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Abstract: Particle size of nanomaterials has significant impact on their photocatalyst properties.
In this paper, TiO2 nanoparticles with different crystalline sizes were prepared by adjusting the
alkali-hydrothermal time (0–48 h). An annealing in N2 atmosphere after hydrothermal treatment
caused TiO2 reduction and created defects, resulting in the visible light photocatalytic activity.
The evolution of physicochemical properties along with the increase of hydrothermal time at a
low alkali concentration has been revealed. Compared with other TiO2 samples, TiO2-24 showed
higher photocatalytic activity toward degrading Rhodamine B and Sulfadiazine under visible light.
The radical trapping and ESR experiments revealed that O2

•- is the main reactive specie in TiO2-24.
Large specific surface areas and rapid transfer of photogenerated electrons are responsible for
enhancing photocatalytic activity. The above findings clearly demonstrate that particle size and
surface oxygen defects can be regulated by alkali-hydrothermal method. This research will deepen
the understanding of particle size on the nanomaterials performance and provide new ideas for
designing efficient photocatalysts.
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1. Introduction

Titanium dioxide (TiO2) has been the most widely used multifunctional material due to its low
cost, non-toxicity, wide source, acid-base resistance and high catalytic activity [1]. The outstanding
features of TiO2 greatly extends its application from traditional areas to recent promising fields such
as photocatalysis, water splitting, lithium batteries and recently emerging perovskite solar cells [2,3].
However, large band gap of TiO2 and high electron hole recombination limit its photocatalytic
performance [4]. To modify these intrinsic drawbacks, tremendous efforts have been devoted to
broadening the active spectrum and promoting the charge transport [5,6].

Particle size is a crucial factor affecting the performance of nano-photocatalytic materials. The size
and shape of the catalyst influence its surface structure and then resulting in various catalytic
performance [7,8]. Compared with bulk TiO2, granular TiO2 nanoparticles have a large surface area and
a broadened band gap. They contain more active sites and display improved photocatalytic activity,
photoelectrochemical properties and gas sensitivity [9,10]. Lin et al. successfully synthesized TiO2

nanoparticles of different particle sizes (12–29 nm) and found the band gap of the TiO2 nanoparticles
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was a function of the primary particle size. The results also showed that the primary particle size is
closely related to the electro-optical properties of photocatalysts. As the primary particle size increases,
the photocatalytic rate constant decreases exponentially [11]. Cheng et al. found that the AgI/BiOI
photocatalysts display size-dependent photocatalytic activity, which increases with the smaller size of
the AgI NPs. This is believed to be related to the larger number of surface active sites and faster spatial
charge transfer [12]. Kocı et al. have proved that as the particle size changed, the specific surface
area, charge-carrier dynamics and light absorption efficiency of TiO2 nanoparticles also changed,
and then the yield changed accordingly [13]. Qi et al. summarized that the antimicrobial activity
of ZnO NPs exhibits size dependency, that is, small ZnO NPs yield high antibacterial activities [14].
These researches have confirmed that the particle size has an important effect on the catalyst properties.

There are many methods that have been developed to prepare TiO2 nanostructures with various
morphology types and sizes, including the hydrothermal method, the sol-gel method, the vapor
deposition method and the electrospinning method [9,15]. Nowadays the hydrothermal synthesis
of TiO2 nanostructures is a well-established technique and typically yields a large amount of TiO2

nanostructures from solution [16,17]. Most of the current researches focus on the alkali-hydrothermal
approaches with high alkali concentration (8–12 M), which usually produces different morphology types
of 1D TiO2 nanostructures (nanotube, nanorod, nanowire, nanofiber or nanobelt) [18,19]. Although the
properties and applications of TiO2 and nanostructures has been studied, the effect of alkali on TiO2

morphology types, sizes and photocatalytic performance is still unavailable. The effect of low alkali
concentration on TiO2 is less studied.

In this study, we aimed to provide a comprehensive understanding of the effects of
low alkali-hydrothermal treatment on the TiO2 structure and photocatalytic performance.
TiO2 nanoparticles with different particle sizes were prepared by adjusting hydrothermal time by the
same preparation method. The effects of particle size on photocatalytic activity and photocarriers
migration rate were systematically compared. This research emphasizes the important role of particle
size in regulating the photocatalyst structure and performance.

