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Introduction
Rounding is a practical tool for simplifying scientific expres-
sions but in some cases can yield seemingly illogical or coun-
terintuitive results. Let ( )γ  denote a positive but very small 
number and consider the example where

 a b= +( ) = ≠γ γ5 0000001 0 0000001. , .  (1)

Here, ( )γ  is negligible (near zero) and ( )a  is close to but 
not exactly equal to either 5 or ( )b  (ie, within rounding error). 
That is, for any non-negligible positive real value of ( )a  and 
( )b , we have

 a b a b a b= +( ) << ∧ − >γ γ γ, : , , , 1 0  (2)

 ⇒ = +( )a a b2 γ  (3)

 ⇒ = +a ab a2 γ  (4)

 ⇒ −( ) = −( ) +a b ab b a2 2 2 γ  (5)

As ( )γ  is very small, we round the right-hand side of equa-
tion (5) to ( )ab b− 2 .

 ∴ −( ) ≅ −( )a b ab b2 2 2  (6)

 ⇒ +( ) −( ) ≅ −( )a b a b b a b  (7)

 ⇒ +( ) ≅a b b  (8)

 ⇒ + +( ) ≅b b bγ  (9)

 ⇒ +( ) ≅2b bγ  (10)

Again, as ( )γ  is very small, we round the left-hand side of 
equation (10) to ( )2b .

 ∴( ) ≅2b b  (11)

 ⇒ ≅2 1.Q.E.D.  (12)

By disregarding rounding error, this proof allows for divi-
sion by zero, yielding the untenable result of 2 ≅  1. In real-
world applications of this concept, numbers are frequency 
truncated (or rounded) because of floating-point library limita-
tions inherent to the operating system. This occurs, for exam-
ple, in the field of cancer informatics when computing odds 
ratios (ORs) and statistical significance for thousands of sin-
gle-nucleotide polymorphisms (SNPs) in a genome-wide asso-
ciation study (GWAS). Such errors can accumulate and 
significantly affect computational results and accuracy.

On the contrary, rounding often is used to intentionally aid 
the parsimonious presentation of data. This helps to simplify 
ideas without the need for unnecessary complexity. However, as 
illustrated above, rounding error cannot be simply overlooked, 
especially in applications where the loss of accuracy may be 
additive or multiplicative in nature. In this article, technical 
guidance and intuitive examples are provided to highlight the 
use and misuse of rounding, focusing on the computation and 
presentation of relative effect estimates (REEs).
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Relative Effect Estimates and Confidence Intervals
The consequences of rounding can have important implica-
tions for how the results of an analysis are interpreted. 
Inevitably, rounding leads to less accurate (closeness to truth) 
and precise (repeatability) results when reporting parameter 
estimates. In turn, this is gauged against parsimony and the 
practical aspects of not reporting findings beyond what is nec-
essary to convey the underlying meaning. Accordingly, round-
ing should be “not too much and not too little.”1 One must also 
be attentive to rounding numbers beyond what is warranted by 
the process or device used to measure the value, to avoid 
unfounded accuracy in the presentation of results.2

When measurements are taken on the linear scale, rounding 
to a fixed number of decimal places is a common and reasona-
ble approach. However, the process becomes more complex for 
REEs such as ORs, hazard ratios (HRs), and relative risks 
(RRs), which are expressed on a logarithmic scale. In contrast 
to a linear scale in which values may range from −∞  to +∞ , 
logarithmic values are bounded by zero and infinity. In addi-
tion, REEs are centered at unity instead of zero.3 The value 1.0 
denotes the point of a null effect, with REEs > 1.0 indicating 
an increasing occurrence of the event (or outcome) under con-
sideration while those below unity, a decreasing occurrence. On 
a linear scale, the value 5.0 is equal in magnitude to the oppo-
site effect of –5.0. This differs from 5.0 on the logarithmic 
scale, which is equal in magnitude to the opposite effect of .20 
(ie, the inverse of 5.0). In general, the impact of rounding on 
REEs is greater for small versus large ratios. As such, REEs 
and corresponding confidence intervals (CIs) should not be 
rounded to a fixed number of decimal places but rather based 
on the number of significant digits necessary to determine the 
statistical significance of the result.

