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Abstract: The spindle box is responsible for power transmission, supporting the rotating parts and
ensuring the rotary accuracy of the workpiece in the heavy-duty machine tool. Its assembly quality is
crucial to ensure the reliable power supply and stable operation of the machine tool in the process of
large load and cutting force. Therefore, accurate diagnosis of assembly faults is of great significance for
improving assembly efficiency and ensuring outgoing quality. In this paper, the common fault types
and characteristics of the spindle box of heavy horizontal lathe are analyzed first, and original vibration
signals of various fault types are collected. The wavelet packet is used to decompose the signal into
different frequency bands and reconstruct the nodes in the frequency band where the characteristic
frequency points are located. Then, the power spectrum analysis is carried out on the reconstructed
signal, so that the fault features in the signal can be clearly expressed. The structure of the feature vector
used for fault diagnosis is analyzed and the feature vector is extracted from the collected signals. Finally,
the intelligent pattern recognition method based on support vector machine is used to classify the fault
types. The results show that the method proposed in this paper can quickly and accurately judge the
fault types.

Keywords: fault diagnosis; wavelet packet transform; power spectrum analysis; pattern recognition;
support vector machine

1. Introduction

Heavy-duty machine tools are characterized by the ability to process large and heavy components.
This working characteristic requires that the machine must have high safety, stability and reliability.
Working load and the inertia of the workpiece are very big under this working condition; therefore,
once the machine tool component failure causes the sudden stop of the machine, this damages the
rotary parts in the spindle box of machine tool [1]. Thus, there has been widespread concern regarding
a guarantee of the normal working state of machine tools and the early diagnosis of faults. Faults in heavy
duty machine tool components usually occur in rotating parts because, under this kind of heavy load
condition, the tiny flaw of the rotating part will expand rapidly. This can cause parts to fail and even have
a major impact on other parts. Therefore, early fault diagnosis and determination is of great significance
for the use and maintenance of heavy duty machine tools [2].
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Methods used for gear box analysis include spectral analysis, cepstrum analysis, demodulation
analysis, statistical analysis, and envelope analysis. The appearance of fast Fourier transform (FFT) [3]
brings the fault diagnosis method based on Fourier analysis to a new stage. However, people gradually
find that the traditional FFT method cannot effectively display the transient signal of fault characteristics.
Although envelope spectrum analysis can show fault characteristics, it cannot effectively process unsteady
state signals [4]. Some methods have been developed and applied to deal with such unsteady problems.
One of them is the short-time Fourier transform (STFT) [5]. This method analyzes the signal at equal
intervals. However, since its time-domain resolution cannot be changed, it has problems in analyzing
signals with high time-domain resolution. Wigner–Ville distribution (WVD) [6] can be used to analyze
specific fault signals with instantaneous energy due to its high resolution in time domain and frequency
domain. However, the defect of this method is that it will generate cross terms. The empirical mode
decomposition (EMD) [7] method and the Hilbert spectrum transform method are also used to analyze
the nonlinear and unstable signals caused by the local faults of the gearbox. Wu used the EMD
method to process the de-noising signal and decomposed it into IMF components adaptively, and the
corresponding noise and false components were eliminated by the correlation number criterion. However,
the disadvantage of the EMD method is that it consumes a lot of computing resources to decompose the
computing steps. In recent years, wavelet transform has been successfully applied to the processing of
unsteady signals and the extraction of embedded features [8,9]. McFadden points out that continuous
wavelet transform is able to achieve a series of resolutions when analyzing signals due to the use of variable
scaling functions, and it has been proved in experiments that it has advantages in analyzing the abrupt
wavelet transform in gear vibration [10]. Purushotham adopts the method of discrete wavelet transform
to decompose the vibration signals of normal bearing and bearing with complex faults respectively,
and compares the extracted characteristic data [11]. Although the wavelet analysis method has been
adopted by many scholars, there is no accurate conclusion about which wavelet basis function is the most
suitable to analyze the data.

The working state of gear or bearing can be identified by analyzing the characteristic parameters of
fault. From the current research, the development trend is that the machine can recognize and judge the
fault type by itself. Many scholars also focus on the application of artificial intelligence, machine learning
and other technologies to achieve automatic fault identification. Among all artificial intelligence methods,
artificial neural networks (ANNs) are the most widely used. Rafiee [12] used the multi-layer perceptron
neural network to deal with the identification of gear faults and bearing defects, and found in the
application that feature vectors play a crucial role in the identification effect of the trained neural network.
In addition to ANNs, some new methods such as support vector machine (SVM), relevance vector
machine (RVM), and hidden Markov model (HMM) are proposed for fault diagnosis and classification.
Samanta compared the recognition effect of ANNs and SVM for bearing faults under different loads and
speeds, and SVM was better than ANNs in terms of diagnosis accuracy and training rate. In addition,
the author also used a genetic algorithm (GA) [13] to optimize the structural characteristics of ANNs,
such as the number of layers and nodes, and the kernel function of SVM. Both of them performed better
after optimization than before optimization, which also provided a good guidance for better application of
intelligent diagnostic tools. The advantage of RVM is that it gives up the decision function, which can obtain
better relaxation characteristics than SVM [14]. When processing the same data, the RVM method with
a linear feature extraction feature can give more successful judgment conclusion than SVM. Purushotham
introduced an HMM model that is successfully used in speech recognition. Based on the signal data
measured in the experiment, the components with unknown faults are diagnosed and good judgment
results are obtained. Ge also studied the HMM method and pointed out that it could classify shock
vibration. However, the judgment effect largely depends on the quality of the training vector, so the
autoregressive model (AR) is introduced to assist the extraction of feature vectors [15]. Although the above
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methods can achieve fault classification, how to select a method that can guarantee both the robustness of
classifier and the recognition accuracy still needs to be studied.

