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Summary 
Elevated levels of p56-Lck kinase activity were achieved in an interleukin 2 (IL-2)-dependent 
cloned cytolytic T cell CTLL-2 through gene transfer approaches. CTLL-2-Lck cells remained 
dependent on IL-2 for growth and survival in culture but exhibited markedly elevated, IL- 
2-independent cytolytic activity against a variety of tumor targets. This immune cell effector 
function was similar to the non-major histocompatibility complex-restricted cytolytic activity 
previously described for lymphokine activated killer (LAK) cells, and involved a cytolytic mechanism 
that was independent of protein synthesis in either the T cells or the tumor targets. Characterization 
of CTLL-2-Lck cells revealed markedly elevated levels of both the o~ (CDlla) and 3 (CD18) 
chains of the cell adhesion molecule lymphocyte function-associated 1 (LFA-1) and increased 
binding of these T cells to a recombinant protein representing the extracellular domain of the 
LFA-ligand, intercellular adhesion molecule 1 (ICAM-1). Antibodies to CDlla partially abrogated 
cytolytic killing of tumor target cells by CTLL-2-Lck cells, suggesting that the upregulation 
in LFA protein levels potentially accounts at least in part for the phenotype of these T cells. 
Gene transfer-mediated elevations in p56-Lck kinase activity in an IL-3-dependent myeloid cell 
clone 32D.3 also resulted in increased LFA-1 expression, demonstrating that the findings are 
not unique to CTLL-2 cells. In addition to upregulation of LFA-1 expression, CTLL-Lck cells 
also exhibited more efficient exocytosis of cytotoxic granules upon activation with Ca 2+- 
ionophore and phorbol ester, relative to control transfected and untransfected CTLL2 cells. The 
findings functionally link the Lck kinase to a T cell effector pathway involved in cell-mediated 
cytotoxicity. 

L k is a member of the Src family of nonreceptor protein 
tyrosine kinases (PTKs) 1 and is normally expressed ex- 

clusively in lymphocytes, primarily in T cells and NK cells 
(reviewed in 1). The p56-Lck FFK has been found in phys- 
ical association with the cytosolic domains a variety of cell 
surface receptors in T cells including CD2, CD4, CD8, and 
the 3 chain of the IL-2 receptor complex (2-6). Furthermore, 
triggering of most of these receptors with specific antibodies 
or ligands induces elevations in Lck kinase activity suggesting 
an important role for this PTK in some aspect of lymphocyte 
function. Though it is clear from investigations of klr knock- 
out mice that p56-Lck is critical for the thymic development 
of T cells (7), knowledge of the functional significance of 

1Abbreviations used in this paper: BLT, N-a-benzyloxycarbonyl-L-lysine 
thiobenzyl ester; FI, fluorescence intensity; PTK, protein tyrosine kinase; 
sICAM-1, soluble intercellular adhesion molecule 1; TIA, T cell intracellular 
antigen; TIL, tumor infiltrating lymphocytes. 

Lck kinase activation for the responses of mature, fully differen- 
tiated T cells remains incomplete. 

In T cell hybridomas, gene transfer-mediated elevations 
in p56-Lck kinase activity have been shown to augment 
production of the lymphokine IL-2 in response to certain T 
cell activation signals and in some cases can lead to constitu- 
tive IL-2 production (8, 9). In addition, a Lck-deficient mutant 
of the CD4 § T cell leukemia line Jurkat has been described 
that has several defects in TCK-initiated signal transduction, 
all of which are corrected by gene transfer-mediated restora- 
tion of p56-Lck production (10). These findings suggest that 
l_ck can regulate signal transduction pathways involved in TCK 
signal transduction and lymphokine gene expression under 
at least some circumstances. Consistent with this notion, T 
cells expressing mutants of CD4 that fail to bind to p56-Lck 
also are defective in IL-2 production when stimulated with 
antigen and antigen-presenting cells under conditions where 
MHC-class II interaction with CD4 is required for T cell 
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activation (11, 12). Taken together, these results suggest a 
role for Lck in regulating at least one key event associated 
with helper T cell function, namely IL-2 production. 

In cytolytic T cells, increases in p56-Lck kinase activity 
can be transiently stimulated by antibody-mediated cross- 
linking of CD8 (2, 13). Furthermore, cytosolic domain mu- 
tants of CD8 that fail to associate with p56-Lck are defective 
in mediating signal transduction responses upon stimulation 
with alloantigen or anti-CD3-CD8 conjugate antibodies (14, 
15), suggesting that Lck plays an important role in TCR- 
mediated responses at least under circumstances where co- 
stimulation through CD8 is also required. However, associ- 
ation of CD8 and p56-Lck does not appear to be essential 
for generation of allospecific CTL effector cells in vivo, nor 
for CTL-mediated lysis of allogenic cells in vitro (16). 

In addition to CD8, signaling through receptors for IL-2 
can also stimulate increases in p56-Lck kinase activity in cyto- 
lytic T cells, suggesting a role for Lck in some aspect of IL-2 
signal transduction in these cells (17, 18). Gene transfer studies 
using a constitutively active version ofp56-Lck (kbFS05) have 
demonstrated that high levels of Lck kinase activity can re- 
sult in IL-2-independent activation of phosphatidyl-inositol- 
3'-kinase, but have no effect on IL-2 requirements for cell 
proliferation, growth, and survival (18, 19). Moreover, IL- 
2R-/8 mutants that fail to bind p56-Lck also fail to stimulate 
elevations in p56-Lck kinase activity in response to stimula- 
tion with IL-2 and are defective in induction of c-~s and c-jun 
m R N A  accumulation but not in stimulation of cellular 
proliferation (20). These observations suggest that IL- 
2R-mediated activation of p56-Lck plays an important role 
in some signal transduction pathways regulated by this lym- 
phokine, but not necessarily those involved in cell growth. 