2. Materials and Methods

2.1. Chemicals

Anatase titanium oxide (CAS: 13463-67-7) was purchased from Sigma Aldrich (St Louis, MO,
USA) and Sulfadiazine (SD) was purchased from Aladdin (Shanghai, China). All other chemicals were
analytical reagent grade and used as received.

2.2. Preparation of TiO2 Samples

The preparation of TiO2-X photocatalysts was performed by a modified alkali-hydrothermal
method [20]. Alkali ions penetrate into the TiO2 lattice, or combine with oxygen to form alkali
metal oxides on the TiO2 surface, which limit the growth of TiO2 nanocrystals. Therefore,
the alkali-hydrothermal method is used to adjust the size of titanium dioxide particles. Generally,
0.6 g Anatase TiO2, 60 mL D.I. water and 12 g NaOH were added into a beaker with stirring for
30 min. The mixture was transferred to a 100 mL Teflon-lined stainless steel autoclave and heated to
180 ◦C with different time. The obtained sediment was washed several times with D.I. water and HCl
solution (0.6 M) to adjust the pH to remain neutral. The samples were freeze-dried and then calcined
at 400 ◦C for 2 h under N2 atmosphere. For the sake of distinction, we define the sample obtained by
hydrothermal treatment for X hours as TiO2-X.

2.3. Characterization

The crystalline structure of the prepared TiO2 nanomaterial was characterized by X-ray diffraction
(XRD, D8 ADVANCE, Bruker AXS, Karlsruhe, Germany) with the scan range from 2◦ to 80◦.
The morphology of photocatalysts was observed by transmission electron microscope (TEM, JEM-2100F,
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JEOL, Tokyo, Japan). Elemental analysis in the material was characterized by X-ray photoelectron
spectroscopy (XPS, ESCALAB Xi+, Thermo Fisher Scientific, Waltham, MA, USA) and Raman spectra
(Raman, Senterra R200-L, Bruker Optics, Karlsruhe, Germany) with a 532 nm laser beam as the excitation
source. N2 adsorption-desorption isotherms were obtained using the Micromeritics (Gemini V2380,
Micromeritics, Norcross, GA, USA). The optical absorption properties of photocatalysts were tested by
the ultraviolet-visible diffuse reflectance spectroscopy (DRS, Hitachi U-300, Hitachi, Tokyo, Japan) with
a scanning range of 200–800 nm. The electron spin resonance (ESR, A300, Bruker, Karlsruhe, Germany)
spin-trap technique was employed to monitor the reactive oxygen radical species generated during
the irradiation with spin-trap reagent 5,5-dimethyl-1-pirroline-N-oxide (DMPO). Photoluminescence
(PL, Hitachi F-4500, Hitachi, Tokyo, Japan) spectra were measured with a continuous wave laser
(325 nm) as the exciting source. The main oxidative species in the photocatalytic process could be
detected through the free radical trapping experiment by using t-BuOH (hydroxyl radical scavenger),
EDTA-2Na (hole scavenger) and circulating N2 (superoxide radical scavenger).

2.4. Photocatalytic Experiments

The photocatalysis was carried out using a 300 W Xe arc lamp (PLS-SXE 300, Perfectlight Co. Ltd.,
Beijing, China) equipped with a UV-cutoff filter (λ > 400 nm). RhB (Rhodamine B) and SD (Sulfadiazine)
were selected as organic contaminants. 0.15 g photocatalyst was placed in 150 mL 20 ppm RhB or 150
mL 10 ppm SD aqueous solution and stirred in the dark to reach an adsorption-desorption equilibrium
before illumination. During the period of visible light illumination, the temperature was kept at 20 ◦C
by recirculating cooling water. A 5 mL aliquot was taken at 15 min intervals and filtered through a 0.45
micron filter. The residual concentration of RhB was estimated by visible spectrophotometer (722N,
Shanghai Precision & Scientific Instrument Co. Ltd., Beijing, China). The concentration of SD was
measured by high performance liquid chromatography (LC-20AT, Shimadzu, Kyoto, Japan) with a C18
(4.6 × 250) reversed phase column. The wavelength of photodiode array detector was 269 nm for SD.
The mobile phase was selected as acetonitrile and water (V:V = 1:3) at a flow rate of 0.6 mL/min.