In view of the shortcomings of existing literature, this paper provides a new model by combining
frequency domain analysis and pattern recognition to realize the intelligent fault diagnosis of a machine
tool spindle box. To effectively realize fault feature extraction, the wavelet packet is used to decompose the
signal into different frequency bands and the power spectrum analysis is carried out on the reconstructed
signal. The structure of the feature vector used for fault diagnosis is established based on the detected
vibration signals. The intelligent pattern recognition model based on a support vector machine is used to
identify the faults in the spindle box of a heavy-duty horizontal lathe.

2. Fault Detection and Classification of Rotary Parts

2.1. Fault Classification of Spindle Box

According to the different parts of the gear box, the failure can be divided into gear failure, shaft failure,
and bearing failure. Among them, gear faults mainly include tooth surface wear, tooth surface abrasion,
tooth surface contact fatigue and tooth fracture. Bearing faults can be divided into inner ring fault,
rolling body fault, cage fault and outer ring fault according to the location. Shaft failures include shaft
bending and shaft imbalance and misalignment. In addition, as an assembly box, the main assembly faults
include too large tooth backlash and loose assembly.

As it is a new machine tool to be delivered, there is no failure such as tooth wear and bearing failure.
For the spindle box of heavy duty horizontal lathe, the faults mainly include: (1) misalignment existing
between motor shaft and axis; (2) misalignment existing between transmission gears in the box; (3) loose
assembly of the transmission shaft in the gearbox; and (4) the backlash of two pairs of meshing gears being
too large.

2.1.1. Coaxiality out of Tolerance of The Connecting Shaft

The motor of the machine tool is connected to shaft I through the shaft coupling. The installation
of this transmission structure will be accompanied by the connection shaft coaxiality out-of-tolerance,
which is usually manifested as axis parallel misalignment and angle misalignment coexistence, as shown
in Figure 1a. In the case of coaxiality error between connecting shafts, the radial vibration frequency of
slave shaft is twice that of master shaft, and with the increase of misalignment angle “α”. In addition,
when the misalignment phenomenon exists, it is generally the axis parallel misalignment and the angle
misalignment appearing at the same time. The radial vibration of slave shaft appears to have double
frequency, and the more serious the misalignment, the greater the proportion and amplitude of double
frequency. In addition, in general, the amplitude of double frequency is higher than the fundamental
frequency. The general form of its spectrum diagram is shown in Figure 1b, where f is the frequency of
master shaft.

2.1.2. Misalignment of Gears

In the process of machining and assembly of gear box body, it often occurs that the position accuracy
between the holes does not meet the requirements due to the machining error of the box body, which leads
to the misalignment of the two axes equipped with meshing gears after assembly. In addition, some gears
in the spindle box of the heavy horizontal lathe are connected to the shaft by spline. Because the coaxiality
of the shaft is out of tolerance and the coaxiality of the gear is out of tolerance, the gear and the shaft
will be misaligned. These two phenomena will lead to the uneven load of the gear in the direction of the
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width of the tooth, the stability of power transmission decreases, and the load on the local area of the tooth
surface increases. The assembly error diagram of different axes is shown in Figure 2a.

The misaligned gear will produce meshing frequency vibration with side frequency band at meshing
frequency. Moreover, there are harmonics of meshing frequency, and the peak value of harmonics at double
and triple meshing frequency is very high, even higher than the peak value of meshing fundamental
frequency. In addition, the modulation phenomenon appears around the peak value of each order harmonic
frequency, and the modulation frequency is consistent with the rotation frequency of the shaft where the
gear is located. The frequency spectrum of gear misalignment is shown in Figure 2b.

Figure 1. Axis misalignment fault and spectrum diagram. (a) Coaxiality out of tolerance. (b) Spectrum diagram.

Figure 2. Gear misalignment fault and spectrum diagram. (a) Misalignment of gears. (b) Spectrum diagram.
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2.1.3. Excessive Backlash of Gear Tooth

In the assembly of the spindle box, the tooth backlash of the meshing wheel teeth will be too large after
assembly. Because the tooth backlash will affect the load change of the gear transmission, the vibration
characteristic of the gear system will change and the peak frequency will change. When the tooth backlash
is too large, the fractional multiple harmonics of meshing fundamental frequency will appear in the
spectrum diagram in addition to the high harmonics of meshing fundamental frequency. The spectrum
diagram is shown in Figure 3.