Both CD8 and IL-2 have been shown to be capable of ei- 
ther directly or indirectly enhancing the cytolytic activity of 
killer T cells, raising the possibility of a functional connec- 
tion between p56-Lck and regulation of cell-mediated killing. 
Similarly, stimulation of NK cells through CD16 (FcR-y- 
IliA) has been shown to induce Lck kinase activation and 
trigger cytolytic responses by these immune cells (21), again 
suggesting a link between p56-Lck and cell-mediated cyto- 
toxicity. Indeed, studies of a variant subclone of the CD3 + / 
CD8 + T cell CTLL-2 that lacks p56-Lck revealed a defect 
in cytolytic effector function when tested in antibody- 
redirected cytolysis assays using a hybridoma target cell that 
displays anti-CD3 monodonal antibodies on its surface (22). 
Furthermore, gene transfer-mediated restoration of Lck 
production in these T cells was associated with markedly im- 
proved cytolytic effector function (22). Additional evidence 
implicating p56-Lck in cytolytic T cell responses has come 
from Ick knock-out mice where the few T cells that survive 
the thymic selection process without Lck and reach the pe- 
riphery as mature T cells have been shown to mount defec- 
tive CTL responses to viruses (23). The mechanism by which 
Lck might modulate signal transduction pathways involved 
in cytolytic activity however has not been previously addressed. 

Here we demonstrate that gene transfer-mediated eleva- 
tions in p56-Lck kinase activity significantly enhance the cyto- 
lytic activity of CTLL-2 T cells against tumor target cells. 

Furthermore, the findings suggest that Lck upregulates cyto- 
lyric effector function through mechanisms that involve en- 
hanced adhesion of T cells to target cells and more active 
exocytosis of cytotoxic granules. These observations could 
have relevance to mechanisms of immune surveillance against 
neoplasms, inasmuch as reductions in kb gene expression have 
been previously reported in the circulating T cells of animals 
with solid tumors (24), and in the tumor-infiltrating lym- 
phocytes (TIL) of patients with renal carcinoma (25). 

Materials and Methods 
Cells and Cell Culture. CTLb2 and 32D.3 cell clones were main- 

tained in IL-2- or Ib3-containing culture media as described previ- 
ously (18, 26, 27). CTLL-N-LCK cells are a polyclonal population 
of G418-resistant cells that were transfected with an expression 
plasmid pGSE1731-LCK encoding normal human p56-l_ck (18). 
CTLL-A-LCK is a clone of CTLL-2 cells that expresses at high levels 
a plasmid pCD2-MT-LCK(F505) encoding a routine p56-Lck ki- 
nase with a Tyr ---- Phe substitution at position 505 (18, 28). The 
derivation and characterization of these kk-transfected CTLL-2 cells 
has been described in detail previously (18). CTLL-NEO is a ran- 
domly chosen clone of CTLL-2 cells that underwent electropora- 
tion (900/~F; 750 V/cm) with 25/~g of NdeI-linearized pZIP-NEO 
plasmid DNA (29) and subsequent selection in medium containing 
IL2 and 400 #g/ml G418 (active concentration) (GIBCO BILL, 
Gaithersburg, MD). 32D-NEO and 32D-LCK cells are polyclonal 
populations of G418-resistant 32D.3 cells that underwent electropo- 
ration (double pulse of 40/~F; 2,000 V/cm; 74 ohms followed by 
1,500 tzF; 250 V/cm; 74 ohms) with 25 #g of linearized pLXSN 
or pLXSN-Ick(FS05) plasmid DNA (9), respectively, followed by 
selection in media containing Ib3 and m600/~g/ml active G418. 

Indirect Imrnunofluorescence Assays. Indirect immunofluorescence 
detection and flow cytometric analysis of the cell surface antigens 
CD2, CD3, CD11a, CD18, VLA-4, and NKI.1 was performed 
as described previously (30) using a FACScan Plus (Becton Dick- 
inson & Co., Mountain View, CA) and the following monoclonal 
antibodies, most of which were obtained either generously provided 
by James Ryan (University of California at San Francisco, San Fran- 
cisco, CA [UCSF]) or from the American Type Culture Collection 
(ATCC; RockviUe, MD): RM2-5 (rat IgG2b; CD2); 145-2Cll 
(hamster IgG; CD3-e); PK136 (mouse IgG2a; NKI.1); FD4.4.1 
(rat IgG2b; CD11a); M18.5 (rat IgG2b; CD18), PS/2 (rat IgG2a; 
VLA-4); M17/4.4.11.9 (rat IgG2a; CD11a), M18/2.a.12.7 (rat 
IgG2a; CD18). Negative control rat IgG2a, rat IgG 2b, and mouse 
IgG2b monoclonal antibodies were obtained from Coulter Immu- 
nology, Inc. (Hialeah, FL). Fluorescein-conjugated antisera to 
mouse, rat, or hamster IgG were purchased from TAGO, Inc. 
(Burlingame, CA). 

