doi.org/10.1186/s12968-020-0600-1
https://doi.org/10.1186/s12968-020-0600-1
https://doi.org/10.1016/j.jjcc.2019.09.002
https://www.nature.com/articles/s41598-017-14418-5
https://www.nature.com/articles/s41598-017-14418-5
https://doi.org/10.2307/2531595
https://doi.org/10.1126/science.1156121
https://doi.org/10.1126/science.1156121
https://doi.org/10.1038/s41598-020-73190-1
https://doi.org/10.1038/nm.1893
https://doi.org/10.1016/j.ejphar.2023.175780
https://doi.org/10.1109/TMI.2018.2837502
https://doi.org/10.1109/TMI.2018.2837502
https://doi.org/10.3389/fphys.2023.1027076
https://doi.org/10.1002/mp.16108
https://doi.org/10.1002/mp.16108
https://doi.org/10.1109/ACCESS.2023.3302522
https://doi.org/10.1109/ACCESS.2023.3302522


[29] C. Martin-Isla, V.M. Campello, C. Izquierdo, K. Kushibar, C. Sendra-Balcells, 
P. Gkontra, A. Sojoudi, M.J. Fulton, T.W. Arega, K. Punithakumar, L. Li, X. Sun, 
Y. Al Khalil, D. Liu, S. Jabbar, S. Queiros, F. Galati, M. Mazher, Z. Gao, M. Beetz, 
L. Tautz, C. Galazis, M. Varela, M. Hullebrand, V. Grau, X. Zhuang, D. Puig, M. 
A. Zuluaga, H. Mohy-Ud-Din, D. Metaxas, M. Breeuwer, R.J. van der Geest, 
M. Noga, S. Bricq, M.E. Rentschler, A. Guala, S.E. Petersen, S. Escalera, J.F. 
R. Palomares, K. Lekadir, Deep learning segmentation of the right ventricle in 
cardiac MRI: the M&Ms challenge, IEEE J. Biomed. Health Inform. 27 (2023) 
3302–3313, https://doi.org/10.1109/JBHI.2023.3267857.

[30] Y. Li, Z. Liu, Q. Lai, S. Li, Y. Guo, Y. Wang, Z. Dai, J. Huang, ESA-UNet for assisted 
diagnosis of cardiac magnetic resonance image based on the semantic 

segmentation of the heart, Front. Cardiovasc. Med. 9 (2022) 1012450, https://doi. 
org/10.3389/fcvm.2022.1012450.

[31] F. Odille, A. Bustin, S. Liu, B. Chen, P.A. Vuissoz, J. Felblinger, L. Bonnemains, 
Isotropic 3D cardiac cine MRI allows efficient sparse segmentation strategies based 
on 3D surface reconstruction, Magn. Reson. Med. 79 (2018) 2665–2675, https:// 
doi.org/10.1002/mrm.26923.

[32] S. Singh, S. Kaushik, R. Vats, A. Jain, N. Thakur, Right ventricle MRI image 
segmentation of heart, in: IEEE 5th International Conference for Convergence in 
Technology, Bombay, 2019, pp. 1–4, https://doi.org/10.1109/ 
I2CT45611.2019.9033921.

H. Kobayashi et al.                                                                                                                                                                                                                             Molecular Genetics and Metabolism Reports 41 (2024) 101152 

9 

https://doi.org/10.1109/JBHI.2023.3267857
https://doi.org/10.3389/fcvm.2022.1012450
https://doi.org/10.3389/fcvm.2022.1012450
https://doi.org/10.1002/mrm.26923
https://doi.org/10.1002/mrm.26923
https://doi.org/10.1109/I2CT45611.2019.9033921
https://doi.org/10.1109/I2CT45611.2019.9033921

	Using artificial intelligence and promoter-level transcriptome analysis to identify a biomarker as a possible prognostic pr ...
	1 Introduction
	2 Materials and methods
	2.1 Profiles of patients and individuals from the control group
	2.2 Summary of the study depicted using a flow chart
	2.3 CAGE library preparation and sequencing
	2.4 MRI parameters using AI (Fig. 2)
	2.5 Statistics

	3 Results
	3.1 Genes with significant differences in RNA expression levels between the AB and ABC groups
	3.2 Genes associated with MRI parameters of cardiac complication in Fabry disease
	3.3 Sensitivity and specificity of the selected genes are potentially associated with cardiac complications
	3.4 Correlation diagram between age and expression levels of CHN1

	4 Discussion
	5 Conclusion
	Funding
	Details of ethics approval
	Data sharing statement
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	datalink4
	References