Figure 3. Spectrum diagram of excessive backlash of gear tooth.

2.1.4. Loose Mounting of Bearing Seat

During the installation of the drive shaft, the bearing supporting the shaft is mounted on the bearing
seat in the box body. In the process of installation, there may be loose installation of bearing pedestal due
to loose installation of connecting bolts of bearing pedestal. Once it appears, it will cause strong vibration
and noise when the box works. Although the frequency of such faults is lower in practice than those
mentioned above, it still needs to be accurately diagnosed and eliminated in view of its serious interference
to normal working conditions.

In the case of installation looseness, in addition to the basic frequency of axis rotation f , there will be
high order harmonic frequency of 2 f , 3 f , 4 f with equal axis rotation frequency, and fractional frequency
components of basic frequency such as f /2, 2 f /3, and f /3 in the frequency spectrum. In addition,
the amplitude of these frequencies is significantly increased compared with the normal operation, but the
rotational fundamental frequency is still the dominant one. Therefore, the amplitude of each characteristic
frequency should be comprehensively analyzed when diagnosing this kind of fault. The spectrum diagram
is shown in Figure 4.

Figure 4. Spectrum diagram of loose mounting of bearing seat.



Sensors 2019, 19, 4069 6 of 18

2.2. Fault Signal Acquisition

This paper mainly analyzes the vibration signal accompanied by the fault, so it is necessary to collect
the vibration signal of the gearbox in the time domain. Sensors suitable for the acquisition system of this
paper should be able to pick up vibration signals caused by assembly faults such as misalignment of shaft
and loose installation. In addition, in order to better analyze the signal in the time domain and frequency
domain, the shaft speed should also be measured.

According to the corresponding relationship between acceleration and force, the piezoelectric
effect can be used to determine the corresponding relationship between acceleration and voltage signal.
Moreover, the piezoelectric effect is characterized by good linearity and high sensitivity, and its frequency
measurement range can be from 0.0001 Hz to 1 MHz. Therefore, the piezoelectric acceleration sensor has
the advantages of high sensitivity and spectral bandwidth. In addition, most of the installation of the
acceleration sensor only needs to be fitted with the measured object. The fixing method includes bonding
it with the surface to be tested by adhesive, or fixing it by the external force of magnetic seat. In this paper,
an acceleration sensor (PCB type 356A16) is adopted, as shown in Figure 5b. The sensitivity is 100 mV/g.
The corresponding frequency range is 0.5 to 5000 Hz, the measuring range is 100 g, and the weight is 7.4 g.
In the application, the magnetic seat can be bonded on the end cover of the bearing seat.

Figure 5. Sensors and signal acquisition equipment. (a) Spindle box. (b) Accelerometer. (c) Tachometer.
(d) Data collection system. (e) Data collection software.

In order to better filter out the fault information contained in the vibration signal, it is necessary to
know the actual rotation speed of the shaft during the test. In this way, the possible failure frequency
of each drive shaft and the parts on the shaft can be calculated. By combining this information with the
processed original vibration signal, the fault of the spindle box can be diagnosed. Since the number of
gear teeth on each drive shaft of the gearbox can be obtained by consulting the design manual of the
corresponding machine tool, it is only necessary to understand the rotation speed of the power input motor.

In this paper, rotation speed tester (mvp-2c) is used to measure the shaft speed. During the shaft
rotation, the optical signal will be reflected by the reflector when it irradiates the reflector, and the
appearance and disappearance of such reflection will trigger the photoelectric sensor to generate pulse
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signal. By analyzing the pulse signal, the instrument can output the value of rotation speed and achieve the
test purpose. This method is simple, fast and suitable for complex environment operation. The instrument
and test environment are shown in Figure 5c.

In this paper, the LMS test instrument is used for data collection, which can realize data collection in
continuous time with different sampling frequencies under multiple channels. In addition, its parameter
setting and adjustment are implemented by software installed on the PC. The tester is easy to operate and
can adjust the sampling frequency from 0 to 10 kHz. The hardware configuration and software interface of
the LMS signal acquisition system are shown in Figure 5d,e.

The signal line of the sensor is connected to the front acquisition box with a multi-channel interface.
There is a module for amplifying the original signal in the pre-acquisition cabinet, which can ensure
the signal strength. The prE–Signal acquisition box is connected with the computer, and the parameter
setting, start and end of the acquisition are controlled by the computer. The three curves in the acquisition
software interface correspond to the x-, y- and z-direction input signals of the vibration sensor, respectively.
The collection time, sampling frequency and other parameters can be set in the toolbar on the right side
of the software. After the sampling starts, the system continuously collects the signals from the sensor.
After the set acquisition time arrives, the sampling stops. Set parameters, sensor information and collected
data information are recorded and stored in the same file after the completion of sampling. These files
provide sample data for subsequent data processing.

The vibration sensor is attached to the bearing seat or the end cover of the bearing seat in the
experiment. In this way, the signal source is relatively close to the transmission medium, and the exchange
surface of the transmission medium is relatively small, which can ensure the signal strength of the
characteristic information: signal sampling in order for the motor, axis I, axis II, and axis III. The layout of
the sensor is shown in Figure 6.