3. Results

3.1. Characterization of Prepared TiO2-X

Figure 1 shows the TEM images of pristine TiO2 and prepared TiO2 with different hydrothermal
times (TiO2-X). The particle diameters of pristine TiO2 are distributed in the range from 50 to 250 nm.
After hydrothermal treatment for 3 h (Figure 1b), the TiO2 particles show clear grain boundaries and
agglomerations. The particle size decreases obviously to an average of 100 nm and a small amount of
particles about 20 nm can be seen. TiO2-12 (Figure 1c) exhibits an irregular morphology. Most of the
crystal decreased to 10–40 nm and stacked together, which might indicate the raw materials begin to
dissolve, decompose and nucleate. TiO2-24 is composed of 10–20 nm nanoparticles. As for TiO2-48,
TiO2 nanocrystals experience a growth process along a certain crystallographic orientation to form a
rod-like structure.

The porous structure and specific surface areas of TiO2-X were characterized by nitrogen
adsorption-desorption isotherms as well as the pore size distributions in Figure 2. All samples
exhibit type IV nitrogen isotherm with a hysteresis loop, indicating the mesopores features [21]. The
hysteresis loops of pristine TiO2, TiO2-3, TiO2-24 pertain to H3-type, that is caused by the unsaturated
adsorption of nitrogen in relatively high P/P0 [22,23]. For TiO2-12, a hysteresis loop is observed with
distinct saturated adsorption platform in a wide relative pressure region. That belongs to the H2-type
and reflects a relatively complex pore structure, which is related to its irregular morphology and
stacking between layers in figure TEM [24,25]. TiO2-48 shows H2-type hysteresis loops distributed
in the whole relative pressure region, mainly due to the irregular morphology and uneven pore size
distribution caused by the gradual transformation of nanoparticles into nanorods [26]. The specific
surface area, pore size and pore volume data are listed in Table 1 It is indicated that the specific
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surface area and pore volume increases with decreasing particle size. In Table 1, TiO2-24 possessed
the largest surface areas (78.888 m2/g) and pore volume (0.312 cm3/g) nearly six times and 10 times
larger compared to the pristine TiO2 (13.060 m2/g and 0.035 cm3/g), respectively. For long treatment,
particles get more and more aggregated, leading to reduction in surface area and pore volume (growth
also inside the pores).
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(e) TiO2-48. Inset figures are the corresponding pore size distribution. (f) XRD patterns of TiO2, TiO2-3,
TiO2-12, TiO2-24, TiO2-48.
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Table 1. The specific surface area (SBET), pore size and pore volume, band gap (Eg) and crystalline size
(dXRD) of TiO2-X.

Sample SBET
1 (m2/g) Pore Volume 2 (cm3/g) Pore Diameter 2 (nm) Eg

3 (eV) dXRD
4

(nm)

TiO2 13.060 0.035 1.335 3.27 12.96
TiO2-3 23.164 0.099 1.149 3.26 7.92

TiO2-12 59.742 0.102 1.336 3.16 3.94
TiO2-24 78.888 0.312 1.145 3.42 3.44
TiO2-48 1.592 0.002 2.592 3.09 3.04

1 The specific surface area (SBET) was calculated by a Brunauer-Emmett-Teller (BET) method using the adsorption
data in relative pressure (P/P0) range from 0.04 to 0.3. 2 Pore volume and pore diameter were calculated by nitrogen
adsorption volume at P/P0 = 0.99 using Barrett-Joyner-Halenda (BJH) method. 3 The band gap energies (Eg) can be
calculated from the plots of (αhv)1/2 versus photon energy. 4 Average crystalline size (dXRD) of TiO2 was calculated
by the anatase (101) plane of XRD using the Scherrer equation.

