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Abstract: Studies described so far suggest that human β-defensin 2 is an important protein of innate
immune response which provides protection for the human organism against invading pathogens
of bacterial, viral, fungal, as well as parasitical origin. Its pivotal role in enhancing immunity was
proved in infants. It may also be considered a marker of inflammation. Its therapeutic administration
has been suggested for maintenance of the balance of systemic homeostasis based on the appropriate
composition of the microbiota. It has been suggested that it may be an important therapeutic tool
for modulating the response of the immune system in many inflammatory diseases, offering new
treatment modalities. For this reason, its properties and role in the human body discussed in this
review should be studied in more detail.
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1. Introduction

One of the most important components of innate immunity is the ability to synthetize
and release small antimicrobial peptides, with proven activity against different pathogens,
such as Gram-negative and Gram-positive bacteria, as well as viruses, fungi, or parasites.
They also play a role in activating the immune system by modulation of signaling pathways
and inflammatory response [1,2]. Moreover, they participate in tumorigenesis, due to their
proliferative or suppressive properties relative to different cells [2]. In some conditions
they contribute to maintaining homeostasis, while in other situations they contribute
to disorders of the body’s functions and the development of different pathologies [3].
Interesting proteins with promising functions and the potential to control diseases of
different etiopathogenesis (infectious or inflammatory) are defensins. Human defensins,
in addition to the functions mentioned above, can also act chemotactically by interacting
with C-C Chemokine Receptor Type 6 (CCR6) and recruiting immunocompetent cells
with this receptor such as memory T-cells and immature dendritic cells [4]. One of them
is β-defensin 2 (hBD-2) which was first described in 1997 as an antimicrobial peptide
in human skin [5]. hBD-2 is a low molecular weight, cysteine-rich cationic peptide [6],
known also as skin-antimicrobial peptide 1 (SAP1), encoded by the DEFB4A and DEFB4B
genes, located on human chromosome 8. The structure of hBD-2 consists of 64 amino
acids. hBD-2, like other proteins from the defensin family, contains in its structure a folded
β-sheet, in which six cysteine residues are involved in the formation of three disulfide
bonds, which in turn play a key role in maintaining the proper structural integrity of the
protein [7]. hBD-2, similar to hBD-1 and hBD-3, demonstrates positive net charges in its
primary structure, but differs between individual defensins. hBD-3 has the highest positive
charge (+11), the next is hBD-2 with a charge of +6, and the lowest positive charge has
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hBD-1 (+4) [8]. This phenomenon may reflect the antimicrobial efficacy of specific peptides
using electrostatic bonds to attach to negatively charged molecules present on bacterial
cells, such as sialic acid [9].

Various types of epithelial cells have the ability to secrete this protein in humans, mainly
as a consequence of contact with microorganisms or action of different pro-inflammatory
cytokines [6], as discussed below. In hBD-2 expression, induced by pathogenic factors like
bacterial LPS (lipopolysaccharide) or fungal infections, an essential role is played by protein
complexes acting as transcription factors: nuclear factor kappa-light-chain-enhancer of
activated B cells (NF-κB) and activator protein 1 (AP-1) [10,11]. They act by binding to the
hBD-2 promoter, which is required for induction of the gene for this protein. In some tissue
cells, the action of both factors appears to be synergistic, and inhibition of either pathway
blocks defensin expression [12]. In contrast, other cells, such as intestinal epithelial cell lines,
retain the ability to express hBD-2 despite blocking one of the pathways [13]. Recently,
the role of the pathways in which the mitogen-activated protein kinases (MAPK) are
involved has also been emphasized. The stimulation of Toll-like receptors (TLRs), especially
TLR2 and TLR4, on specific cells by pathogen-associated molecular patterns (PAMP) is also
crucial for the activation of hBD-2 expression in the course of infection [14,15].

In addition to its known antimicrobial activity and its vital role in the various epithelial
tissues, hBD-2 can also be involved in chemotaxis of immune cells and activation of Toll-like
receptors (TLRs) on their surface [16]. Furthermore, hBD-2 has the ability to strongly bind
to the complement component C1q. Interestingly, this protein does not significantly affect
the alternative activation pathway, but can inhibit the classical complement activation
pathway, and may be involved in the protection against the uncontrolled activation of the
innate immune response [17].

Given the importance of hBD-2, its properties, and the complicated mechanisms of its
activation, which are presented in Figure 1, we tried to discuss in this review its ambiguous
role in the human body.
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2. hBD-2 and Oral Cavity Epithelium