Figure 6. The layout of the sensor when measuring each axis.

3. Wavelet Packet Transform Based Fault Feature Extraction

3.1. Determination of Wavelet Basis Function

Because wavelet transform can map the signal to time–frequency domain, and a series of wavelet basis
functions are used to represent the signal, the hidden features in the signal can be effectively displayed.
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The assembly failure of spindle box studied in this paper is a part of rotating machinery failure. In order
to better extract the characteristics of the collected samples, the wavelet analysis method is also used to
process the fault signal.

The basic method of wavelet transform is to take the inner product of the basic wavelet function with
the signal x(t) to be analyzed at different scales a . The basic expression of continuous wavelet transform
is shown as Equation (1):

WTx (a, b) =
〈

x, ψa,b
〉
=

1√
a

∫ +∞

−∞
x (t)ψ̄

(
t− b

a

)
dt, (1)

where WTx(a, b) is Wavelet coefficients, a is scale that represents the frequency parameter, and b is time or
space position parameters.

For continuous wavelet transform, scale a , time t and offset b are continuous. When using the
computer to realize the calculation of wavelet transform, they need to be discrete processing, which is the
discrete wavelet transform. Binary discretization of scale a and offset m is usually carried out, and the
corresponding binary wavelet is shown in Equation (2):

ψj,k (t) = 2−
j
2 ψ
(

2−jt− k
)

. (2)

In the calculation procedure of binary discrete wavelet transform, only the approximate part
(low-frequency sub-band) of the signal is divided by exponential interval from scale 2, and the detailed part
(high-frequency sub-band) is not processed. Therefore, the resolution of the high frequency part is poor.
In order to process and analyze the high frequency part, Coifman, Meyer and Wickerhauser put forward
the concept of wavelet packet decomposition. Wavelet packet decomposition divides the frequency band
into several levels, so as to further decompose the high frequency part and realize more detailed analysis
of the signal. The decomposition structure obtained by decomposing signal S into three-layer wavelet
packet transform is shown in Figure 7.

Figure 7. Structure diagram of three-layer wavelet packet decomposition.

It can be seen from the analysis structure diagram that wavelet packet analysis can decompose the
original signal into each frequency band, so that the frequency band matching the concerned frequency
can be selected for analysis, and the time-frequency resolution of signal analysis can be improved.

The fault characteristic frequency studied in this paper is not limited to the rotation frequency
or meshing base frequency of a rotating part. In order to realize fault diagnosis, their high harmonic
frequencies are also analyzed. Therefore, the wavelet packet transform method can be used as a filter.
A node only reflects the information related to the frequency range of the node but excludes the interference
of other frequency components. In contrast, discrete wavelet transform usually ignores some high
frequency information. In this paper, the advantages and disadvantages of wavelet transform and wavelet
packet transform in signal representation will be compared quantitatively.

The evaluation criteria of wavelet transform method are mainly as follows:



Sensors 2019, 19, 4069 9 of 18

(a) The energy content of the signal

The energy content of a signal is a parameter directly related to the characteristics of the signal, so it is
usually used to describe the signal. The energy contained in the signal x(t) can be calculated by the
wavelet coefficient, as expressed by Equation (3) [16]:

Eenergy = ∑
s

∑
i
|W(s, i)|2. (3)

If a major frequency component of a signal corresponds to a specific scale, the wavelet coefficients in
that scale will have a relatively large amplitude when the major frequency occurs. This allows the energy
associated with a particular frequency component to be extracted from the signal. Therefore, the energy
content can be used as a criterion to evaluate the applicability of wavelet basis. For the same signal,
the larger the calculated value of the energy content, the more effective and appropriate processing method
is considered to show the characteristics of the signal, which is the maximum energy content standard.

(b) Shannon entropy of the signal

The wavelet coefficients are obtained by wavelet transform. The coefficients reflect the similarity
between wavelet and signal. If the coefficient matrix obtained by wavelet transform is regarded as
a distribution, the sparser the coefficient matrix is, the higher the similarity between signal and wavelet
will be. Shannon entropy can be used as an indicator to evaluate sparsity. Shannon entropy is defined as
Equation (4): 

Eentropy(s) = −
N
∑

i=1
pilog2 pi,

pi =
|wt(s,i)|2
Eenergy(s)

,
N
∑

i=1
pi = 1,

(4)

where pi is the energy probability distribution of the wavelet coefficients.
The probability distribution uniformity can be evaluated by calculating the Shannon entropy of the

distribution. For example, the distribution is the most uncertain when it has equal probability property.
This distribution has the highest Shannon entropy and the lowest sparsity. This evaluation method
is applied to the calculation and evaluation of wavelet coefficient matrix. The smaller the Shannon
entropy is, the more the corresponding wavelet analysis method matches with the signal. This is also the
minimum Shannon entropy standard to evaluate the applicability of wavelet basis function and wavelet
analysis method.

