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Abstract: In a ball mill, FeBr3-catalyzed intramolecular
amidations lead to 3,4-dihydro-2(1H)-quinolinones in
good to almost quantitative yields. The reactions do not
require a solvent and are easy to perform. No additional
ligand is needed for the iron catalyst. Both 4-substituted
aryl and β-substituted dioxazolones provide products
with high selectivity. Mechanistically, an electrophilic
spirocyclization followed by C� C migration explains the
formation of rearranged products.

3,4-Dihydro-2(1H)-quinolinones are important structur-
al motifs occurring in natural products,[1] biologically active
compounds,[2] and drugs.[3] Over the past decades, various
synthetic approaches towards 3,4-dihydro-2(1H)-quinoli-
nones have been developed, including Friedel–Crafts
alkylations,[4] transition metal catalyses,[5] and radical
reactions.[6] Although these methods can be efficient in given
synthetic settings, they commonly require prefunctionalized
substrates resulting from multi-step syntheses or involve
complex reaction conditions, which limits their applicability.
Hence, the development of easy-to-perform syntheses of
3,4-dihydro-2(1H)-quinolinones has remained an attractive
goal.

In 2018, Chang and co-workers reported iridium-cata-
lyzed intramolecular arene C(sp2)-H amidation reactions
affording 3,4-dihydro-2(1H)-quinolinones with dioxazolones
as convenient acyl nitrene precursors (Scheme 1, top).[7–10]

An analogous ruthenium catalysis was reported by Yu and
co-workers in 2021.[11] In both cases, the heterocyclizations
proceeded by electrophilic spirocyclization followed by C� C
bond migration (Scheme 1, path A). Thus, they differed
significantly from the conventional electrophilic aromatic
substitution (SEAr) mechanism as revealed by Yang, Li, and
co-workers in a cobalt catalysis providing dihydro-2(1H)-
quinolinones (Scheme 1, path B).[12] Noteworthy, all of these
methods involve precious highly optimized catalyst systems,
complex reaction conditions, and rather long reaction times.

Recently, mechanochemistry has attracted attention in
the organic community due to its board synthetic applic-
ability and its potential to devise benign reaction
sequences.[13] In this context, we reported several protocols
for directed transition metal-catalyzed C� H-bond function-
alizations in ball mills.[14–16] In general, these reactions were
solvent-free, required only low catalyst loadings, and were
characterized by simple experimental protocols. We now
wondered about fusing the aforementioned amidation
procedures leading dihydro-2(1H)-quinolinones under Ir,
Ru, and Co catalysis with our expertise in mechanochemis-
try. Envisaged was the use of a non-precious metal catalyst
and a simplification of the experimental procedure by
performing the reactions under solvent-free conditions with-
in a short period of time. Here, we report the discovery and
successful implementation of a mechanochemical iron
catalysis fulfilling such goals.[17]

For the initial test reactions, 3-phenethyl-1,4,2-dioxazol-
5-one (1a) was chosen as representative substrate. Dihydro-
2(1H)-quinolinone 2a was the expected product. The initial
experiments indicated significant challenges. Thus, milling
of 1a in the presence of SiO2 as grinding agent at a milling
frequency of 20 Hz for 1 h gave 2a in only trace quantities
(Table 1, entry 1). To our surprise, however, the outcome
significantly changed when FeCl2 was added. Thus, applying
10 mol % of that iron(II) salt led to a remarkable improve-
ment, and 2a was obtained in 58% yield (Table 1, entry 2).
The corresponding copper and nickel chlorides did not show
this effect (Table 1, entries 3 and 4). The presence of
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Scheme 1. Reported intramolecular amidation reactions and this work.
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20 mol % of rac-2,2’-bis(diphenylphosphino)-1,1’binaphthyl
(rac-BINAP), 1,10-phenanthroline (1,10-phen), xphos (2-
dicyclohexylphosphin-2’,4’,6’-triisopropylbiphenyl), or dtbpy
(4,4’-di-tert-butyl-2.2’-dipyridyl) in the reaction mixture with
FeCl2 hampered the catalysis (Table 1, entries 5 and 8).
Other iron salts showed similar catalytic effects as FeCl2

with FeBr3 being superior over all others (Table 1, entries 9
and 12). Thus, with 10 mol% of that iron(III) salt, 62% of
2a were obtained. The yield of 2a was further improved by
increasing the milling frequency from 20 Hz to 25 Hz and
30 Hz, which gave 2a in 70 % and 91%, respectively
(Table 1, entries 13 and 14). Shortening the reaction time
from 1 h to 30 min had a negative effect limiting the yield of
2a to 57% (Table 1, entry 15). Thus, the best conditions for
the preparation of 2a from 1a involved milling of the
starting material in the presence of 10 mol % of FeBr3 and
SiO2 (300 mg per mmol of 1a) at a frequency of 30 Hz for
1 h. Accordingly, 2a was obtained in 91% yield (Table 1,
entry 14).[18]