The cells lining the oral cavity are continuously exposed to mechanical damage, which can
easily lead to the development of various infections. Only two years after the discovery of
the discussed molecule, it was shown that it is an important defense component in the oral
cavity—hBD-2 is secreted by epithelial cells of the gingival mucosa, which is confirmed
both by the expression of mRNA for hBD-2 in these cells and the presence of its product
in saliva [18]. It has been shown that the increase of hBD-2 production in an oral mucosal
culture model may be a result of an action of human milk oligosaccharides [19], which may
be important in improving immunity in infants. Interestingly, studies involving children
aged from 3 to 16 showed that the levels of both hBD-1 and hBD-2 in saliva increased with
age, which concurs with the maturation of the immune system [20]. Gingival biopsies
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showed that hBD-2 is secreted at a very low level by gingival tissue in healthy people
with no signs of inflammation [21]. However, production and secretion of hBD-2 by the
oral keratinocytes occurs mainly after stimulation by pro-inflammatory cytokines, such as
tumor necrosis factor α (TNF-α), interleukin 1β (IL-1β), and interferon γ (IFN-γ), or as a
result of action of bacterial endotoxins, e.g., lipopolysaccharide (LPS), which is a significant
difference from hBD-1 which is secreted continuously [18,22–24]. What is more, only two
to four hours after contact with bacterial products, especially the Fusobacterium nucleatum
cell wall, and with pro-inflammatory cytokines (e.g., TNF-α), the synthesis of this protein
increases significantly [25]. Although NF-κB is involved in this process, it is neither suf-
ficient or necessary for hBD-2 induction, because p38 and c-Jun N-terminal kinase (JNK)
factors play a key role in the activation caused by F. nucleatum [26]. Additionally, in stud-
ies evaluating the effect of Actinobacillus actinomycetemcomitans, a bacterium involved in
difficult-in-treat periodontitis, on the secretion of antimicrobial peptides, it was noticed
that hBD-2 overexpression occurs through the MAP kinase pathway. More specifically,
one of the bacterial outer membrane proteins (Omp100) activated this process by binding
to extracellular matrix fibronectin, which is involved in the activation of these kinases.
Additionally, this process was enhanced by the action of pro-inflammatory cytokines (TNF-
α and IL-8) as response to infection [27]. This relationship has been noticed in the case of
microorganisms inhabiting the oral cavity in the physiological state which cause enhance-
ment of hBD-2 secretion using different pathways than pathogenic bacteria, because they
use the stress- and cytokine-dependent, JNK and p38 mitogen-activated protein kinase
pathway [21]. The appropriate intracellular concentration of calcium ions in gingival cells
also seems to be of indispensable importance [28]. Among the stimulators of hBD-2 (Porphy-
romonas gingivalis-derived LPS, TNF-α, and combination of both), the strongest stimulating
effect on the human gingival epithelial cell line was exerted by the combined action of
both above-mentioned pro-inflammatory factors [23]. However, some pathogenic bacteria,
such as Neisseria meningitidis, do not seem to stimulate the innate immune response as
demonstrated by the lack of influence of bacteria incubation with pharyngeal epithelial
cells on the secretion of hBD-1 and hBD-2. Additionally, the presence of N. meningitidis
had a suppressive effect on the commensal Lactobaccilli-induced (L. salivarius and L. reuteri)
synthesis of hBD-2. This is due to enhancement of the expression of A20 (molecule that is
an inhibitor of NF-κB pathway), caused by N. meningitidis infection [29]. Other studies in-
dicate that hBD-2 is effective in killing cells of N. meningitidis, but this is a rather ineffective
process because it takes place only after two hours of incubation and does not affect the
membrane. On the other hand, hBD-2 shows much lower lytic efficiency against bacteria
in aggregates, which suggests defensive action of the biofilm-forming pathogen against the
mechanisms of innate immunity [30].

Fungal infections can also modulate the components of the innate immune response
in the oral cavity. Recently, studies have been published that assessed the fluctuations
of inflammatory markers under the influence of Candida in an in vitro model of dental
stomatitis, a disease often associated with the use of dental prostheses. The contact of
human palate epithelial cells (HPEC) with C. albicans caused an increased level of hBD-2
and nitric oxide (NO) in culture supernatants as well as hBD-2 mRNA expression. However,
only the levels of the described protein were maintained after a longer period of time (10 h
of incubation) [31].

Studies with the use of tissue biopsy obtained from patients suffering from oral lichen
planus have revealed enhancement in the hBD-2 secretion, compared to healthy controls.
Importantly, it is postulated that histamine may be involved in this process because it
enhances the TNF-α-mediated increase in hBD-2 mRNA expression (possible pathway
through the activation of H4 receptor (H4R) on the cell surface). The role of defensin in the
pathogenesis of oral lichen planus implies its possible therapeutic application [32].

Interestingly, it has been suggested that smoking may play a role in the development
of periodontal diseases by significantly reducing hBD-2 synthesis, with overproduction of
highly chemotactic IL-8, as demonstrated by exposure of gingival keratinocytes to cigarette
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smoke [23]. However, due to one of the methods of treating periodontal lesions in the
oral cavity, namely low-dose laser therapy, it is possible to increase the secretion of hBD-2
by the oral epithelial cells in the transforming growth factor (TGF)-β1–related pathway.
The mentioned factor acted mainly on oral fibroblasts, and to a lesser extent on human
oral keratinocytes [33].