(c) The ratio of energy content to Shannon entropy (E–S ratio)

Both maximum energy content standard and minimum Shannon entropy standard can be used to
evaluate wavelet analysis. These methods are based on the description of the original signal information
by wavelet coefficients. The evaluation standard derived from the combination of these two is called
energy–Shannon entropy ratio (E–S ratio), and its definition is shown in Equation (5). Corresponding to the
maximum energy content standard and the minimum Shannon entropy standard, the wavelet transform
method with the maximum E–S ratio has the strongest ability to characterize the signal. The above three
evaluation criteria will be verified and compared in the analysis of actual signals later:

R(s) =
Eenergy(s)
Eentropy(s)

. (5)

In different calculation methods of wavelet transform, discrete transform and wavelet packet
transform can be implemented by the computer, and they can decompose signals into different
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frequency scales. Regarding which method is more suitable for the fault diagnosis of spindle box,
the above-mentioned criteria (as shown in Equations (3)–(5)) are used for comparison. Using the same
wavelet basis function, the methods of discrete wavelet decomposition and wavelet packet transform are
compared. By analyzing the advantages and disadvantages of these two methods for decomposition of
original signals, Shannon entropy, energy content and E–S ratio under different decomposition modes are
calculated, respectively.

The wavelet basis function coi f 1 in the Coiflet wavelet system is used, and the discrete wavelet
transform is applied to carry out 3-layer decomposition of the original signal. For the wavelet packet,
the decomposition of the original signal with the scale of 3 is also carried out. In addition, this comparative
analysis was carried out for different samples. Data collected on each axis are analyzed and calculated,
and the results are shown in Table 1.

Table 1. Comparison of different transformation modes under the basis function of coi f 1.

No. Discrete Wavelet Transform Wavelet Packet Transform
Eenergy (J) Eentropy E–S Ratio Eenergy (J) Eentropy E–S Ratio

1 464.077 15.145 30.642 464.099 15.126 30.683
2 230.455 15.181 15.181 230.496 15.157 15.207
3 3562.405 17.064 208.772 3562.534 16.925 210.485
4 2801.081 16.863 166.109 2081.192 16.783 166.910
5 3155.939 17.006 185.583 3156.027 16.960 186.088
6 3841.223 17.038 225.451 3841.373 16.882 227.540

By comparing the data values of each row in the table, it can be seen that Shannon entropy
value of signal through wavelet packet transformation is lower than that of discrete wavelet transform.
The energy value is larger than the energy obtained by the discrete wavelet transform, and the E–S ratio
is correspondingly larger than the discrete wavelet transform. It can be verified that wavelet packet
decomposition can better show the change rule of the signal, characterizing the characteristics of signal
and the information contained in it. In order to demonstrate the universality of the above verification,
the wavelet basis function was replaced to process the same data, and the calculation results of the
two analysis methods were still compared. Using wavelet basis function sym4, which is different from
wavelet basis waveform coif1, the calculation result is similar to that of coif1 wavelet, which proves that
wavelet packet analysis can reflect the characteristics of signal more precisely. From the perspective of
principle, wavelet packet analysis not only decomposes the low-frequency signal, but also decomposes the
high-frequency signal that has not been decomposed in the discrete wavelet transform, so the description
of signal features is more appropriate. Therefore, better calculation results can be obtained when various
indexes are introduced for evaluation. In addition, some of the characteristic frequencies studied in this
research are at the higher harmonic frequency of the meshing frequency, so the high-frequency part of the
signal also needs to be paid attention to. Therefore, wavelet packet decomposition can better meet the
research needs.

Based on Shannon entropy, energy content and E–S ratio, the wavelet basis suitable for the analysis
of spindle box vibration signal is evaluated and selected. Different wavelet basis functions are used for
wavelet packet decomposition transformation, and the results are shown in Table 2.
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Table 2. The results of wavelet packet decomposition based on different wavelet basis functions.

Wavelet Basis Eenergy (J) Eentropy E–S Ratio Wavelet Basis Eenergy (J) Eentropy E–S Ratio

Db8 465.160 15.042 30.923 Sym6 464.450 15.037 30.886
Db20 467.251 15.013 31.124 Bior3.5 1436.305 13.892 103.391
Coif2 464.570 15.068 30.831 Bior6.8 481.790 15.003 32.114
Coif4 465.656 15.028 30.986 Rbio2.8 627.791 14.864 42.236
Sym3 464.253 15.080 30.787 Rbio5.5 601.328 14.785 40.670

It can be seen from the calculation results that the values of each index obtained after the processing
of different wavelet basis functions are different. Among these wavelet families, the calculated values of
Bior and R-bior wavelet families are superior to other wavelet families. The results of wavelet functions of
different orders in the same family of wavelets are different. The basic rule is that the higher the order,
the better the result of each index. In terms of energy content, the maximum value of Bior3.5 was calculated
in the analysis of different groups of sample data. In the calculation of Shannon entropy, Bior3.5, Coif4 and
Rbio3.5 respectively obtained a primary minimum value. As for the E–S ratio, the maximum value of
Bior3.5 is obtained. It can also be seen that the maximum E–S ratio standard can help us select the most
suitable wavelet. Bior3.5 was selected for wavelet packet decomposition in this research.