Cytolytic Assays. SlCr release assays were performed essentially 
:as described by Wunderlich and Schearer (31). Briefly, 2-6 x 106 
target cells were labeled with 150 #Ci 51Cr in ~0.4 ml of com- 
plete medium (RPMI with 10% FCS, 1 mM t-glutamine, 100 U/ml 
penicillin, and 50/zg/ml streptomycin) for 1.5 h at 37~ then 
washed 3x with HBSS (GIBCO BRL) and resuspended in 1 ml 
of complete medium for 0.5 h at room temperature to allow for 
spontaneous release before washing once with complete medium 
and resuspending at 10 s cells/ml. T cells were stripped of IL-2 by 
incubation for 0.5-1 min in 1 ml of 10 mM sodium-citrate (pH 
4.0)/140 mM NaC1, followed immediately by dilution into 50 ml 
of HBSS. After two additional washes in HBSS, T cells were 
resuspended in complete medium at 106 cells/ml with various con- 
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centrations (0-100 U/ml) of purified recombinant Ib2 (gift of 
Chiton, Inc., Emeryville, CA). Various numbers of T cells (104, 
5 • 10 4, 10 5, 2 x 105, 4 x 10 s) in 0.1 ml were added to round- 
bottom wells of 96-well microtiter plates and incubated in 37~ 
CO2 for 4 h to allow for dissipation of IL-2-generated signals in 
IL-2-deprived T cells. SlCr-labeled target cells (104 in 0.1 ml) were 
then added and after 4 h 51Cr release into culture supernatants was 
measured for triplicate samples. The percent specific lysis was cal- 
culated relative to the total amount of 51Cr released by treatment 
with 1% NP-40, after substraction of spontaneous release from 
tumor targets incubated without T cells as described (31). In some 
cases, saturating amounts (100/xg/ml) of purified monoclonal an- 
tibodies directed against CDlla (M17) or CD18 (M18/2.a.12.7) 
were added to T cells for 15-20 rain before addition of targets at 
an E/T ratio of 10 or 20. 

Intercellular adhesion molecule 1 (ICAM-1) Binding Assays. A 
soluble fragment of mouse ICAM-1 representing the extracellular 
domain of the protein (slCAM-1) was produced in Chinese ham- 
ster ovary cells and purified as described previously (32). Various 
amounts of slCAM-1 or BSA control protein were incubated in 
fiat-bottom 96-well plates overnight at 4~ followed by washing 
3 x with PBS containing 0.1 wt/vol BSA and preblocking of the 
wells with 1% BSA in PBS at 37~ for at least 2 h. RPMI medium 
(30 #1) with or without 100 nM PMA (CalBiochem-Novabiochem, 
San Diego, CA) was added to each well. CTLL-2 cell were cul- 
tured for 4 h in complete medium containing 25 U/ml recombinant 
IL-2 and 5 #Ci/ml [3H]thymidine, washed 3x in complete 
medium, resuspended at 106-107 cells/ml, and 30/zl added per 
well. Binding to slCAM-1 was allowed to proceed at 37~ for 
15 rain, after which the plates were rapidly inverted and the wells 
washed 3 x with prewarmed medium. Adherent cells were recov- 
ered into Ecolumne scintillation fluid (ICN Chemicals, Inc., Costa 
Mesa, CA) for counting. Data are expressed as the percentage of 
cpm/well obtained for adherent cells relative to the total cpms per 
well determined from duplicate uninverted plates. 

RNA Blotting. Total cellular tLNA was isolated from cells and 
10/xg aliquots were size-fractionated in 1% agarose/6% formalde- 
hyde gels and transferred to nylon membranes (Gene Screen; New 
England Nuclear/Dupont, Inc., Boston, MA). RNA was fixed to 
filters by UV-irradiation and then prehybridized, hybridized with 
32p-labeled DNA probes, washed, and analyzed by autoradiography 
essentially as described previously (33). Hybridization probes con- 
sistent ofcDNAs specific for murine perforin and granzyme A (gift 
from Ed Podack; University of Miami, Miami, FL), murine TNF-c~, 
LT-a, GM-CSF, IFN-'y (provided by James Ryan; UCSF), and mu- 
rine/~2-microglobulin (gift from Jane Parnes; UCSF). 

Immune Complex Kinase and Immunoblot Assays. Relative levels 
of p56-Lck kinase activity were measured in 32D-NEO and 32D- 
LCK cells by immune complex kinase assays performed exactly as 
described previously (34) using a rabbit polyclonal antisera raised 
against a synthetic peptide (RNGSEVRDPLVTYEGSLPPAC) cor- 
responding to residues 39-58 of the mouse p56-Lck kinase with 
a COOH-terminal cysteine added to facilitate conjugation to 
maleimide-activated ovalbumin (Pierce, Rockford, IL). 

Secretion Assays. Granule exocytosis was monitored based on 
~-glucuronidase release into culture media essentially as described 
by Taffs and Sitkovsky (35), with minor modifications. Briefly, 
50 #1 of CTLL-2 cells at 4 x 106 cells/ml in complete medium 
were added to round-bottom 96-well microtiter plates followed by 
50/xl of media with or without the combination of 10 ng/ml PMA 
and 0.5/xg/ml A23187 (Calbiochem-Novabiochem). After culturing 
for 4 h at 37~ the supernatants were recovered and as- 
sayed spectrophotometrically for/3-glucuronidase using phenol- 

phthalein glucuronic acid as the substrate. The percentage release 
of fl-glucuronidase was calculated relative to the total cellular con- 
tent of the enzyme obtained upon lysis with 1% Triton X-100, 
after subtraction of spontaneous background release that was com- 
parable for parental and all transfected CTLL-2 cells and always 
equaled <5% of the total cellular enzyme activity. 