A result is deemed to be statistically significant when the P 
value is less than or equal to ( )α , defined as the probability of 
falsely rejecting the null hypothesis (ie, no effect difference 
between the study and comparison populations). A ( ) %1 100−α  
CI for a REE also may be used to declare statistical significance 
at the α -level if the interval does not span unity. Because REEs 
(and CIs) are reported on the logarithmic scale, rounding these 
estimates relative to their distance (eg, number of significant 
digits) from unity is becoming increasing popular among 
researchers to help determine statistical significance. For exam-
ple, when there are contiguous 0’s or 9’s immediately to the right 
of the decimal place (for values < 1.0), the significant digits are 
counted from the right to left relative to unity. That is, for values 
to the left of unity, digits up to but not including the value 
immediately following the 0’s or 9’s, respectively, are disregarded. 
Likewise, significant digits are counted from left to right for 
values above unity, with zeros immediately adjacent to 1.0 not 
considered significant digits. Contiguous 0’s to the right of the 
decimal for P values are disregarded, as are contiguous zeros fol-
lowing .05 (assuming α = .05), until the next encountered sig-
nificant digit. By convention, P values less than .0001 are 
reported as <.0001, and otherwise to no more than 4 decimal 

places (eg, P = .00018 is rounded to .0002). As a general rule, it 
is unneccessary to include a zero before the decimal place of a P 
value (or positive rational number less than unity), as this value 
is not considered a significant digit.2 Optionally, when present-
ing rounding results with a varying number of decimal places in 
tabular form, aligning the values by the decimal point can help 
visualize differences in the number of decimal places.1

In Table 1, a few representative examples are provided to 
compare REEs (and CIs) before and after rounding to 2 sig-
nificant digits using the above-mentioned strategy. The under-
lined values (vinculum) in the table denote the respective 
significant digits of rounding. When the point estimate for the 
REE is greater than 1.0 but less than 1.05, some researchers 
round the value to 1.0 and omit the second significant digit. 
However, this oversimplification can result in the estimate fall-
ing outside the corresponding CI (Example #12). Similarly, in 
Example #10, the HR is rounded to 1.07 instead of 1.1 so that 
the rounded value is contained within the CI (rather than 
being equal to the upper limit). To avoid ambiguity, the upper 
confidence limit (UCL) for Example #13 is rounded to .9989 
instead of .999 (wherein the actual value could be as low as 
.9985 or as high as .9999 if the value was truncated to .999). 
The P value in Example #15 is rounded to .0502 and is consist-
ent with its CI that spans unity (ie, statistically nonsignificant, 
given α = .05). In Examples #4 and #6, the trailing zeros in the 
P value are retained to convey the exactness of rounding to 2 
significant digits versus values that may have been rounded to 
a single significant digit. This is also the case for the trailing 
zero in the REE (φ)  for Examples #4 and #15. Numbers 
greater than 10 generally are rounded to a whole integer 
(Example #6), except when the application merits otherwise.

Rounding allows for the presentation of numbers with a 
higher degree of decimal place accuracy in a more succinct for-
mat while still retaining the true meaning of the value. This is 
often done to facilitate the formatting of tables, enabling the 
maximum content of information in a limited space. However, a 
parsimonious solution for rounding may not always be feasible.

Example. Consider the following case:

φ =

= −
=

( )
0 9999917017

95 0 9999641119 1 0000192924
55553

. ,
% . . ;

.

 
CI

P 115172
 (13)

According to the above-mentioned rules, this would be 
rounded as

φ = = − =( )0 999992 95 99996 1 00002 56. , % . . ; . CI P  (14)

The interpretation of the CI which contains unity is consist-
ent with the original unrounded values and corresponds to a 
statistically nonsignificant P value in both cases. Yet, the num-
ber of decimal places required to meaningfully represent the CI 
after rounding is cumbersome. Unless a CI is mandatory for the 
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example at hand, it may be more reasonable to forego this sta-
tistic and only present the P value corresponding to the point 
estimate.

Logarithmic-based effects also may pose a challenge for 
rounding when numbers are too small or too large to be con-
veniently written in decimal form. Typically, computer pro-
grams will use scientific notation to represent the confidence 
bounds, as indicated in the example below

φ =

= −
=

( )
0 00002

95 2 65774 165 2 05454 155
95474

. ,
% . . ;

.

 
  CI E to E

P
 (15)

where “E” denotes multiplying the mantissa by 10 raised to the 
order of magnitude shown after this symbol. For example

 2 65774 165 2 65774 10 165. .E − = × −     (16)

The above can be further reduced by rounding the mantissas 
in the CI, as well as the P value, to 2 significant digits. That is

φ = = −( ) =0 00002 95 2 7 165 2 1 155 95. , . . ; .%CI E to E P  (17)

Although some precision is forfeited, this rounded form still 
conveys the nonsignificance of the point estimate.