3.2. Fault Feature Extraction

The signal collected from the spindle box of the machine tool is analyzed. The spindle box is known
to have gear misalignment errors among the shafts. Sampling signal acquisition in shaft II bearing end
cover. The tooth transmission relation between machine each axis: shaft I/II is 28/47, shaft II/III is 30/43.
The motor speed measured during sampling was 999.6 rpm and the sampling frequency was 8192 Hz.
After calculation, the rotation frequency of the test shaft is 9.93 Hz, and the engagement frequency of
the gears installed on the shaft is 466.48 Hz and 297.75 Hz. The original time domain waveform of the
acquired signal is shown in Figure 8. The period of some faults cannot be directly identified from the
information in the figure, and the waveform peak is disordered. Bior3.5 wavelet is used for five-layer
wavelet packet decomposition, so the signal is decomposed into 32 frequency bands, and a five-layer
binary tree structure is obtained. The last layer is [5 0], [5 1], ..., [5 31], a total of 32 nodes, and the
corresponding frequency band is 0–128 Hz, 128–256 Hz, ..., 3968–4096 Hz. The characteristic frequency
associated with the mismeshing fault of the gear is the first, second and third meshing frequency, and the
corresponding frequency of conversion modulation, that is, the meshing frequency plus or minus 9.93 Hz.

Figure 8. A time domain waveform on shaft II.

The frequency points concerned are 297.75 Hz, 595.5 Hz, 893.25 Hz, 466.48 Hz, 932.96 Hz, 1399.44 Hz,
and the modulation frequencies around them. These frequency points are located in frequency bands
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corresponding to nodes [5 2], [5 3], [5 4], [5 6], [5 7], [5 9]. These nodes were reconstructed and
Hilbert transformation was performed for spectral analysis, and the waveform obtained was shown in
Figure 9. Figure 9a,c,e deal with pairs of nodes [5 2], [5 4] and [5 6]. Gear meshing frequency between
shaft II and shaft III is 297.75 Hz, and the second and third order has a larger peak near the frequency
doubling, and they all have a modulation of about 9 Hz. From the size of its peak value, it can be seen that
the energy at the second and third order frequencies does not decay, and is even greater than the intensity
of the meshing fundamental frequency, which is consistent with the fault characteristics. Figure 9b,d,f
processing the node [5 3], [5 7], [5 9] represent axial meshing frequency between shaft I and shaft II,
the second order and third order meshing frequencies and the corresponding amplitude modulation
frequencies. Through the characteristics shown in these processing results, it is proved that this processing
method can be used to obtain significant changes related to specific faults in the frequency–power spectrum,
and this ability to capture abnormal features can be used to extract features under different faults.

By analyzing the amplitude of signal at certain frequency in signal power spectrum, the fault type can
be judged. Therefore, it is very meaningful to obtain the energy values at these characteristic frequencies
for fault analysis. Because there are only certain kinds of assembly faults of the spindle box of the heavy
horizontal lathe, and the detection of some faults needs to be based on the amplitude analysis of some
rotating frequencies. These can be used as the basis of the characteristics of the frequency mainly includes
the following: (1) shaft frequency and its harmonic frequency, shaft rotation frequency of 1/2 frequency,
1/3 frequency; (2) meshing frequency and doubling frequency of the gear mounted on the shaft; (3) the gear
mesh frequency plus or minus the frequency of the shaft rotation frequency value. With the amplitudes
at these frequency points, they can be arranged into a set of eigenvectors to represent the operation of
the axis. The feature vectors extracted from known faults can be used to train the intelligent classifier,
while the features extracted from unknown fault signals can be used to judge the fault type of the axis.

Considering the fault types to be diagnosed comprehensively, the feature frequency points that
should be extracted are summarized in Table 3. Considering that there are two gears meshing on some
axes, the information of their frequency points should be extracted. For the side frequency modulation of
the meshing frequency, the fault can be diagnosed only by knowing whether the unilateral modulation
phenomenon exists. Therefore, a representative value of the two side frequencies can be extracted. For each
signal, a 23-dimensional vector is extracted to represent its characteristics.