The X-ray diffraction patterns recorded from TiO2 with different hydrothermal treatment time are
shown in Figure 2f. All the relatively sharp peaks could be indexed as anatase TiO2 which are basically
in agreement with the anatase phase (JCPDS No. 84-1285). Firstly, the intensity of the diffraction peaks
decreased with the increasing hydrothermal time, implying the decreased crystallinity of samples.
Secondly, the broadening of the diffraction peaks also be observed, which may be due to the combined
effect of decreasing grain size and increasing microstrains [27–29]. Table 1 displays the crystallite sizes
(dXRD) estimated from the half-band width of the corresponding X-ray spectral peak by the Scherrer
Formula [30]. As the hydrothermal time increases, the grain size of TiO2 gradually decreases. This may
be due to the alkali ions penetrated into TiO2 lattice, or they probably are bonded with oxygen onto
TiO2 surface to form alkali metal oxides, both of which restricted the growth of TiO2 nanocrystals [31].
TiO2-48 possesses the smallest crystallite size calculated by Scherrer Formula, however, the specific
surface area of TiO2-48 is not the largest. The contradiction arises because the morphology of TiO2-48
has changed and the calculation results of XRD only represent the size of the (101) crystal plane instead
of the true size of TiO2-48 [32,33].

The anatase phase of the TiO2 samples before and after hydrothermal process is further confirmed
by the typical Raman bands at 138 cm−1 (Eg), 191 cm−1 (Eg), 391 cm−1 (B1g), 510 cm−1 (A1g) and
634 c −1 (Eg) in Figure S1 [34]. Notably, the intensity of the peaks become weaker after hydrothermal
treatment, possibly due to the poorer crystallinity [35]. It is reported that the higher the crystallinity,
the fewer defects in the crystal. Therefore, defects (oxygen vacancies) may exist in TiO2-X samples
after hydrothermal treatment [36]. Moreover, compared with the pristine the TiO2, low frequency
peak at 138 cm −1 (Eg) of the TiO2-X samples after hydrothermal treatment exhibits slight blue shift
and significant broadening. And the Eg peak of TiO2-24 is particularly prominent. It shifts from
137.82 cm−1 to 140.07 cm−1 and the full width at half maximum (FWHM) increases from 8.29 to 12.65.
Generally, the quantum size limitation effect (that is to say decreased crystalline size) causes red shift
and broadened peak while the presence of defects cause blue shift [37,38]. This result shows the effect
of defects are dominant compared to crystalline size. To sum up, the variations of Raman shift and
FWHM are the combined effect of crystalline size and defects.

The surface component and chemical valence state of TiO2-X are further investigated by XPS spectra.
The high-resolution Ti 2p XPS spectrum of pristine TiO2 and TiO2-24 are compared. In Figure S2a,
the fitting result of pristine TiO2 shows two peaks at 457.2 eV and 463.0 eV, this corresponds to the
Ti3+ 2p3/2 and Ti3+ 2p1/2, indicating that Ti3+ already exists in pristine TiO2. Similarly, Ti3+ 2p3/2 and
Ti3+ 2p1/2 peaks can also been detected in Figure 3c, certifying the existence of Ti3+ in addition to the
Ti4+ oxidation state for TiO2-24 samples [39].
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According to the peak areas, the Ti3+/Ti4+ ratio of TiO2-24 was calculated to be 85.9%, while
the Ti3+/Ti4+ ratio of pristine TiO2 was 67.2% (Table S2). Usually, Ti4+ could be reduced to Ti3+ via
trapping electron from oxygen vacancy, so the increased Ti3+/Ti4+ ratio was able to verify indirectly
the existence of surface oxygen vacancies [40,41]. The high-resolution O 1s XPS spectrum of pristine
TiO2 and TiO2-24 both be fitted into three peaks of around 529 eV, 531 eV and 533 eV, which are
ascribed to lattice oxygen (Ti-O), surface hydroxyl groups (-OH) and the oxygen vacancies (Ov) in the
vicinity of Ti3+ [42]. Compared with the pristine TiO2, the high-resolution O 1s XPS spectrum of TiO2-X
shifted to a lower energy because of the band bending effect caused by extra electrons from oxygen
vacancies on TiO2 crystal lattice or to satisfy the requirement of charge equilibrium [34,43]. Ti3+ and
oxygen vacancies can serve as photoinduced charge traps as well as adsorption sites to prevent the
electron-hole recombination, which are conducive to the improving photocatalytic activity [44,45].