Returning to Table 1, Example 14, let us assume that the 
researcher opted instead to round the HR to 1.0. to save space 
(ie, more parsimonious). While this abbreviated point esti-
mate appropriately lies within the CI, we are uncertain if the 
true value is above or below unity. We can determine the 
directionality of the estimate on the log scale by computing 
the midpoint of the CI and adding the result to the lower 
bound. That is

φ = +
−































= +
−

log LCI UCL LCL
2

log 0 9996 1 02 0 9. . . 9996
2

1 01






























≈ .

 (18)

Accordingly, we see that this value is logarithmically in the 
positive direction (ie, above 1.0) and conclude that little infor-
mation would have been lost by the researcher’s rounding deci-
sion (as it is possible to estimate the additional significant digit 
needed to determine if the point estimate is above or below 
unity).

Computing P Values as a Simple Measure of 
Rounding Accuracy
From basic probability theory, recall that

Table 1. Relative effect estimates before and after rounding to 2 significant digits.

# BEFoRE RoUNDINg AFTER RoUNDINg

φ 95% LCL 95% UCL P VALUE φ 95% LCL 95% UCL P VALUEa

1 1.67176 1.00266 2.78737 .04882 1.7 1.003 2.8 .049

2 1.32054 .70156 2.48561 .38891 1.3 .70 2.5 .39

3 1.46265 .99743 2.14487 .05156 1.5 .997 2.1 .052

4 .79574 .24679 2.56571 .70208 .80 .25 2.6 .70

5 1.83351 1.38517 2.42697 .00002 1.8 1.4 2.4 <.0001

6 1.99294 .26608 14.92738 .50206 2.0 .27 15 .50

7 1.33846 1.05598 1.69650 .01594 1.3 1.1 1.7 .016

8 3.12800 1.61069 6.07466 .00076 3.1 1.6 6.1 .0008

9 2.66667 1.35881 5.23333 .00435 2.7 1.4 5.2 .0044

10 1.07053 1.00020 1.14580 .04933 1.07 1.0002 1.1 .049

11 .93412 .87275 .99980 .04933 .93 .87 .9998 .049

12 1.01315 1.00410 1.02227 .00431 1.01 1.004 1.02 .0043

13 .73986 .54800 .99889 .04916 .74 .55 .9989 .049

14 1.00800 .99961 1.01650 .06159 1.01 .9996 1.02 .062

15 .79725 .63555 1.00018 .05018 .80 .64 1.0002 .0502

Abbreviations: LCL, lower confidence limit; UCL, upper confidence limit; φ, relative effect estimate.
aBased on rounding the original values rather than using a conversion formula applied to the rounded estimates.
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 (21)

follows a chi-square distribution with 1 degree of freedom (df), 
that is, χ1

2 . Here, ( )φ  denotes the respective REE, ( )α  is the 
significance level (ie, the probability of rejecting the null 
hypothesis when it is true), and z

1 2−( )α  is the 100% × (1 – α / 2) 
percentile of a standard normal distribution. The denominator 
of equation (21) gives the standard error for log( )φ  in terms of 
the corresponding CI. The P value is then computed as

 p P X X= >( ) = − ( )χ χ1
2

1
21   (22)

For example, consider

 

φ =

= −
=

( )
1 0079959299
95 0 9995802677 1 0164824454

06262

. ,
% . . ;

.

 
CI

P 884394
 (23)

and applying equation (21), we have

X =
( )

  −  

log
log log

1 0079959299
1 0164824454 0 9995802677

.
. .

22 1 9599639845

2

. .



























 (24)

 =  3 4663743423.  (25)

The resulting P value = .0626284426, which only differs 
from the original P value by the last 3 digits (ie, 394 vs 426).

Converting a REE and corresponding CI to a P value is a 
simple way to gauge the accuracy of rounding. Rounding the 
above example to 2 significant digits gives

 φ = = −( ) =1 01 95 9996 1 02 063. , . . ; .%CI P  (26)

Applying equation (22) to the rounded values for the REE 
and CI yields the smaller P value of .053. While rounding to 2 
significant digits in this example is suitable for determining if 
the point estimate is contained within or outside the CI (ie, 
nonsignificant vs significant), it may not provide enough accu-
racy for reliably estimating a P value for other purposes. In 
practice, journal articles often provide a REE with CI, forego-
ing a P value. An interested reader could estimate a P value 
using the above conversion equation. In such a case, however, it 
is important that a sufficient number of significant digits are 
provided to assure that the derived P value is reasonably close 
to the actual value.