3. hBD-2 and Gastric Mucosa

One of the most common and challenging conditions is stomach infection with He-
licobacter pylori. This bacterium colonizes the gastric epithelium and contributes to the
development of cancer of this organ, as well as gastric and duodenal ulcers. Furthermore,
it may weaken the immune system of the host, allowing it to survive in the body through-
out life [34–38]. The epithelium of the stomach, like other parts of the digestive system,
has the ability to synthesize and secrete a wide variety of antimicrobial peptides, including
defensins [39]. hBD-2 and hBD-3 are expressed in enterocytes ‘on demand’ [40]. In vitro
studies showed that cytotoxic H. pylori caused a marked increase of hBD-2 expression by
two gastric epithelial cell lines (MKN7 and AGS; both are human gastric adenocarcinoma
cells), whereas hBD-1 expression showed a much weaker increase [41]. Overexpression
of hBD-2 induced by H. pylori has also been demonstrated in gastric tissue biopsy [42].
Increased production of this protein in H. pylori infection was also confirmed by a signifi-
cant increased concentration of hBD-2 in the gastric juice of infected patients, compared to
the control group of healthy people. Moreover, a positive correlation between these concen-
trations and the degree of inflammatory infiltration by neutrophils and mononuclear cells
in the corpus of stomach in histological examination was found [43]. Additionally, ex vivo
studies confirmed a significant upregulation of hBD-2 expression in the gastric mucosa of
infected patients, while the level of secreted hBD-3 was significantly lowered [44]. This sug-
gests various modulating properties of this bacterium. In vitro studies with H. pylori cell
suspension showed the antibacterial activity of synthetic hBD-2 at various concentrations,
and in the best case (hBD-2 concentration 10−5 M), bacteria were completely eradicated [42].
However, despite the increase of human β-defensin 2 synthesis during infection, bacterial
eradication has not been confirmed in patients [45]. While this peptide, along with other
components of mucosal and innate immunity, like low pH of gastric juice, protect the
epithelium of the stomach and gastrointestinal tract, H. pylori has the ability to adapt to
this condition, colonize the gastric mucosa and induce inflammation [45,46]. This peptide
accumulates on the bacterial cell surface, and despite small structural changes and minimal
growth inhibition, it does not eradicate them effectively, while such resistance may result
from structural modifications of the cell membrane [45,47]. On the other hand, there are
suggestions for the possible elimination of other pathogenic microorganisms susceptible to
the effect of this protein during this infection [45], which may prevent superinfections in
an already weakened host organism. Meanwhile, it was suggested that up-regulation of
hBD-2 in the situations described above can be used as a marker of inflammation of the
gastric mucosa [48].

4. hBD-2 and Intestinal Epithelium

Intestinal epithelial cells, together with secreted antimicrobial peptides, constitute an
effective barrier against the entry of pathogens into the host organism [49,50]. Maintaining
the balance between attacking pathogenic bacteria and conserving and supporting com-
mensal microbiota is crucial in maintaining homeostasis. Some reports describe the role
of β-defensins secreted by the colonic epithelium in protecting against not only bacterial,
but also fungal, parasitic, and viral infections [51]. Recently, the in vitro enhancing effect of
hBD-2 on the integrity of the intestinal epithelium has been described, e.g., by improving
tight junctions between cells. This made it possible to increase protection against the
invasion of pathogens such as C. albicans from the intestinal lumen to other parts of the
body [52]. In vitro studies have shown (similar to other epithelial cells) that cells from the
colon epithelial lines, human colon adenocarcinoma cells (Caco-2) and human colorectal
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adenocarcinoma cells (HT-29), consistently secrete small amounts of the hBD-1 protein,
which has also been confirmed by mRNA expression studies [53]. In contrast, hBD-2 mRNA
expression and protein production by the intestinal epithelium is significantly increased
after stimulation with enteroinvasive bacteria, such as Escherichia coli O29:NM serotype and
Salmonella dublin, as well as Bacteroides fragilis enterotoxin and pro-inflammatory cytokine
IL-1α, in a NF-κB pathway dependent manner, while it is imperceptible in unstimulated
cells [13,53]. What is more, in the B. fragilis-dependent activation of hBD-2 expression,
the presence of AP-1 was irrelevant because the induction of the hBD-2 gene was associated
with the aforementioned NF-κB, as well as with activation of MAP kinases due to the
phosphorylation of extracellular signal-regulated kinase 1

2 (ERK1/2), JNK and especially
p38 [13]. Moreover, in the activation of ERK-associated hBD-2 expression in intestinal
epithelial cells in response to, e.g., IL-1α, isoleucine appears to be of vital importance.
However, this amino acid incubated with cells in the absence of pro-inflammatory cy-
tokines does not activate this pathway [54]. Other studies with the use of Caco-2 cells have
well illustrated the selective action of antimicrobial peptides, hBD-2 and hBD-3, against
pathogenic strains of Salmonella typhimurium, without changing the number of colonies
of commensal Enterococcus faecium strain, and even increasing its protective effect as a
probiotic [55]. It appears that in the intestinal epithelium the hBD-2 promoter is activated
in a TLR2-dependent manner when it is stimulated by bacterial peptidoglycan, or a TLR4-
dependent manner by LPS stimulation. This may be an explanation for the fact that the
human colon adenocarcinoma SW480 cells that express TLR may respond better to LPS or
peptidoglycan stimulation than Caco-2 and T84, which weakly express these receptors [15].

Interesting data provide evidence for the effect of probiotic bacteria, Lactobacillus
rhamnosus and Bifidobacterium longum, on increased hBD-2 secretion and decreased IL-8
production on the protection of intestinal cells against P. aeruginosa infection [56]. However,
prolonged infection of P. aeruginosa PAO1 strain also suppressed IL-8 secretion and in-
creased hBD-2 secretion in intestinal epithelial cells, following increased mRNA expression
for both molecules. The involvement of NOD1 (nucleotide-binding oligomerization domain 1)
in overexpression of hBD-2 after infection with this pathogen has been demonstrated [57].