Total cellular and secreted esterases were spectrophotometrically 
detected by use of the N-ot-benzyloxycarbonyl-t-lysine thiobenzyl 
ester (BLT) substrate method (35). 

Results 

A Model T Cell for Studies of Lck and Cytolytic Effector Func- 
tion. CTLL-2 is an IL-2-dependent cytolytic T cell line that 
was originally established in culture from C57B1/6 mice im- 
munized with allogenic tumor ceils, and that displays MHC 
nonrestricted cytolytic activity against aUogenic and syngenic 
tumor cells (26). Previously we demonstrated that IL-2 in- 
duces rapid, transient increases in the specific activity of p56- 
Lck kinase in CTLL-2 cells, in a concentration-dependent 
manner (18). IL-2-inducible increases in the activity of the 
only other Src-like PTK present at significant levels in these 
ceils, p59-Fyn, were not detected. In an effort to explore the 
functional significance of IL-2-mediated increases in p56-Lck 
kinase activity, we stably introduced into a clone of CTLL-2 
ceils expression plasmids encoding either the normal Lck ki- 
nase (N-LCK) or a mutant version that has a tyrosine --~ phenyl- 
alanine substitution at position 505 (F505-Lck). This mu- 
tant form of Lck removes an in vivo site of tyrosine 
phosphorylation that normally downregulates Lck kinase ac- 
tivity, thus locking the kinase in a constitutively active con- 
formation (A-LCK) (28). Despite (a) '~,20-fold elevations in 
the levels of p56-Lck kinase activity in both CTLL-N-LCK 
and CTLL-A-LCK cells; (b) constitutive activation of phos- 
phatidylinositol 3'-kinase in CTLL-A-LCK cells; and (c) 
striking elevations in the phosphorylation of a variety of cel- 
lular proteins on tyrosines, particularly in CTLL-A-LCK ceils, 
these genetically modified T calls remained completely de- 
pendent on IL-2 for their growth and survival in culture 
(18, 19). 

In the absence of an effect of gene transfer-mediated eleva- 
tions in Lck kinase activity on the IL-2-dependent growth 
and survival of CTLL-2 cells, we next tested the cytolytic 
activity of these genetically modified T cells against a variety 
of tumor targets. Target cells were loaded with 51Cr, mixed 
with effector cells at an E/T ratio of 20, and specific 51Cr 
release was measured in standard short-term (4-h) cytolytic 
assays. As shown in Fig. 1, the parental CTLL-2 cells lysed 
the routine thymoma YAC-I, the human T cell acute leukemia 
lineJURKAT, and the mouse leukemia line RLcrl  in an IL- 
2-dependent manner. Specific lysis of a variety of other tumor 
cells lines was not detected at significant levels (>5%) above 
background, including U937, K562, Daudi, C1498, IC-21, 
P815, and B16F10 cells. There was no correlation between 
lysis and NK sensitivity among these target cell lines. 

Both CTLL-N-LCK and CTLL-A-LCK ceils (also referred 
to as Y505Lck and F505Lck, respectively) displayed the same 
specificity as the parental untransfected CTLL-2 ceils in these 
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Figure 1. Analysis ofcytolytic activity of CTLb2 cells against various 
tumor target cells. Parental CTLL-2 cells (designated WT, for wild-type), 
CTLb2 cells transfected with an expression plasmid that produces normal 
p56-Lck kinase or a mutant version containing a Tyr505 ~ Phe substitu- 
tion (designated Y505-Lck and F505-Lck, respectively) were cultured with 
stCr-labeled target cells for 4 h at an E/T ratio of 10 in the presence or 
absence of 100 U/ml recombinant Ib2 as indicated. The percent specific 
lysis was calculated as described (31). Data represent mean + SD for triplicate 
determinations and are representative of several experiments. 

assays, inducing lysis of the same three target cell lines YAC-1, 
JURKAT, and RLcYl that were lysed by the parental CTLL-2 
cell clone but not of the seven other tumor cell lines that 
the untransfected CTLL-2 clone failed to lyse (Fig. 1). In con- 
trast to parental CTLL-2 cells, however, CTLL-N-LCK and 
CTLL-A-LCK induced lysis of a greater percentage of target 
cells (Fig. 1). Induction of lysis by these T cells that contain 
elevated levels ofp56-Lck kinase activity also was far less IL-2 
dependent than for parental CTLL-2 cells. Even in the ab- 
sence of IL-2, CTLL-N-LCK and CTLL-A-LCK cells ex- 
hibited cytolytic activity that was equal to or greater than 
that obtained with parental CTLL-2 cells that had been sup- 
plied with optimal concentrations of IL-2 (Fig. 1). This en- 
hanced cytolytic activity of CTLL-N-LCK and CTLL-A-LCK 
cells relative to parental CTLL-2 cells was not due to im- 
proved survival or continued cellular proliferation in the ab- 
sence of IL-2 (18). 