Next, the substrate scope was examined (Scheme 2). In
the first series of experiments, a number of 3-arylethyl-1,4,2-
dioxazol-5-ones with para-substituents on the aryl were
applied. In all cases, the yields of the corresponding
products 2a–g were high ranging from 74–96 %.[19] Electron-
donating properties of the substituents appeared to be
beneficial for the product yields. Thus, the best result was
achieved in the conversion of 4-methoxy-substituted 1b,
which led to 3,4-dihydro-2(1H)-quinolinone 2b in 96%
yield. On the other hand, fluoro-containing product 2f was
formed in only 74 % yield. This reactivity pattern was also
observed in heterocyclizations of 1h and 1 i, which led to 2h
and 2 i in 90 % and 94 % yield, respectively. Only the 4-
methoxy-substituted aryls had reacted, while none of the
alternative products stemming from cyclizations through the

other arenes was detected. In all of the aforementioned
transformations, the products (2a–i) resulted from a sequen-
tial electrophilic spirocyclization and C� C bond migration.
This mechanistic scenario, which benefited from a stabiliza-
tion of a developing positive charge by an electron-donating
substituent at an appropriate position (see Scheme 4) was
substantiated by the lack of reactivity of 3-methoxy-
substituted 1 j. In this case, this stabilization was insufficient,
and thus, no product formation occurred. Consequently, 1j
was recovered in 55 % yield, besides the detection of several
unidentified side-products. Confirming this hypothesis, 3,4-
di(methoxy)-substituted 1k reacted well affording 2k in
98 % yield. The reaction outcome with 2-naphthyl-contain-
ing 1 l as substrate was complex. In this case, three products
(2 l, 2 l’a, and 2 l’b) were formed. Chromatographically, 2 l
could be separated from a 3 :1 mixture of 2 l’a, and 2 l’b. The
product amounts of those two samples corresponded to
yields of 21 % and 62%, respectively. While the formation
of 2 l and 2 l’a were clearly distinct and mechanistically
unique involving an electrophilic spirocyclization/C� C bond
migration sequence and an electrophilic aromatic substitu-
tion, respectively, 2 l’b could result from both pathways. The
two mechanistic scenarios were also relevant in the reaction
of 2-bromo-substituted substrate 1m, which led to a 5 : 1
mixture of regioisomers 2m and 2m’ in an overall yield of
32 %. Finally, two more β-disubstituted substrates 1n and 1o
were tested. In both cases, the yields of the corresponding
3,4-dihydro-2(1H)-quinolinones 2n and 2o were high (92%
and 87%, respectively). For confirming the applicability of
the heterocyclization, the reaction of 1b was performed on a
1 mmol scale affording 2b in 93 % yield.

The following two test reactions aimed at gaining
mechanistic insight: First, the conversion of 1b to 2b was
evaluated in the presence of 3 equiv of (2,2,6,6-tetrameth-

Table 1: Optimization of the reaction conditions.[a]

Entry Cat. Ligand Milling frequency
[Hz]

t [h] Yield [%]

1 – – 20 1 trace
2 FeCl2 – 20 1 58
3 CuCl2 – 20 1 trace
4 NiCl2 – 20 1 trace
5 FeCl2 rac-BINAP 20 1 <10
6 FeCl2 1,10-phen 20 1 18
7 FeCl2 xphos 20 1 trace
8 FeCl2 dtbpy 20 1 <10
9 FeBr2 – 20 1 50
10 FeSO4 – 20 1 25
11 FeCl3 – 20 1 45
12 FeBr3 – 20 1 62
13 FeBr3 – 25 1 70
14 FeBr3 – 30 1 91
15 FeBr3 – 30 0.5 57

[a] Reaction conditions: 1a (0.3 mmol), cat. (0.03 mmol), ligand (0.06 mmol) SiO2 (90 mg), 10 mL stainless steel milling vessel with one 10 mm
stainless steel ball.
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ylpiperidine-1-yl)oxyl (TEMPO). The yield of <10 % of 2b
(as compared to the previously determined 96% yield for
the same product under standard reaction conditions)
suggested the involvement of radicals as relevant intermedi-
ates. Second, applying phenolic substrate 1p to the hetero-
cyclization conditions gave spiro product 3 in 78% yield
(Scheme 3), making it most likely that also in transforma-
tions of other substrates such spiro intermediates could be
involved and be of importance for the final product
formation.

Based on these observations and in light of results
reported by others,[20] a mechanistic pathway can be devised
(Scheme 4). Due to experimental challenges of analyzing the
reaction progress under mechanochemical conditions, sev-
eral steps have to remain descriptive at this stage. In analogy
to the discussion by Bao, Yu, and co-workers for reactions
(in solution) with a 3-phenyl substituted dioxazolone and
FeCl3,

[20b] we propose an activation of substrate 1 by
coordination of FeBr3. Loss of CO2 leads to a new species
A, formally corresponding to an acylnitrene iron
intermediate.[21] Although the precise nature of A is
unknown, we assume that it has a partial radical character as
indicated by the hampered product formation after addition
of TEMPO. The reactivity of A is affected by the substituent
R. If the electronic properties of R increase the electron
density of the arene and the position of R stabilizes a
developing positive charge, as, for example, in 1b bearing a
methoxy group in para position, sequential spirocyclization
and C� C-bond migration occurs leading to the observed 3,4-
dihydro-2(1H)-quinolinones 2 (here, 2b) via intermediates
B and C.[22] The formation of 3 from 1p (Scheme 3) supports
this proposed reaction path, which is also in accord with the
pathways discussed in the literature.[7,8,11, 12, 20] In case the R
substituent in 1 does not provide enough of the aforemen-
tioned electronic stabilization, electrophilic aromatic sub-
stitution (SEAr) reactions or direct nitrene-type C� H bond
insertions can become relevant explaining the formations of
products 2 l’b and 2m’.

In summary, we developed a mechanochemical iron
catalysis for intramolecular amidation reactions of dioxazo-
lones leading to 3,4-dihydro-2(1H)-quinolinones in good to
very high yields. No ligand is required for the activation of
FeBr3, which is applied in a 10 mol % quantity. The
reactions are solvent-free, and the processes are easy to
perform in a standard commercial ball mill. Mechanistically,
electrophilic spirocyclization/C� C migration sequencies and
SEAr reactions leading to C� H-functionalizations explain
the product formation.

Scheme 2. Substrate scope (0.3 mmol scale).

Scheme 3. Reaction of 1p to give spiro compound 3.

Scheme 4. Possible mechanistic pathways.
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