Parasitic infections also interfere with innate immunity. Infection with the intestinal
parasite Cryptosporidium parvum can affect defensins in a different manner. In the course of
infection, it results in the attenuation of the secretion of murine beta-defensin-1 (mBD-1)
in an animal model of infection, which was confirmed by a reduction in the expression
of constitutively secreted hBD-1 in in vitro studies using the HT-29 cell line. In contrast,
mBD-3, which is the equivalent of human BD-2, was secreted in the same high level in mice
regardless of infection, while HT-29 cells, which do not express it under normal conditions,
show high expression following infection [58]. Such interference with hBD-1 levels may
enable the parasite to escape the host’s immune defense, while hBD-2 remains ‘in fight’ and
its elevated levels indicate a stimulation of part of the immune system and perspectives
to effectively eliminate the cause of infection, especially as the effect of AMPs, including
hBD-2, in efficiently inactivating C. parvum sporozoites has been reported [59]. Another
parasite associated with intestinal infection, causing damage of the intestinal mucosa,
severe diarrhea, and, as a consequence, parental infections, i.e., Entamoeba histolytica,
can also interfere with the host’s immune system. In vitro exposure of Caco-2 cells to
this pathogen results in both increased mRNA expression and hBD-2 protein secretion,
which was caused by activation of TLR2 and TLR4 on the surface of intestinal cells and
with the stimulation of the NF-κB pathway [60].

Inflammation of the intestines caused by various etiological factors is concurrent with
the disturbance of both the gut microbiota and the level of antimicrobial peptides [61].
Many studies also suggest the role of human β-defensin 2 in the pathogenesis of inflamma-
tory bowel disease (IBD). The main representatives of this group of diseases are Crohn’s
disease (CD) and ulcerative colitis (UC). Studies with the use of both the Caco-2 cell line and
colon biopsy tissue from IBD patients indicate constitutive production of hBD-1 indepen-
dent of inflammation [62]. On the other hand, a clear increase in hBD-2 mRNA expression
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by Caco-2 cells was observed after stimulation with pro-inflammatory cytokines [62],
which has been repeatedly confirmed in biopsies of patients with inflammation, especially
in UC, compared to the control groups of healthy individuals [62–64]. The important cells
producing and releasing defensins, such as hBD-2, hBD-3, and hBD-4, are mature plasma
cells residing in the lamina propria of the colon, the number of which is several times higher
in UC patients than in CD or healthy patients [65]. Other studies indicate elevated levels of
hBD-2 in the sera obtained by patients suffering from Crohn’s disease, which may be caused
by the overproduction of inflammatory mediators (TNF-α, IFN-γ, and IL-22) as a result
of additional parental inflammations common in this disease [66]. However, in the same
studies, no increased secretion of the hBD-2 peptide in terminal ileum biopsies in patients
with CD was demonstrated, while the level of hBD-3 was increased four-fold, but without
significant changes in mRNA expression [66]. Interestingly, it appears that patients with
irritable bowel syndrome (IBS) without micro- and macroscopic signs of inflammation also
have elevated fecal hBD-2 values, comparable to those in UC patients [67].

In recent years, several murine models of experimentally induced enterocolitis have
been described, which demonstrate the efficacy of β-defensin 2 as a therapeutic agent
in alleviating disease symptoms. Subcutaneous administration of hBD-2 to mice with
colitis caused by supplementing the water with dextran sodium sulfate (DSS), colitis in-
duced by intracolonic administration of trinitrobenzene sulfonic acid (TNBS), as well as
colitis induced by transplantation of CD4+/CD25- T cells to mice with severe combined
immunodeficiency (SCID), resulted in a reduction of disease markers, inter alia, by sup-
pression of inflammation in the intestines and reducing weight loss in the animals [68].
In addition, in ex vivo studies using human peripheral blood mononuclear cells (PBMCs)
stimulated with LPS or Pam3CSK4 (Toll-like receptor 1/2 agonist, inducer of the production
of inflammatory factors), the anti-inflammatory effect of hBD-2 was emphasized, due to
a significant reduction in the secretion of pro-inflammatory cytokines, such as TNF-α,
IL-1β, IFN-γ, IL-23, and IL-12p70. The suppression of inflammation was also achieved
due to the interaction of hBD-2 with CCL2 receptors on dendritic cells, which resulted
in the weakening of NF-κB activity and an increase in cAMP response element-binding
protein (CREB) through its phosphorylation [68]. The same animal models have also been
used previously to demonstrate the therapeutic effect of recombinant hBD-2 produced
using Saccharomyces cerevisiae and administered subcutaneously. The main indicators of
improvement in the condition of the mice were a significant reduction in tissue damage
in the histological examination, a decrease in weight loss and improvement in other parts
of the disease activity index, i.e., stool consistency and hematochezia. As in the study
described above, the effect of defensin on LPS-stimulated human PBMCs was marked by a
reduction in synthesis of pro-inflammatory cytokines (TNF-α, IL-1β, and IL-23) as well as
increasing the release of anti-inflammatory cytokines (IL-10 and IL-24) [69]. Furthermore,
orally administered hBD-2 showed a therapeutic effect in a murine model of DSS-induced
colitis, and modulation in the composition of the gut microbiome was also reported [70],
which is most often disturbed in the course of IBD [71–73]. These results suggest the
influence of therapeutic administration of hBD-2 not only on recovery, but also on the
balance of systemic homeostasis (based on the maintenance of an appropriate composition
on the microbiome).