Characterization of the Cytolytic Activity of Lck-transfected 
CTLL-2 Cells. The enhanced cytolytic activity of CTLL- 
N-LCK and CTLL-A-LCK cells, relative to parental CTLL-2 
cells was apparent over a wide range of E/T ratios (Fig. 2 
A). The lytic activity of these T cells was also dependent 
on cell-cell contact, as determined by cold target inhibition 
studies (not shown). Preincubation of CTLL-N-LCK and 
CTLL-A-LCK cells with the protein synthesis inhibitor cy- 
doheximide had no effect on lytic activity, implying that gene 
expression and new protein synthesis are not required for the 
killing mechanism used by these cytolytic T cells (Fig. 2 B). 
Consistent with previous investigations of mechanisms of 
CTL-induced cell death (38), treatment of the tumor target 
cells with cycloheximide also did not impair cytolysis (not 
shown), implying that induction of new gene expression is 
also not required in the target cells. Furthermore, release of 
51Cr was preceded by prelysis genomic DNA digestion (as 
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Characterization of cytolytic effector activity of/ck-transfected 
CTLL-2 cells. In A, parental WT, kk(YS05)-transfected, and kk(F505)- 
transfected CTLL-2 cells were incubated with slCr-labeled YAC-1 targets 
for 4 h at various E/T ratios in the presence or absence of 100 U/ml recom- 
binant II.-2. The percent specific lysis was calculated and the data presented 
as mean _+ SD for triplicate determinations. In B, CTLL-N-LCK and CTLL- 
A-LCK cells were treated with (+) or without ( - )  20 #g/ml cyclohexi- 
mide for 20 min in medium containing 100 U/ml recombinant I1.-2, be- 
fore addition of SlCr-labeled JURKAT cells at an E/T ratio of 20. slCr 
release was measured 4 h later and percent lysis calculated (mean _+ SD 
for triplicate determinations). Though representative data for only one 
tumor target cell line are shown in each of the panels, similar results were 
obtained with all three of the susceptible target cells (YAC-1, JURKAT, 
RLO'I) (not shown). 

determined by quantitative DNA fragmentation assays [36]), 
and was partially suppressible by overexpression of the 
apoptosis-blocking oncoprotein Bcl-2 in the tumor target cells 
(36a), suggesting that an apoptotic rather than necrotic cyto- 
lyric mechanism was primarily involved (37). 

Lck Upregulates Expression of the LFA-1 Adhesion Mole- 
cule. Probably the first step in T cell-mediated killing of 
target cells involves formation of cell-cell contact through 
the interactions of specific cell surface glycoproteins. For most 
cytolytic T cells, LAK cells, and TIL cells, perhaps the most 
quantitatively important cell adhesion molecules is LFA-1 
(38-40). LFA-1 is a member of the integrin family of adhe- 
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sion molecules, and consists of a heterodimer representing 
c~- and B-chain proteins, termed CDlla  and CD18, respec- 
tively (41). LFA-1 can bind specifically to members of the 
ICAM family of trans-plasma membrane glycoproteins, in- 
cluding ICAM-1, ICAM-2, and related proteins (41). 

We therefore compared the relative cell surface levels of 
CD11a and CD18 on parental CTLL-2 cells and control trans- 
fected CTLL-2-NEO cells with CTLL-N-LCK and CTLL- 
A-LCK cells using an indirect immunofluorescence assay. As 
shown in Fig. 3 A, relative levels of both CDlla  and CD18 
were markedly elevated on CTLL-N-LCK and CTLL-A-LCK 
cells. This increase in CDlla and CD18 expression was specific 
in that levels of CD2 and VLA-4, two other cell surface 
markers believed to play a role in the binding of T cells to 
other cells or to the extracellular matrix (reviewed in 41) were 
not elevated on genetically modified CTLL-2 cells that con- 
tained high levels of p56-Lck kinase activity (Fig. 3 B and 
our data). In fact, levels of some plasma membrane proteins 
such as CD3 and NKI.1 were actually lower on CTLL-N- 
LCK and CTLL-A-LCK cells than on parental untransfected 
CTLL-2 cells and the control transfected CTLL-2-NEO cell 
clone (Fig. 3 B and data not shown). CD3, for example, was 
essentially undetectable on both CTLL-N-LCK and CTLL- 
A-LCK cells. In addition, NKI.1 surface expression was 
slightly reduced on CTLL-N-LCK cells and markedly lower 
on CTLL-A-LCK cells (Fig. 3 B). Thus, high levels of p56- 
Lck kinase activity may either directly or indirectly down- 
regulated the expression of CD3 and NKI.1 on CTLL-2 cells, 
while upregulating the levels of CDlla  and CD18. 

Lck-transfected CTLL-2 Cells Exhibit Enhanced Adhesion to 
Recombinant ICAM-I. To explore the functional status of 
LFA-1 molecules on CTLL-2 cells, we performed binding 
assays where T cells were tested for binding to a recombinant 
protein representing the extracellular domain of the LFA-1 
ligand, ICAM-1. For these assays, the ICAM-1 fragment was 
adsorbed to wells of plastic microtiter culture plates, and T 
cells were allowed to bind for 15 rain. T cells were tested 
for binding before and after activation with PMA, an agent 
known to induce an increase in the affinity of LFA-1 for 
binding to its specific ligands (41, 42). Compared with pa- 
rental CTLL-2 cells, a higher percentage of both CTLL-N- 
LCK and CTLL-A-LCK cells bound to the recombinant frag- 
ment of ICAM-1 (Fig. 4). Enhanced binding was observed 
for both unstimulated and PMA-activated CTLL-N-LCK and 
CTLL-A-LCK cells. In fact, unstimulated CTLL-N-LCK and 
CTLL-A-LCK cells bound as well or better to the ICAM-1 
fragment as PMA-activated parental CTLL-2 cells. Further- 
more, upon PMA-induced activation, binding of CTLL-N- 
LCK and CTLL-A-LCK cells to the ICAM-1 fragment was 
as much as four- to sixfold higher than that obtained for pa- 
rental CTLL-2 cells, depending on the concentration of 
ICAM-1 employed. The increased binding of CTLL-N-LCK 
and CTLL-A-LCK cells to the recombinant ICAM-1 frag- 
ment was specific, since background binding to BSA was not 
significantly higher for these cells (Fig. 4). 