Accumulated Rounding Error
Ratio of 2 independent REEs

In the previous section, we discussed how to gauge rounding 
error by estimating a P value when given the REE, lower con-
fidence limit (LCL), and UCL (ie, 3 sources of rounding error). 
While only the REE and LCL are necessary to estimate a P 
value, see equation (19), the latter form may not adequately 
capture the CI’s true width when the estimates have been 
rounded. Recall that REEs are based on a logarithmic rather 
than linear scale and consequently rounding may differentially 
affect the distance of LCL and UCL from the REE.

To further illustrate the accumulation of rounding errors, we 
consider estimating the ( )1 100%−α  CI for the ratio of 2 inde-
pendent REEs (ie, Cov[ , ]log( ) log( )φ φ1 2 0= ). That is

 CI
log log

α

φ
φ

φ
φφ

φ

α
1

2

1

2 1
2
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2]} { [ }}2  (29)

where from the denominator of equation (21) we see that

       SE zi
i ilog

log UCL log LCL
φ

φ φ

α

( )  =
( )  − ( ) 

−










2
1

2

.  (30)
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To test the null hypothesis that φ φ1 2 1/( ) = , we compare

 z
SE SE

=











( ) { } + ( ) { }

log

log log

φ
φ

φ φ

1

2

1
2

2
2

 (31)

with a standard normal distribution to obtain the correspond-
ing P value, that is,

 P z= − ( ){ }2 1. Φ  (32)

where

 Φ
π

z e dx
xz

( ) =
−

−∞
∫

2

2

2.
 (33)

In the above equations, we see that there are 6 potential 
sources of rounding error corresponding to the 2 sets of REEs 
and CIs {ie, φ φ φ1 1 1, ( ), ( )UCL LCL  and φ2 , UCL LCL( ), ( )φ φ2 2 }.

Example. A mildly immunosuppressive, genetically modified 
compound (Factor X) produced by drug company (A) for the 
treatment of rheumatoid arthritis has been observed to increase 
the risk of cancer. Company (B) has developed a non-immuno-
suppressive compound (Factor Y) for rheumatoid arthritis and 
wishes to test if this new drug reduces cancer risk in this popu-
lation. The senior management of the company would like to 
move forward with regulatory submission of Factor (Y) but 
only if there is a 50% risk reduction over Factor (X) at the 
P < .01 level of statistical significance. A randomized clinical 
trial reports the following results

 φX P= = −( ) <1 6 95 1 3 2 1 0001. , % . . , .CI  (34)

 φY P= = −( ) =1 1 95 0.86 1.3 51. , % , .CI  (35)

 
φ
φ
X

Y
= 1 45.  (36)

 CI95 1 1 2 0φ
φ
X

Y









 = −( ). .  (37)

and

 P = .020  (38)

Because the achieved risk reduction is less than 50% (ie, 
~45%) and the P value of .020 fails to satisfy the a priori criteria 
of <.01, Company (B) decides against further investment in 
this therapy. However, an independent consultant questions 
these results given that the analysis was conducted on the 
reported rounded values. Requesting the unrounded data and 
reanalyzing the data, her more precise result gives

     

φX

P

=

= −( )
=

1 6443412302
95 1 3161806950 2 0543213327

00001

. ,
% . . ,
.
CI

11928
 (39)

     
φX

P

=

= −( )
=

1.0774119191
0.8616745800 1.3471633844

51308

,
% ,
.

95 CI
55655

 (40)

 φ
φ
X

Y
= 1.5261955071  (41)

 CI X

Y
95

φ
φ









 = −( )1.1133527725 2.0921246018  (42)

and

 P = .0086086358  (43)

We now see that the risk reduction of Factor (Y) versus 
Factor (X) is ~53%, with a corresponding P value of .0081. 
Based on the reanalyzed data, Company (B) decides to move 
forward with submitting their drug for regulatory approval.

Multiplicity-adjusted CIs for REEs

Accounting for multiple comparisons in the form of  
multiplicity-adjusted CIs is important to avoid the inflation of 
type I error (ie, the probability of wrongly rejecting 1 or more 
null hypotheses increases in proportion to the number of risk 
comparisons being considered). Multiplicity-adjusted CIs also 
are useful for identifying a parsimonious set of variables to 
include in multivariable models such as Cox and logistic 
regression. However, the process of computing multiplicity-
adjusted CIs using rounded values may yield imprecise and 
misleading results.