Ultraviolet-visible diffuse reflectance spectroscopy (DRS) is a common method to characterize the
optical absorption properties of materials. As displayed in Figure 4a, the pristine TiO2 shows a strong
absorption in ultraviolet region and the absorption edge is located at 400 nm, which is consistent with
the light absorption characteristics of anatase TiO2 [46]. For TiO2-X, it exhibits increased absorption in
the region of 200–800 nm after hydrothermal treatment, which can be attributed to surface oxygen
vacancies and Ti3+ [44,47]. According to the Kubelka-Munk function, the band gap energies can be
calculated from the plots of (αhv)1/2 versus photon energy [43]. The band gap energies of pristine TiO2,
TiO2-3, TiO2-12, TiO2-24 and TiO2-48 are 3.27 eV, 3.26 eV, 3.16 eV, 3.42 eV and 3.09 eV, respectively
(Table 1). The wider the band gap, the stronger the redox capability of the photocatalysts. The enhanced
visible light absorption is attributed to the presence of surface oxygen vacancies and Ti3+, which could
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form a shallow donor lever just below the conduction band, thus narrowing the band gap and response
to visible light [32].
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3.2. Evaluation of the Photocatalytic Efficiency

Photocatalytic performance of TiO2-X samples was evaluated by degradation of RhB and SD
under visible light. Pristine TiO2, P25 and the pollutants without photocatalyst were used as control
samples. P25 is a commercially produced titanium dioxide material with high photocatalytic activity
and is often used as a benchmark photocatalyst [48]. The control experiment in Figure S3 showed that
all SD samples reach the adsorption/desorption equilibrium in the dark already after 1 h. In Figure 5a,b,
All TiO2-X samples exhibited better photocatalytic performance under visible light than pristine TiO2

for RhB and SD degradation. The TiO2-24 showed the best performance, approximately 72.7% of
RhB was degraded within 120 min and 59.5% of SD was degraded within 6 h. For pristine TiO2,
TiO2-3, TiO2-12 and TiO2-48, the degradation efficiency of RhB exhibited 6.2%, 16.5%, 20.4%, 23.9%
within 120 min and the degradation efficiency of SD was 21.7%, 12.2%, 24.3%, 28.3% within 6 h,
respectively. The photodegradation curves of RhB and SD were fitted by pseudo-first-order reaction
kinetics. The rate constant (k) of degrading RhB (Figure S4) was calculated to be 0.0088 min−1 for the
TiO2-24 and 0.00258 min−1 for P25, and the k of degrading SD was calculated to be 0.13931 h−1 for
the TiO2-24 and 0.03303 h−1 for P25. Whether degrading RhB or SD, the degradation rate constant of
TiO2-24 is much higher than P25, and the degradation rate constant of TiO2-24 is about 4 times that of
P25. The degradation performance of SD is consistent with the degradation trend of RhB. This indicates
that TiO2 samples treated by alkaline hydrothermal method can be used as a useful photocatalyst for
both dyes and likely also for other organic pollutants. This also demonstrates that the morphology of
the nanomaterial has a certain influence on its photocatalytic effect.
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In addition to the high photocatalytic activity of catalysts, stable recyclability is also essential for
their practical application. In Figure 5c, the photocatalytic stability of TiO2-24 was investigated by
cyclic photocatalytic degradation of RhB solution. No obvious reduction was observed after three
cycles. It is indicated that TiO2-24 exhibited relatively high photodegradation performance after a long
time irradiation.