In order to extract the power spectrum value at the above characteristic points, the variables should
be clearly defined, including the number of teeth of each relevant shaft of the machine tool spindle box,
motor speed during testing, gear position during sampling, sampling frequency, and which axis the
sensor is arranged in during sampling. After calculating the characteristic frequency, the wavelet packet
decomposition node corresponding to the frequency band is reconstructed and spectral analyzed, and then
the value of the characteristic frequency point is obtained. At this time, in the algorithm, the maximum
value in the range of –2 Hz to +2 Hz can be extracted in order to cope with the rotation speed change in the
above analysis. As for the meshing edge frequency band information, only one value needs to be extracted,
so the value with a large side frequency is selected to extract it. Since the extracted values are likely
to be large, they should be normalized to facilitate subsequent analysis and calculation. Eij represents
the amplitude of a certain frequency point, and it is the energy at a discrete point i representing the
characteristic frequency after reconstruction of the node j. The total energy E = ∑j∑iEij. For the extracted
23-dimensional eigenvector T= [T1, T2, . . . , T23], each value corresponds to the value of a certain Eij.
After normalization, a new vector T′ can be obtained, T′= [T1/E, T2/E, . . . , T23/E], which will be used for
the subsequent intelligent fault classification.
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Figure 9. Data processing results on shaft II. (a) Spectral analysis after node reconstruction [5 2]. (b) Spectral
analysis after node reconstruction [5 3]. (c) Spectral analysis after node reconstruction [5 4]. (d) Spectral
analysis after node reconstruction [5 7]. (e) Spectral analysis after node reconstruction [5 6]. (f) Spectral
analysis after node reconstruction [5 9].

Table 3. Summary of characteristic frequencies.

Characteristic Frequencies

Shaft rotation frequency f 1/3 f , 1/2 f , f , 2 f , 3 f , 4 f , 5 f
Gear engagement frequency F1, F2 1/3F1, 1/2F1, F1, 2F1, 3F1, 1/3F2, 1/2F2, F2, 2F2, 3F2
Side frequency of mesh frequency F1 + f , 2F1 + f , 3F1 + f , F2 + f , 2F2 + f , 3F2 + f

4. Fault Diagnosis Based on Support Vector Machine

To realize intelligent and automatic fault diagnosis, a corresponding intelligent algorithm is needed.
The acquisition of signals, decomposition and transformation of signals and extraction of fault features



Sensors 2019, 19, 4069 14 of 18

mentioned above are all preparations for the realization of fault diagnosis. After obtaining the characteristic
vectors representing various types of faults, these samples can be used to study the intelligent classification
algorithm. The problem of small sample training classification can be solved by means of an SVM method
in this research.

The set of spindle box fault classification can be divided by using a linear function, that is, there is
a hyperplane to distinguish samples, as shown in Equation (6) [17]:

ωTxi + b = 0,
ωTxi + b ≥ 1, yi = 1,
ωTxi + b ≤ 1, yi = −1,

(6)

where the nearest distance between (xi,yi) and the classification hyperplane is 1
‖ω‖ , and the hyperplane

with the largest distance value 1
‖ω‖ is the optimal hyperplane.

Linear SVM is to find the weights and biases, so that, while Equation (6) can be satisfied, the maximum
1
‖ω‖ can be obtained. Finding the maximum value of 1

‖ω‖ is the same as finding the minimum value of
1
2‖ω‖

2, which is the expression of Equation (7):{
min 1

2‖ω‖
2,

s.t.yi (ωxi + b) ≥ 1, i = 1, 2, ..., l.
(7)

The Lagrange multiplier is introduced to solve the optimization problem:

L (ω, b, α) =
1
2
‖ω‖2 −∑l

i=1 αi [yi (ωxi + b)− 1], (8)

where αi, i = 1, 2, . . . , l is a Lagrange coefficient. Equation (8) can be simplified to Equation (9):{
max Q (α) = ∑l

i=1 αi − 1
2 ∑l

i=1 ∑l
j=1 αiαjyiyj

(
xixj

)
,

s.t. ∑l
i=1 αiyi = 0, αi ≥ 0.

(9)

Samples corresponding to αi 6=0 are support vectors. The optimal solution can be obtained:{
ω∗ = ∑l

i=1 αi
∗xiyi,

b∗ = − 1
2 ω∗ (xr + xs) ,

(10)

where xr and xs are any support vector in their respective categories, and the discriminant function of the
classifier can be obtained as in Equation (11):

f (x) = ∑l
i=1 αi

∗yixi
Tx + b∗. (11)

When SVM [18–20] classification is used, complex problems to be classified are transformed into
simple quadratic programming problems, which can guarantee the correct and optimal classification
in principle [21]. When the SVM method is applied in practice, the training samples needed are the
eigenvectors of corresponding faults that have been identified. Considering that in practice the test shaft
may have one fault or several faults at the same time, it is therefore necessary to train SVM with the
classification ability for various faults. In principle, there are two ways: one is to train SVM that can
distinguish multiple categories of samples, and the other is to train multiple SVM that can only make
dichotomies. The first method requires a corresponding sample of each fault combination mode for
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training, which is difficult to do in practice because the fault types are randomly combined and the sample
number is very limited. Considering the second approach, it is possible to train an SVM classifier for each
fault to be identified. When features need to be classified and recognized, each SVM is used to identify
them, so as to judge whether the signals to be diagnosed have faults corresponding to each SVM in turn.
In this way, various single faults and combinations of faults can be identified.

When multiple SVM are used for recognition, features need to be divided because information
on a particular dimension in a feature represents a particular failure. The faults to be identified are
misalignment of two connecting shafts, looseness of bearing seat installation, misalignment of gears and
excessive side clearance of meshing gear teeth. The combination of frequency points that can display these
faults is shown in Table 4, where f is the rotation frequency of the corresponding shaft and F1 and F2 are
the gear engagement frequencies.