Antibodies to LFA-1 Abrogate Cytolytic Activity of Lck- 
transfected CTLL-2 Cells. To explore the relevance of LFA-1 
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Figure 3. Transfected CTLL-2 cells with increased p56-l.ck kinase ac- 
tivity have elevated levels of LFA-1 expression. In A, parental CTLL-2 cells 
(control) and CTLL-2 cells that had been stably transfected with expres- 
sion plasmids encoding either normal Lck (N-LCK) or the Y505 mutant 
of l_ck (A-LCK) were analyzed by indirect immunofluorescence assay for 
expression of CDlla and CD18. As an additional control for any nonspecific 
effects of the transfection procedure, a CTLIr cell clone was prepared 
that contained a neomycin-pbosphotransferase (G418-resistance) without 
kk sequences (NEO). Cells were incubated with saturating amounts of 
the anti-CDlla antibody (FD4.4.1) (rat IgG2b), the anti-CD18 antibody 
(M18.5) (rat IgG2b), or a rat IgG2b negative control monoclonal anti- 
body, followed by FITC-conjugated goat anti-rat IgG. Cells were ana- 
lyzed using a flow cytometer and the data presented as histograms with 
relative cell number on the ordinant and relative fluorescence intensity (FI) 
on the abscissa in log-scale. The mean fluorescence channel is indicated 
for each sample. Similar data were obtained using alternative monoclonal 
antibodies to CD11a (M17/4.4.11.9) (rat IgG2a) and to CD18 (M18/2.a.12.7) 
(IgG2a) (not shown). In B, parental CTLL-2 cells (control), CTLI~N-I.CK 
and CTLFA-LCK cells were immunostained for CD3, NKI.I, and CD2 
using specific monoclonal antibodies as described above. FACS | data are 
presented as histograms, with the results for negative control antibodies 
(isotype and subclass matched) in black and the results for monoclonal 
antibodies specific for CD3, NKI.1, and CD2 in white. 
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for the cytolytic effector function of CTLL-N-LCK and 
CTLL-A-LCK cells, we attempted to block killing by using 
monoclonal antibodies specific for CD11a. For these experi- 
ments, CTLL-N-LCK and CTLL-A-LCK cells were prein- 
cubated with saturating amounts of the monoclonal antibody 
M17, which recognizes a functionally important epitope on 
CD11a. As a control for any nonspecific effects of antibody 
binding, CTLL-N-LCK and CTLL-A-LCK cells were also 
preincubated with a monoclonal antibody M18/2.a.12.7 that 
recognizes a nonneutralizing epitope on CD18. As shown 
in Fig. 5 A,  ant i -CDlla  antibody markedly reduced cyto- 
lytic killing of tumor target cells by both CTLL-N-LCK and 
CTLL-A-LCK cells. This effect of  the antibody was largely 
specific, since the control antibody that recognizes a non- 
neutralizing epitope on LFA-1 had corresponding less effect 
on cytolytic function. Furthermore, cytolytic killing was not 
blocked by the anti-NKl.1 monoclonal antibody PK136 (Fig. 
5 B), again demonstrating the specificity of the results and 
suggesting that NKI.1 is not involved in the cytolytic mech- 
anism used by CTLL-2 cells. These data thus argue that LFA-1 
plays an important role in the cytolytic mechanisms used by 
C T L L - N - L C K  and CTLL-A-LCK cells. Though murine 
LFA-1 cannot recognize human ICAM-1 (43), the anti-LFA-1 
antibody M17 did inhibit lysis of  human J U R K A T  cells in- 
duced by CTLL-N-LCK and CTLL-A-LCK cells (not shown). 
Thus, routine LFA-1 may mediate binding of CTLL-2 cells 
to this human leukemic line via interactions with other iso- 
forms of  ICAM, such as ICAM-2 or ICAM-3/ ICAM-R.  
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Figure 4. CTLL-2 cells with gene transfer-mediated elevations in p56- 
Lck kinase activity exhibit enhanced binding to a recombinant fragment 
of ICAM-1. Various amounts of purified recombinant protein (0-500 ng) 
representing a soluble fragment from the extracellular domain of ICAM-1 
(slCAM-1) or 500 ng of BSA were absorbed to plastic microwells. Parental 
CTLI~2 cells (C), CTLL-N-LCK or CTLL-A-LCK cells were metaboli- 
cally labeled with [3H]thymidine, washed, and incubated in slCAM- or 
BSA-containing wells for 15 min in the presence (solid bars) or absence 
(hatched bars) of PMA. Nonadherent cells were removed and the percentage 
of adherent cells calculated as follows: percent adherent cells = [cpm from 
bound cells/(cpm from total input cells)] x 100. Data represent mean 
_+ SD for three determinations. 