Interestingly, very early pre-clinical in vitro studies using the Caco-2 cell line indicate
a possible immunomodulatory effect of T4 bacteriophage, evidenced as a marked increase
of hBD-2 gene (DEFB4A) expression [74]. These results may suggest the possible use of
phages as modulators of the immune response in assisting the treatment of diseases such
as IBD via induction of hBD-2.

5. hBD-2 and Cells from Central Nervous System

For a long time, attention has been paid to the communication of the immune system
with the nervous system [75–77]. A significant role of T-cells, B-cells, cytokines or various
type of receptors in the development of the central nervous system has been described [78].
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Of the different types of nerve cells in the brain, only astrocytes are susceptible to synthesis
of hBD-2 mRNA and release of the hBD-2 protein in vitro under the influence of LPS and
cytokines (TNF-α and IL-1β). However, almost all investigated cell cultures (astrocytes,
meningeal fibroblasts and microglia, excluding neurons) were able to constitutively express
hBD-1 mRNA under normal conditions [79]. In brain capillary endothelial cells (BB19
cell line), the inducing effect of Chlamydophila pneumoniae infection in the increase of
hBD-2 secretion (increase in both mRNA expression and peptide production) has been
reported [80]. This suggests that defensins may also play an important role in immune
defense in cerebral blood vessels.

It has been suggested that disturbances in antimicrobial peptide levels, including
hBD-2, may be important in the development of pathological conditions in the central
nervous system, which include disturbance of cell maturation (such as dendritic cells) or
overexpression of pro-inflammatory cytokines [81].

6. hBD-2 and the Epithelium Lining the Respiratory System

Not without significance is hBD-2 expression in epithelial cells lining the lung and
serous cells of the lung submucosa glands [82]. It has been proven that the LPS-induced
activation of hBD-2 gene expression in lung cells requires NF-κB and AP-1 protein com-
plexes, and also intracellular calcium ions are essential in this process [10]. A multiple and
wide influence of human β-defensin 2 is postulated in various diseases of the respiratory
tract [83]. Recent studies indicate significant associations in the mutations of hBD-2 encod-
ing genes (DEFB4A and DEFB4B) with the development of atopic asthma in children [84].
Moreover, the additional association of hBD-2 with asthma is due to the fact that glucocor-
ticoids (such as dexamethasone), drugs commonly used in the treatment of asthma [85],
can attenuate the expression of the human β-defensin 2 gene in human airway cells [10]
(however there are different data from studies with the use of Caco-2 cells, in which dexam-
ethasone enhances the hBD-2 mRNA level [86]). Interestingly, the protective effect of orally
administered hBD-2 has been reported in the course of atopic asthma and house dust mite
allergy in a mouse model [84]. Serum studies of healthy individuals, as well as patients
with chronic Pseudomonas aeruginosa infection of the lower respiratory tract and suffering
from idiopathic pulmonary fibrosis, showed that in patients with infection, especially
those caused by mucosal strains, the levels of hBD-2 and hBD-3 are most clearly marked
when compared to other groups [87]. It has been suggested that the hBD-2 level in plasma
may be a useful predictor in the assessment of an unfavorable course of pneumonia [88].
In contrast, significant amounts of hBD-2 and hBD-4 were detected in the epithelial lining
fluid of patients with mucoid P. aeruginosa infection, while they were not detectable in other
groups. What is more, these concentrations correlated with serum C-reactive protein (CRP)
levels [87]. In fact, the presence of TLR4 receptors on lung epithelial cells plays a critical
role in bacterial LPS-stimulated expression of hBD-2 by these cells [89]. The respiratory
epithelium along with secreted antimicrobial peptides may also play an important protec-
tive role against life-threatening fungal infections of the lungs. It appears that exposure
of human type II alveolar epithelial (A549) and human bronchial epithelial (16HBE) cells
to Aspergillus fumigatus, especially swollen conidia, increases expression of the hBD-2 and
hBD-9 genes, as well as the level of hBD-2 in culture supernatants [90].

In vitro studies using human lung epithelial cell lines show interesting results regard-
ing the influence of Brucella abortus infection on antimicrobial peptides (AMP) secretion.
While A549 and Calu-6 (bronchial epithelial cell line) cells expressed CCL2 in response to
infection, the increase of hBD-2 secretion by A549 cells occurs upon incubation with mono-
cytes infected with this bacterium. In fact, the release of hBD-2 was related to the secretion
of IL-1β by infected monocytes. Nevertheless, cytokine-dependent hBD-2 secretion does
not result in effective antibacterial activity against B. abortus strains [91], therefore, in this
case, it is only possible for this peptide to interact in an immunological pathway without
effectively contributing to the killing of this pathogen.
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Different levels of hBD-2 secreted by lung tissues may occur in smokers and non-
smokers. In a rat model of exposure to cigarette smoke, increased expression of rat
beta-defensin-2 (rBD-2) mRNA and clearly increased levels of this protein in lung tissue
have been reported [92]. This suggests an important role for hBD-2 in the protection of
the respiratory tract against oxidative stress, as well as related infections and develop-
ment of chronic obstructive pulmonary disease, which are a consequence of exposure to
cigarette smoke.