3.3. The mechanism of Photocatalytic Performance Improvement of the TiO2-X.

The trapping experiments were carried out to investigate the main reactive oxygen species (ROS)
generated in the photocatalytic degradation process. EDTA-2Na, tert-butyl alcohol (t-BuOH) and N2

were used as holes (h+) scavenger, hydroxyl radicals (·OH) scavenger and superoxide radicals (O2
•-)

scavenger, respectively [49]. Figure 6a suggests the degradation of RhB over TiO2-24 was suppressed
by the addition of the three scavenger, indicating that h+, ·OH and O2

•- might be the active species
on the RhB degradation process, especially O2

•-. This phenomenon may be caused by the efficient
photogenerated electron transfer in the TiO2-24 nanoparticles, which facilitates more O2

•- participation
in the photodegradation of RhB.
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To further confirm the radicals generated in the reaction process of TiO2-24, ESR analysis was also
performed using DMPO as the radical spin-trapping probe [50,51]. After illuminating with visible
light for 10 min, TiO2-24 exhibits the strongest intensity of DMPO-O2

•− signals, indicating that the
amounts of O2

•− produced in TiO2-24 is much larger than that for pristine TiO2 and TiO2-48, which is
consistent with the photodegradation performance.
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ESR can also be used to confirm the presence of oxygen vacancies. As shown in Figure 6d, there is
a sharp signal at g = 2.004, which is identified as the electrons trapped on surface oxygen vacancies.
Pristine TiO2, TiO2-24 and TiO2-48 exhibited the enhanced signal intensity of oxygen vacancies after
illuminating 10 min under visible light, indicating that the oxygen vacancies were also involved in
the degradation process under visible irradiation [52,53]. The single intensity increased from TiO2

to TiO2-48, indicating the surface oxygen vacancies concentrations of TiO2 increased with extending
hydrothermal time [54]. However, when the surface oxygen vacancies concentration is too high,
bulk oxygen vacancies can easily be generated [9]. The crystalline performance decreases, the bulk
defects increases, the results of XRD also verified the existence of bulk defects in TiO2-48. Surface
oxygen defects can serve as photoinduced charge traps as well as adsorption sites where the charge
transfer to adsorbed species can prevent the electron-hole recombination, which is important for
improving of photocatalytic activity; whereas bulk oxygen vacancies only act as charge traps where
electron-hole recombines, resulting in the decrease of photoactivity [43,55].

3.4. Photoinduced Electron Transfer Properties in the TiO2-X.

Photoluminescence (PL) spectra is a useful technique to investigate the oxygen vacancies through
the measurement of the charge carrier trapping, immigration and recombination [56]. In Figure 7,
the highest intensity emission peak around 433 nm corresponds to the emission of self-trapped excitons
located on TiO6, which is consistent with the position of absorption edge band in DRS [57,58]. The peaks
in the range of 450–500 nm are originated from surface oxygen vacancies and Ti3+ [59,60]. The peaks at
around 530 nm are derived from the oxygen vacancies buried in the bulk of materials [61]. The surface
defects can form the exciton energy level near the bottom of the conduction band, which allows
them to act as trapping sites and hinders the recombination of photogenerated chargers [36,62].
In Figure 7, the signals of TiO2-X are similar, but the peak intensity changed obviously. According
to XRD, XPS and ESR results, the pristine TiO2 possesses good crystallinity as well as little defects.
After alkali-hydrothermal treatment, the decreased crystallinity of TiO2-X is accompanied by the
increased defects, which is beneficial to hinder the recombination of photogenerated chargers, thus
the emission peak intensity of TiO2-X is weakened [35,63]. However, TiO2-48 possesses an excess of
surface defects and forms bulk defects, thus the peak intensity was higher than TiO2-24.

Nanomaterials 2019, 9, x FOR PEER REVIEW 9 of 13 

 

vacancies only act as charge traps where electron-hole recombines, resulting in the decrease of 275 
photoactivity [43,55].  276 

3.4. Photoinduced Electron Transfer Properties in the TiO2-X. 277 

 