Given ( )n independentCIs , the ( ) %1−α 100  multiplicity-
adjusted CI for the ith REE (ie, φi ) using the Hochberg step-
up procedure is computed as

 
a ei

log z SE logi a i

CIα
φ φ

φ( ) =
( )± ( ) 












−









1

2

  (44)

where

 
SE

Pi
i

j

�
�log

log
φ

φ

Φ

( )  =
( )

−












−1 1
2

 (45)

 P P n jj j= − +( )( )
. 1  (46)

and P j( )  denotes the ordered P values

 P P P Pj n1 2( ) ( ) ( ) ( )< < <  (47)

from the set of Pi  values ( , , , )i j n=1  computed using equation 
(22), with Pj  having an upper bound of unity ( , , , )i j n=1 .4
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Example. A molecular scientist has bioengineered a benign 
respiratory animal virus to help combat opportunistic infec-
tions. While the approach has been shown to be effective at 
reducing blood human papillomavirus (HPV) levels and sub-
sequent cancer, an increased occurrence of severe coughing and 
wheezing episodes has been observed over the 5-year follow-
up period. Accordingly, she decides to examine the association 
of selected SNPs with the outcome, hoping to identify an anti-
dote target. To control for false positives, the Hochberg method 
is used to adjust CIs for multiplicity.4 The study findings, com-
puted before and after rounding, are summarized in Tables 2 
and 3.

In Table 2 (before rounding), SNP #3 corresponds to a P 
value of .5253357016 (which is the least significant result in 
the table), with SE log i

[ ]( )φ = 0.3872421156  (computational 
details not shown). Consequently, the multiplicity-adjusted CI 
for this SNP is approximately equal to the unadjusted CI (only 

differing by the last decimal place for the UCL), in accordance 
with the underlying theory. However, in the rounded example 
(Table 3), both the lower and upper multiplicity-adjusted con-
fidence limits (CLs) for SNP # 3 are larger than the unadjusted 
CLs. Also, SNP #7 is no longer statistically significant (ie, CI 
spans unity), while the multiplicity-adjusted CI for SNP #4 is 
much larger after using rounded values to compute the inter-
vals. These results illustrate the accumulated error that may 
occur by rounding to only 2 significant digits, suggesting the 
need for greater accuracy when adjusting CIs for multiplicity.

Discussion
Rounding is a compromise strategy that involves replacing a 
true or more accurate value with one having less accuracy. The 
intent is to preserve the meaning and interpretation of the 
original result. It represents a balance between reporting too 
few significant digits and losing information versus failing to 

Table 3. Confidence intervals adjusted for multiplicity after rounding.

# SNP φ UNADJUSTED FoR mULTIPLICITy ADJUSTED FoR mULTIPLICITy

95% LCL 95% UCL 95% LCL 95% UCL

1 rs402197 1.4 1.1 1.6 1.1 1.7

2 rs464397 1.5 1.3 1.8 1.3 1.8

3 rs422761 1.3 .60 2.7 .61 2.8

4 rs383510 1.1 .91 1.4 .58 2.1

5 rs386416 1.01 1.002 1.03 .97 1.1

6 rs233575 1.5 .84 2.7 .44 5.2

7 rs714205 1.3 1.1 1.7 .96 1.8

8 rs518394 1.4 1.2 1.7 1.1 1.7

Abbreviations: LCL, lower confidence limit; SNP, single-nucleotide polymorphism, UCL, upper confidence limit; φ, relative effect estimate.

Table 2. Confidence intervals adjusted for multiplicity before rounding.