Some studies also highlight the antiviral effect of hBD-2 [93]. Recent in silico studies
indicate the ability of human beta-defensin-2 to bind the receptor binding motif (RBD)
domain, that complexes with angiotensin-converting enzyme 2 (ACE2) and mediates SARS-
CoV-2 entry into host cells. Due to this interaction of the small peptide like hBD-2, it is
possible to block the entry of the virus [94]. However, the antiviral activity of beta-defensins
(hBD-2 and also hBD-5 and hBD-6) after prior viral entry into cells has not been proven [95].
These results indicate a possible protective effect of hBD-2 against viral infections in the
lungs even before pathogen penetration.

Furthermore, hBD-2 has been suggested to have role in controlling SARS-CoV-2
infection [96]. In fact, patients with COVID-19 have markedly reduced serum levels of
hBD-2 which can promote virus persistence and disease severity [97].

7. hBD-2 in Skin and Wounds

The largest organ in the human body and simultaneously the most important barrier
protecting against entry of pathogens is the skin. Among the wide range of very important
functions of the skin is production and secretion of various antimicrobial peptides. As was
mentioned above, hBD-2 is first described in the skin. The role of hBD-2 in various
skin infections and non-infected diseases was also highlighted. Studies on the primary
keratinocytes revealed that in the IL-1β- and P. aeruginosa-induced activation of hBD-2
gene expression, the synergistic action of the NF-κB and AP-1 pathways is crucial [12].
There are studies which suggest that hBD-2 may be a marker of severity of atopic dermatitis
due to their pronounced correlation with disturbances in stratum corneum and lesional
skin [98]. Moreover, levels of hBD-2 per µg of total protein in the sample was the highest in
lesion skin from atopic patients, compared to levels in patients without lesions and healthy
people [99]. In contrast, other studies show no differences in the levels of various AMP,
including hBD-2 and human cathelicidin LL-37 in atopic patients compared to healthy
individuals [100]. Due to the fact that patients suffering from atopic dermatitis are very
exposed to various skin infections [101], the levels of defensins secreted by them may be
an important factor influencing the course of disease and possible prevention of infection.

Another chronic relapsing inflammatory disease of the skin is psoriasis vulgaris, in which
keratinocytes, T cells, and dendritic cells participate [102], and which is considered to be
an autoimmune disease [103]. Many beta-defensins (hBD-2, hBD-3, hBD-4, and also LL-37,
excluded hBD-1) have been shown to contribute to the increased secretion of IL-18 and
expression of its mRNA by primary human keratinocytes [104], and this interleukin is
important in the development of skin diseases [105]. Therefore, apart from the positive
effects of HBD-2, their role in exacerbating the symptoms of the disease is also empha-
sized [106]. Activation of keratinocytes to the overexpression of IL-18 takes place via the
p38 and ERK1/2 MAPK dependent pathway, without the participation of JNK in this
process [104]. It turns out that the beta-defensin gene copy number is highly correlated
with the risk of developing psoriasis [107]. Interestingly, plasma hBD-2 levels may also
play a role in cutaneous diseases. It has been shown that in patients suffering from pso-
riasis, serum levels of the hBD-2 protein strongly correlated with the degree of disease
activity (based on the psoriasis area and severity index—PASI), which was not observed
in patients with atopic inflammation in the same study [108]. It has been suggested that
measuring the concentration of this protein in serum may be an indicator of the severity
of psoriasis [108] and effectiveness of treatment with Janus kinase (JAK) inhibitors [109].
Interestingly, a correlation between the increased amount of neutrophil extracellular traps
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(NETs) in cutaneous psoriasis lesions and the increased amount of hBD-2 therein was
described. Moreover, stimulation of normal human keratinocytes with netting neutrophils
from psoriasis patients resulted in enhanced synthesis of both mRNA and hBD-2 protein,
and such an induction mechanism of one of the AMPs may to some extent explain the
enhanced antimicrobial protection of psoriatic plaques [110].

Promising data suggest the possibility of using recombinant beta-defensins in wound
healing. The results point to hBD-2 with the appropriate substitutions (A-hBD-2) showing
greater stability, lower cytotoxicity and better antimicrobial activity than hBD-2 in in vitro
keratinocyte cell line studies. Furthermore, the migration and proliferation of these cells
was promoted, and many cytokines were secreted through the activation of phospholipase
C. The A-hBD-2 wound healing effect was confirmed in an in vivo rat model [111]. Other
studies have illustrated the effect of 1,25-dihydroxyvitamin D3 on an increase in mRNA
expression and protein secretion of both hBD-2 and LL-37 in primary diabetic foot cell cul-
tures, in which AMP levels are typically decreased. The antimicrobial activity of the culture
supernatants and their influence on the migration of keratinocytes confirmed the possible
usefulness of such a treatment strategy in the wound healing process [112]. Examples of
diseases in which the action of hBD-2 may result in positive effects, and disorders in which
hBD-2 may play a role of diagnostic marker are presented in Tables 1 and 2, respectively.

Table 1. Diseases in which hBD-2 may induce beneficial effects.