Figure 5. Anti-CDlla monoclonal antibody blocks cytolytic killing by 
kk-transfected cells. In (.4), CTLL-2 cells that had been stably transfected 
with expression plasmids encoding normal Lck kinase (Y505Lck) or acti- 
vated Lck containing a Tyr505 -* Phe substitution (F505Lck) were in- 
cubated with either no antibody (control) or 100 #g/ml of a neutralizing 
anti-CD11a antibody M17/4.4.11.9 (rat IgG2a) or a nonneutralizing anti- 
CD18 antibody M18/2.a.12.7 (rat IgG2a). StCr-labeled RLo'I cells were 
then added at an E/T ratio of 10 and specific slCr release was measured 
4 h later. Data represent mean _+ SD for three determinations. In (B), 
parental CTLL-2 cells (C), kk-transfected CTLL-2 (N-LCK), and kk (Y505)- 
transfected CTLL-2 cells (A-I.CK) cells were incubated briefly with (+) 
or without (-)  10 #g/ml purified anti-NKl.1 antibody PK136 and then 
slCr release was measured from JURKAT target cells 4 h later and the 
percent specific lysis (_+ SD) determined for triplicate samples. Similar data 
were obtained when RLo'I cells were employed as the target (not shown). 

Elevations in Lck Kinase Activity also Upregulate LFA-1 Ex- 
pression in 32D3 Cells. As a first attempt to determine 
whether elevations in LFA-1 expression were a general char- 
acteristic of  cells that contain high levels of  p56-Lck kinase 
activity versus a feature specific to CTLL-2 cells, we also stably 
introduced an expression plasmid encoding the p56-Lck(FS05) 
protein into an IL-3-dependent myeloid cell clone, 32.D.3 
(27). As a control, the same expression vector lacking kk 
sequences was stably introduced into 32D.3 cells, thus creating 
the line 32D-NEO. In vitro immune complex kinase assays 
confirmed the presence of markedly elevated levels of p56- 
Lck kinase activity in 32D-LCK(F505) cells relative to 32D- 
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NEO cells (Fig. 6 A). FACS | analysis of cells immunostained 
with antibodies specific for CDlla or CD18 revealed increased 
levels of both CDlla and CD18 on 32D-LCK(Y505F) cells 
relative to 32D-NEO (Fig. 6 B). These findings thus argue 
that the ability of p56-Lck to stimulate elevations in LFA-1 
expression is not limited to CTLL-2 cells. 

Lck Does Not Cause Constitutive Elevations in the Expression 
of Several Genes Associated with Cytolytic Killing. The obser- 
vation that CTLL-2 cells which have gene transfer-mediated 
elevations in Lck kinase activity are more potent at killing 
target cells prompted us to examine the expression of a va- 
riety of genes whose encoded proteins have been associated 
either directly or indirectly with induction of cell death by 
CTLs. Furthermore, the finding that protein synthesis is not 
required for cytolytic killing by CTLL-N-LCK and CTLL- 
A-LCK cells (Fig. 2 B) argued that if increases in the expres- 
sion of other genes were important, then the expression of 
these genes would have to be constitutively elevated as op- 
posed to becoming activated after binding of T cells to specific 
target cells. In addition, since CTLL-N-LCK and CTLL-A- 
LCK cells kill in a far less IL-2-dependent manner than pa- 
rental CTLL-2 cells, it was possible that genes whose expres- 
sion was normally IL-2 inducible would be expressed in an 
IL-2-independent fashion in CTLL-N-LCK and CTLL-A- 
LCK cells. Relative levels of mRNAs were therefore com- 
pared in T cells that had been deprived of IL-2 for 4 h in 
an effort to detect any Lck-mediated alterations in gene ex- 
pression that might account for the superior cytolytic activity 
of the CTLL-N-LCK and CTLL-A-LCK cells relative to pa- 
rental CTLL-2 cells. 

As shown in Fig. 7 A, no constitutive elevations in the 
levels of mRNAs encoding TNF-oe, LT-c~, or IFN-3' were 
detected in CTLL-N-LCK and CTLL-A-LCK cells. 1Lelative 
levels of GM-CSF mRNA, a gene whose expression is IL-2 

inducible (44), were also not constitutively increased in CTLL- 
N-LCK and CTLL-A-LCK cells despite their high levels of 
p56-Lck kinase activity. Stimulation of parental CTLL-2 cells 
with either IL-2 or the combination of the Ca 2§ ionophore 
ionomycin and PMA served as a positive control for these 
Northern blot assays, inducing the accumulation of lym- 
phokine mRNAs to easily detectable levels (Fig. 7 A). 

It is interesting to note that steady-state levels of mRNAs 
for perforin, a protein with homology to the C9 component 
of complement (45), and granzyme A, a serine protease (46), 
were markedly reduced in CTLL-N-LCK and CTLL-A-LCK 
cells relative to parental CTLL-2 cells. Thus, CTLL-2 cells 
genetically modified to have increased levels of p56-Lck ki- 
nase activity are able to kill ef~ciently despite reductions in 
the relative amounts of expression of these two genes whose 
encoded proteins are stored in the cytotoxic granules of T 
cells and have been implicated directly in cytolytic effector 
mechanisms (47). 