# SNP φ UNADJUSTED FoR mULTIPLICITy ADJUSTED FoR mULTIPLICITy

95% LCL 95% UCL 95% LCL 95% UCL

1 rs402197 1.3517192397 1.1168009355 1.6360524466 1.0689444103 1.7092983372

2 rs464397 1.5126136910 1.2531258554 1.8258343074 1.2235960906 1.8698982415

3 rs422761 1.2788404824 .5986807434 2.7317280496 .5986807434 2.7317280495

4 rs383510 1.1245972747 .9143181123 1.3832374238 .7778465831 1.6259234890

5 rs386416 1.0140354289 1.0016257307 1.0265988777 .9970386257 1.0313219815

6 rs233575 1.4891699509 .8360190116 2.6526037229 .4307668688 5.1480912375

7 rs714205 1.3414272940 1.0805797401 1.6652423863 1.0152419507 1.7724121662

8 rs518394 1.4177869015 1.1593821629 1.7337852543 1.1129480251 1.8061218069

Abbreviations: LCL, lower confidence limit; SNP, single-nucleotide polymorphism; UCL, upper confidence limit; φ, relative effect estimate.
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achieve parsimony (ie, retaining too many inessential digits). In 
some cases, the numbers are rounded beyond the capacity of 
the measurement device (spurious accuracy) or practical aspects 
of the problem at hand. The degree of rounding imposed in a 
situation depends on the desired accuracy and precision of the 
result. Additionally important is the need to minimize the 
error that may accumulate when performing complex compu-
tations on rounded values. Such sequential operations can lead 
to ill-conditioned and inaccurate findings.

The goal of research is to gain insights and answers to rele-
vant scientific questions. Rounding helps to simplify the pres-
entation of data and to make findings easier to understand and 
compare across research studies. Insufficient or inappropriate 
rounding (ie, numeric representation error) may affect the 
credibility and quality of a study, leading to a false sense of 
discovery. Results also may be difficult to replicate in future 
studies. Ideally, one aims to minimize the bias associated with 
rounded, realizing that a “one-size-fits-all” solution or set of 
rules rarely exists in the real world. In this article, a rounding 
strategy is presented based on the number of significant digits 
that are needed to determine if a REE is statistically signifi-
cant. The method is simple to implement yet reasonably robust 
in most common applications.

An alternative rounding method for reporting REEs (and 
associated CIs), known as the “Rule of Four,” is based on the 
“maximum absolute fractional rounding error,” a value that 
varies because of the nonlinear (logarithmic) aspect of REEs.3 
This rule entails dividing the REE by 4 and rounding down 
to 2 significant digits, and then reporting the REE to that 
number of decimal places. In brief, REEs are reported to 3 
decimal places for values ranging from (.040 to .399), 2 deci-
mal places for (.40 to 3.99), and 1 decimal place for (4.0 to 
39.9), and so forth.

Within certain ranges, this rule has the advantage of 
reporting rounded values with greater absolute accuracy than 
the strategy suggested in the current manuscript (ie, 
“Goldilocks Rule”). For example, the REEs of .2543 and 
3.9421 are rounded to .254 and 3.94, respectively, using the 
Rule of Four. In comparison, the values are rounded to .25 
and 3.9 using the Goldilocks Rule. However, the Rule of Four 
often is less parsimonious from the perspective of using CIs 
to gauge the statistical significance of a REE. For instance, 
rounding the lower confidence bound of .3994 to .399 (Rule 
of Four) versus .40 (Goldilocks Rule) conveys the same inter-
pretation of the REE as being statistically nonsignificant, but 
in the latter case, fewer decimal places are required to present 
the value. Furthermore, rounding an UCL of .9973 and a 
LCL of 1.0042 by the Rule of Four (ie, 1.0 in both cases) does 
not flag the values as being statistically significant, compared 
with the Goldilocks Rule which rounds the values to .997 and 
1.004, respectively.

Investigators are increasingly advocating for the use of effect 
sizes and CIs versus a single P value, wherein the latter does 

not convey the magnitude and relative importance of an effect.5 
This approach has the added advantage of being able to gauge 
the statistical significance of the result (ie, CI excludes unity), 
which remains a common practice in the literature. Caution, 
however, is advised when dealing with CLs near unity, as insuf-
ficient rounding may obscure the underlying statistical signifi-
cance (or lack thereof ) of the result. Researchers also are 
counseled to avoid spuriously significant findings which may 
not be scientifically relevant or practically meaningful, based 
only on whether the CI excludes unity.6

Conclusions
Little guidance exists in the literature for how to round REEs 
and CIs, especially with respect to the interpretation of statisti-
cal significance. The current manuscript provides a parsimoni-
ous framework for rounding to aid cancer researchers in the 
presentation of their results. Tools also are provided for gaug-
ing the rounding accuracy of REEs in terms of associated P 
values, as well as providing intuitive examples of accumulated 
rounding error. Importantly, rules for rounding, whether those 
presented here or by other authors, are merely recommenda-
tions and should be carefully considered in the context and 
aims of the underlying research.
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