Conditions Where Beneficial Effect of hBD-2 Is Suggested and Proposed as a
Therapeutic Agent

fungal intestinal infection [52] upregulation of intestinal epithelium integrity

experimental colitis [68–70] suppression of inflammation

premature delivery [113] protective effect

atopic asthma [84] protective effect

house dust mite allergy [84] protective effect

smoking-induced cell damage [23,92] protection of the respiratory tract against
oxidative stress and infections

wound healing [33,111,112] increasing the migration and proliferation of
cells

oral lichen planus [32] enhancement of the level of hBD-2 reduced by
the disease

virus diseases [94,95] possible inhibition of virus entry into the host
cells

Table 2. Diseases in which hBD-2 may be a diagnostic marker.

Conditions Where Elevated Levels of hBD-2 were Noted and Proposed to Be a Marker

gingival inflammation [18,22–25]

infection with H. pylori [41–46]

ulcerative colitis [62–64]

Crohn’s disease [66]

irritable bowel syndrome [67]

intra-amniotic infections [114]

lichen sclerosus [115]

smoking [92]

atopic dermatitis [98,99]

psoriasis [107,108]
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Evidently, in skin cancers accompanied by significant changes in the composition of
the bacterial communities present on the skin, the microbiome may be associated with
the proliferation of tumor cells. In biopsies from patients with a keratinocyte skin tumor,
overabundance of Staphylococcus aureus was associated with overexpression of hBD-2 and,
importantly, with increased tumor proliferation [116]. It can be presumed that the overpro-
duction of defensins has an indirect influence on the progression of neoplastic processes.

8. hBD-2 in Pregnancy and Infancy

Beta-defensins, along with other components such as mucins, neutrophil gelatinase-
associated lipocalin (NGAL) or antibodies (IgG and IgA), constitute a relevant part of the
antimicrobial barrier of the vaginal environment [117]. In pregnant women, expression of
the human β-defensin 2 gene positively correlates with the concentration of this protein
in cervical samples [118]. Moreover, in the example for E. coli strains, the influence of
hBD-2 level on the antimicrobial activity of cervicovaginal secretion was described [118],
which indicates the role of this protein in maintaining the proper immune state of the vagi-
nal mucosa during pregnancy. A similar enhancement in the secretion of hBD-2 has been
demonstrated in the infection with this bacterium [119] as well as with C. albicans [120] of
the extra-placental membranes—the amniotic and choroid, especially in the choriodecidual
region. Women in early pregnancy who suffer from bacterial vaginosis have significantly
lower hBD-2 concentrations in vaginal samples compared to healthy women [113]. In contrast,
increased secretion of hBD-2 by the human vaginal epithelial cell line (VK2/E6E7) after
stimulation with Candida albicans was described in in vitro studies [121]. In studies of the
amniotic fluid, hBD-2 was present in all samples, but its concentration increased signifi-
cantly during intra-amniotic infections [114]. In addition, hBD-2 mRNA expression was
detected in placental, chorion and villus tissues [122]. In summary, the appropriate level of
antimicrobial peptides, in particular hBD-2, in the female reproductive system, can protect preg-
nant women against premature rupture of membranes (PROM) and preterm delivery [113],
and it is also an important element of innate immunity.

What is more, levels of beta-defensins are very important in postmenopausal patients
in some disorders, like lichen sclerosus, because decreased concentration of hBD-1 and
significantly increased levels of hBD-2 and hBD-3 in these women are described. Overpro-
duction of defensins translate into increased activation of fibroblasts and synthesis of the
extracellular matrix, which promotes disease progression. This suggests the possibility of
treating such conditions by modulating the composition of the microbiome contributing to
this condition [115].

The beneficial effects of breastfeeding on the development of newborns’ immune
system and protection against various infections both during and for a long time after
cessation of feeding are discontinued known [123–125]. The significant role of human
β-defensin 2 in these processes has also been emphasized. It has been shown that colostrum
contains higher levels of hBD-2 than mature milk [126–128]. Additionally, it turns out
that the method of delivery was important for the content of this protein in breast milk,
which is manifested by significantly higher levels of hBD-2 in the case of vaginal delivery,
than in women undergoing cesarean section [126]. Significant amounts of antimicrobial
peptides, such as lactoferrin, hBD-1, and hBD-2, are also present in preterm breast milk,
with clearly higher concentrations determined on day 7 than on day 21 after delivery [129].
The importance of the presence of hBD-2 in breast milk for the antimicrobial protection of
newborns is confirmed by in vitro tests, which showed that this milk-derived protein has
clear bactericidal properties against various dangerous pathogens, like E. coli, Salmonella
spp., P. aeruginosa, Serratia marcescens, or Acinetobacter baumannii [128]. On the other hand,
the levels of hBD-2 in breast milk are not related to the development of allergies in children
from high-risk groups [127].

In addition to maternal protection, the production of hBD-2 by various tissues of
newborns is of great importance for their homeostasis and for maintenance of health.
Preterm neonates have lower levels of hBD-2 in serum than term newborns, and this
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translates into a proven higher risk of developing life-threatening sepsis [130]. However,
hBD-2 concentrations in bronchoalveolar lavage fluid collected from premature and mature
infants did not differ in relation to the gestational age, but production of this protein was
up-regulated in pneumonia and systemic infections [131].