Table 4. Combinations of different fault characteristic frequencies.

The Fault Types Combination of Characteristic Frequencies

A-Misalignment of axes f f , 2 f , 3 f
B-Loose mounting of bearing seat 1/3 f , 1/2 f , f , 2 f , 3 f , 4 f , 5 f

C-Misalignment of gears F1(2), F1(2) + f , 2F1(2), 2F1(2) + f , 3F1(2), 3F1(2) + f
D-Large side clearance of meshing teeth 1/3F1(2), 1/2F1(2), F1(2), 2F1(2), 3F1(2)

After feature extraction of acquired data by the wavelet packet decomposition method, feature vectors
are divided according to the requirements of each SVM, and 48 class A and B samples and 75 class C
and D samples are finally obtained. The samples in each category are randomly assigned. One part is
used to train the respective SVM, and the other part is used to verify the generalization property of the
trained SVM.

As for the selection of kernel function, there is no uniform standard and method, but radial basis
function (RBF) has been applied successfully in various cases. When training SVM, in order to achieve
better learning and classification effects, it is necessary to select the optimal punishment factor c and
RBF kernel parameter g, and apply the cross validation method in the optimization process. The idea
of this method is to divide the original data into k groups according to the number of cross validation
k. After grouping, the k−1 group is used for training, while the remaining group is used for validation.
Different groups were selected as verification groups, and the calculation process was carried out k times.
The optimization range of c and g is set as 2−10 to 210, the iteration step length is 0.5, the number of cross
validation is 5, and the optimization target is the cross validation accuracy of classification. After iteration
and optimization, the three-dimensional diagram of the relationship between c and g and classification
accuracy obtained is shown in Figure 10, and the optimization results of each classifier are shown in
Table 5.

Table 5. The results of parameter optimization under different SVM classifiers.

SVM Code Optimal Parameter c Optimal Parameter g Cross Validation Accuracy

A 16 0.1768 96.16%
B 11.3137 0.0313 96.15%
C 0.3536 0.2500 97.78%
D 1024 0.0098 91.11%

According to the analysis results, the optimal c and g obtained in SVM training for different types
of samples are not the same. Therefore, it is necessary to optimize c and g by cross-validation for each
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SVM. The optimized SVM model is used to classify the test samples and obtain the accuracy of fault type
judgment. The summary is shown in Table 6.

Figure 10. Optimization results of various SVM parameters c–g. (a) SVM parameter c-g accuracy diagram
of class A. (b) SVM parameter c-g accuracy diagram of class B. (c) SVM parameter c-g accuracy diagram of
class C. (d) SVM parameter c-g accuracy diagram of class D.

Table 6. Summary of classification results of test samples.

SVM Code Test Sample Size Correct Number Test Accuracy

A 22 18 81.81%
B 22 21 95.45%
C 30 28 93.33%
D 30 28 93.35%

It can be seen from the table that, after training, the classification accuracy of class B, C and D
classifiers on test samples reaches over 90%, with high classification accuracy. Meanwhile, the spindle
box fault diagnosis method based on WPT and SVM is verified. The classification accuracy of class
A is relatively low because the number of samples marked as faults is relatively small. However, its
classification accuracy can also reach 80%. External validation has been executed to evaluate the developed
prediction model. For the four classifiers, 80% of the data are used to train the model and the remaining
20% are for validation. From the validation results, the accuracy of fault classification results was 81.58%,
94.73%, 95%, and 96.67%, respectively. Test results of different studies by using SVM are shown in Table 7.
This shows again that the model proposed in this paper has high precision. In the actual classification of
signal testing, signal features can be extracted separately, and each SVM is used to diagnose whether the
shaft has a specific fault. For shafts with two pairs of meshing gears, it is necessary to use classes C and D
to diagnose the two sets of gears twice, respectively, to determine whether gears have faults or not.
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Table 7. Test results of different research works using SVM.

Test Sample Size Correct Number Test Accuracy

This research (SVM-D) 60 58 96.67%
Wu’s research (SVM) [22] 60 57 95%

Jiang’s research (SVM) [23] 60 56 93.33%

5. Conclusions

The fault types of gear box assembly of a heavy-duty horizontal lathe and corresponding frequency
spectrum characteristics are determined. The signal acquisition system based on an accelerometer is set up
and the vibration signal of the spindle box is collected. Based on Shannon entropy theory, the characteristics
of different wavelet transform methods and wavelet basis functions are analyzed. The signal scheme of
wavelet packet transformation using Bior3.5 wavelet is determined. A method of fault feature extraction is
proposed and the correctness of this method is verified by analyzing the signals of known faults. For the
faults to be analyzed, the characteristic vector with a dimension of 23 is determined, and the fault samples
for fault diagnosis are obtained. A fault classifier based on support vector machine (SVM) is designed and
its relevant parameters are optimized. Fault diagnosis is made by using a classifier. The test results show
that, among the four types of faults, the SVM can identify three types of faults with an accuracy rate of
over 90%, which is suitable for assembly fault diagnosis.
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