Figure 7. Photoluminescence spectra of TiO2-X. 278 

Photoluminescence (PL) spectra is a useful technique to investigate the oxygen vacancies 279 
through the measurement of the charge carrier trapping, immigration and recombination [56]. In 280 
Figure 7, the highest intensity emission peak around 433 nm corresponds to the emission of 281 
self-trapped excitons located on TiO6, which is consistent with the position of absorption edge band 282 
in DRS [57,58]. The peaks in the range of 450–500 nm are originated from surface oxygen vacancies 283 
and Ti3+ [59,60]. The peaks at around 530 nm are derived from the oxygen vacancies buried in the 284 
bulk of materials [61]. The surface defects can form the exciton energy level near the bottom of the 285 
conduction band, which allows them to act as trapping sites and hinders the recombination of 286 
photogenerated chargers [36,62]. In Figure 7, the signals of TiO2-X are similar, but the peak intensity 287 
changed obviously. According to XRD, XPS and ESR results, the pristine TiO2 possesses good 288 
crystallinity as well as little defects. After alkali-hydrothermal treatment, the decreased crystallinity 289 
of TiO2-X is accompanied by the increased defects, which is beneficial to hinder the recombination of 290 
photogenerated chargers, thus the emission peak intensity of TiO2-X is weakened [35,63]. However, 291 
TiO2-48 possesses an excess of surface defects and forms bulk defects, thus the peak intensity was 292 
higher than TiO2-24. 293 

 

Scheme 1. Schematic image of different sized TiO2 nanoparticles. 294 

On the basis of the above results, the surface defects and crystalline sizes played a dominating 295 
role on photocatalytic performance. Scheme 1 is the photocatalytic process of TiO2-24 with Ti3+ and 296 
oxygen vacancies (Ov). For pristine TiO2, the electrons are injected from its valence band to the 297 
conduction band under visible light irradiation. For TiO2-24, the Ti3+ and Ov form local state below 298 
the conduction band, and the electrons are promoted from the valance band to Ti3+ and Ov state 299 

Figure 7. Photoluminescence spectra of TiO2-X.

On the basis of the above results, the surface defects and crystalline sizes played a dominating role
on photocatalytic performance. Scheme 1 is the photocatalytic process of TiO2-24 with Ti3+ and oxygen
vacancies (Ov). For pristine TiO2, the electrons are injected from its valence band to the conduction
band under visible light irradiation. For TiO2-24, the Ti3+ and Ov form local state below the conduction
band, and the electrons are promoted from the valance band to Ti3+ and Ov state under visible light
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irradiation. The electrons on Ti3+ and Ov state cannot recombine easily with photogenerated holes as
the Ti3+ and Ov are electron traps. Then the electrons react with the surface-absorbed O2 to generate
active oxygen radicals O2

•-. The larger specific surface areas creates more basic sites benefit for the
increased adsorption of the pollutant molecules. The existence of Ti3+ and Ov accelerate the electron
transfer rate, and suppress the photogenerated e--h+ recombination. As a consequence, TiO2-24
showed the enhanced photocatalytic performance.
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4. Conclusions

The TiO2 samples were modified at different hydrothermal times (0–48 h) with a low
alkali-hydrothermal method. The physicochemical properties and photocatalytic performance of the
prepared TiO2-X nanoparticles with different crystalline sizes were explored. With the increased time
of hydrothermal treatment, the crystalline size of TiO2-X decreased first and then increased, and the
crystallinity decreased. An annealing in N2 atmosphere after hydrothermal treatment caused TiO2

reduction and created defect. The appropriate concentration of surface oxygen vacancies is beneficial
to separate photogenerated charges. Due to the combined effects of crystalline size and surfaces defects,
the efficiency of photocatalytic degradation of SD and RhB by TiO2-24 nanoparticle under visible light
was obviously improved. This study highlights the effects of particle size and surface oxygen defects
on the structure and performance of photocatalysts. It opens a new window for the purification of
water environmental pollution.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/10/3/546/s1,
Figure S1: Raman spectra of TiO2-X, inset is an enlarged view of TiO2-X in the 300–700 cm−1 region. Figure
S2: XPS spectra of the (a) Ti 2p band of pristine TiO2, (b) O 1s band of pristine TiO2. Table S2: Ratio of peak
areas of Ti3+ and Ti4+ (Ti3+/Ti4+) according to the quantitative analyses of the fitted Ti 2p XPS peaks. Figure S3:
The adsorption test of Sulfadiazine. Figure S4. (a) Rhodamine B photodegradation kinetics of P25 and TiO2-X,
(b) Sulfadiazine photodegradation kinetics of P25 and TiO2-X, (c) RhB photodegradation rate constants k of P25
and TiO2-X and (d) SD photodegradation rate constants k of P25 and TiO2-X.
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