9. hBD-2 and Genitourinary Tract

Research has shown that hBD-2 is produced in distal nephron epithelial cells and can
be detected in urinary tract infections [132]. Caterino et al. (2015) conducted a study on
a group of 40 patients with an average age of 57 [133]. In addition, comorbidities such
as heart disease, diabetes, and stroke were reported in patients. Furthermore, there were
also people on immunosuppression, with cancer or organ transplants. 75% of patients
complained of problems with the urinary tract. Urine tests were performed among the
patients, which revealed the presence of bacteria (Citrobacter spp., S. aureus, E. coli, Klebsiella
pneumoniae, Lactobacillus-like, Staphylococcus saprophyticius, Morganella morganii, Gardnerella
vaginalis-like, Enterococcus faecalis) in 13 of them. hBD-2 levels were tested in 35 people
and found to be significantly higher in people with positive urine cultures than in people
without infection. Lehmann et al. (2002) examined the expression of hBD-2 genes in
samples of renal tissue from nephrectomy [134]. They were obtained from 15 patients
with a mean age of 60 years with chronic infections of the upper urinary tract. Bacteria
such as E. coli, Klebsiella and P. aeruginosa were isolated from the urine of the patients.
The performed studies showed that the genes encoding hBD-2 were expressed in 14 out
of 15 samples. Staining of samples with hBD-2 antiserum showed the presence of the
hBD-2 protein in distal tubules, loops of Henle and collecting ducts throughout the cortex
and medulla. In addition, incubation of human kidney carcinoma cell line (CAL-54) cells
with 10 ng/mL IL-1β for 6 hours resulted in a 476× increase in hBD-2 mRNA expression
compared to unstimulated cells. Incubation of cells with 10 ng/mL TNF-α resulted in an
82× increase in hBD-2 mRNA transcription levels, while the addition of 100 µg/mL E. coli
LPS led to a 15× increase in hBD-2 mRNA transcription levels compared to negative con-
trols. As shown in the above studies, hBD-2 is expressed by urinary tract epithelial cells as
a result of contact of the host cells with microorganisms or pro-inflammatory cytokines [6].

Human β-defensin 2 also plays an important role in the immune defense of the
prostate tissues. It has been shown that hBD-2 mRNA is constitutively expressed by cells
from the human prostate epithelial (RWPE-1) and human prostate cancer (DU-145) cell
lines, and also by tissue obtained from patients with benign prostatic hyperplasia. After LPS
stimulation, hBD-2 was upregulated, and this process involved NF-κB factor activated
by phosphorylation [135]. Moreover, LPS-induced overexpression of hBD-2 is mediated
by zinc ions, which are associated with phosphorylation of ERK1/2 and p38 factors and
increasing their total form. This provides evidence for the participation of not only the
mentioned NF-κB but also signaling by MAP kinases in the induction of defensin following
bacterial infection in the tissues of the prostate [136].

The individual factors causing changes in human β-defensin 2 levels in different
tissues along with the directions of these changes are presented in Table 3.
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Table 3. hBD-2 gene expression and protein levels in different tissues in relation to external factors
and mediators.

Tissue/Cells Stimulus mRNA hBD-2 hBD-2 Protein

oral
keratinocytes/oral

epithelial cells

TNF-α
IL-1β
IFN-γ
LPS

IL-2, IL-6
C. albicans

↑ * [18,22,23,25,31]/0
** [29] ↑ * [18,22,23,25,31]

human milk
oligosaccharides - ↑ [19]

cigarette smoke ↓ [23] ↓ [23]

laser therapy ↑ [33] ↑ [33]

gastric epithelial cell H. pylori ↑ [41,42,44,45] ↑ [43]

colon epithelial cells

IL-1α
IL-22

bacteria
enterotoxins

parasites

↑ [13,53,60,62] ↑ [13,53,60,62]

probiotic bacteria ↑ [56] ↑ [56]

T4 bacteriophage ↑ [74] -

genitourinary tract

fungi
bacteria

LPS
IL-1β

TNF-α

↑ [118,134,135] ↑ [113,118,133,135]

placental tissue fungi
bacteria - ↑ [119,120]

astrocytes
TNF-α
IL-1β
LPS

↑ [79] ↑ [79]

brain capillary Chlamydophila
pneumoniae ↑ [80] ↑ [80]

lung epithelium

LPS
bacterial (e.g.,
Pseudomonas)

infection
fungal infection

IL-1β

↑ [89,90] ↑ [87,89,90]

glucocorticoids
(dexamethasone) ↓ [10]/↑ [86] -

B. abortus infections 0 ** [91] 0 ** [91]

skin keratinocytes

bacteria
IL-1α
IL-1β

↑ [116] ↑ [137]

D3 vitamin ↑ [112] ↑ [112]

NET ↑ [110] ↑ [110]

* prevailing effect; ** no alterations; ↑ stimulation; ↓ inhibition; - no data available.

10. Conclusions

Recent progress in studies on hBD-2 suggest that this agent may play an important
role in the pathology of human diseases. Experimental and clinical observations suggest
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that in some clinical settings hBD-2 may be a marker of exacerbation of disease, which can
also suggest induction of biological defenses against an invading pathogen. Moreover, the
data presented in this review indicate that hBD-2 appears to be a very promising agent
with significant therapeutic potential in a variety of human disorders. Preliminary data
suggesting that phages may enhance its production by epithelial cells are interesting and,
if confirmed, may shed new light on phage interactions with eukaryotic cells and their im-
plications. Further studies are warranted to establish the place of hBD-2 in pathophysiology
and its therapeutic potential.
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