Another cell death-inducing protein that is stored in the 
cytotoxic granules of killer T cells is the RNA-binding pro- 
tein apoptosin, also known as nucleolysin and T cell intracel- 
lular antigen (TIA) (48). Since antibodies that recognize the 
mouse form of TIA-1 have not been described to date, pa- 
rental and transfected CTLL-2 cells were examined for ex- 
pression of TIA-1 by Northern blot assay using a mouse TIA-1 
cDNA hybridization probe (generously provided by Mark 
Boothby; Vanderbilt University, Nashville, TN). TIA-1 
mRNA however was only barely perceptible, even when 
polyadenylate-selected mRNA was employed (not shown). 
Reverse transcriptase-PCR analysis under semiquantitative con- 
ditions confirmed the presence of at least low levels of TIA-1 
mRNA in parental and transfected CTLL-2 cells but no con- 
sistent difference in the relative levels of TIA-1 mRNA was 
detected between untransfected CTLL-2 cells and the trans- 

Figure 6. Production of activated p56-I.ck(Y505F) 
kinase in 32D,3 cells upregulates LFA-1 expression. 
The IL-3-dependent myeloid clone 32D.3 was stably 
transfected with either pLXSN or pLXSN-kk(YSOSF) 
plasmids and the resulting G418-resistant cells were 
analyzed for production of p56-Lck kinase activity (.4) 
and expression of LFA-1 (/3). In A, 1% NP-40 lysates 
were prepared from 2 x 106 cells and subjected to 
immunoprecipitation using an antiserum specific for 
p56-Lck. Immune complexes were incubated with a 
kinase reaction buffer containing "y-[32p]ATP and the 
exogenous substrate enolase (E). The reaction prod- 
ucts were analyzed by SDS-PAGE followed by autora- 
diography. (Data shown represent a 5-min exposure 
to X-ray film). An unidentified additional copre- 
cipitating band was routinely observed in Lck immune 
complex kinase assays performed using 3213.3 cells (open 
arrow) but not other cells (not shown). In B, 32D.3 
cells containing either pLXSN (NEO) or pLXSN- 
kk(YS05F) [Lck(Y505F)] were analyzed for surface 
expression of CDlla and CD18 by indirect im- 
munofluorescence assay with flow cytometric analysis 
as described for Fig. 4. Results for 32D-NEO and 3219- 
Lck(Y505F) cells are presented as shaded and unshaded 
histograms, respectively. 
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Figure 7. Analysis of expression of various mediators of CTbinduced 
cell death in CTLL-2 cells. In A, parental CTLL-2 cells (lanes 1-3), CTLb 
N-LCK cells (lane 4), and CTLDA-LCK cells (lane 5) were stripped of 
11:2 and rested for 4 h. Cells were then restimulated for 2 h with 100 
U/ml recombinant 11:2 (lane 2), or 0.5/xM ionomycin and 100 ng/ml 
PMA (lane 3). Total cellular RNA was isolated and 10/~g aliquots ana- 
lyzed by Northern blotting using probes specific for murine perforin, gran- 
zyme A, TNF-c~, LT-c~, INF-'y, GM-CSF, and Bz-microglobulin (/~2M). 
The 2-h stimulation time was empirically determined to be optimal for 
induction of all cytokine mRNAs in CTL1:2 cells (data not shown). The 
positions of selected molecular weight markers (RNA ladder BRL-GIBCO) 
are indicated. In B, untransfected CTLD2 and CTL1:A-LCK cells were 
cultured for 2 d with or without 11:2 or the combination of PMA and 
A23187 and then incubated with TNF-R/Fc fusion protein followed by 
fluorescein-conjugated goat anti-human IgG antibody. Relative levels of 
immunofluorescence were measured by FACS | analysis and the data dis- 
played as histograms with relative cell number (y-axis) vs. relative fluores- 
cence intensity (FI) in log-scale (x-axis). 

fected CTLL-N-LCK and CTLL-A-LCK cells, regardless of 
whether the cells were quiescent versus stimulated with IL-2 
or with Ca 2+-ionophore and PMA (our unpublished obser- 
vations). 

In addition to cytotoxic proteins stored in secretory granules 
(TIA-1, proteases, perforins) and expression of genes encoding 
cytotoxic lymphokines (TNF-ot, LT-c~), signals for cell death 
can be delivered during cell-cell contact by receptor-ligand 
interactions that occur at the plasma membrane (49). We also 
therefore examined the cell surface levels of TNF-ot, Fas-ligand, 
CD27-1igand, and CD30-1igand on parental and genetically 
modified CTLL-2 cells by indirect immunofluorescence assays, 
using recombinant chimeric proteins consisting of the ex- 
tracellular domains of TNF-ot, Fas, CD27, or CD30 fused 
with an immunoglobulin Fc region generously provided by 
Drs. Craig Smith and Ray Goodwin oflmmunex, Inc. (Seattle, 
WA) and Carl Ware of University of California (Riverside, 
CA). Cell surface expression of TNF-ot was present at levels 
slightly above background but was not appreciably elevated 
on CTLL-N-LCK and CTLL-A-LCK cells relative to con- 
trol CTLL-2 cells, regardless of whether or not the cells were 
stimulated with IL-2 or the combination of PMA and Ca 2+- 
ionophore. Stimulation with PMA and Ca2+-ionophore 
however did induce an increase in cell surface TNF-c~ but 
the relative levels of immunofluorescence were not higher 
for CTLL-A-LCK cells than control CTLL-2 cells and in fact 
tended to be somewhat lower (Fig. 7 B). FACS | analysis of 
the ligands for Fas, CD27, and CD30 produced levels of im- 
munofluorescence that were not detectably above background 
on parental and genetically modified CTLL-2 cells even after 
stimulation with IL-2 or with PMA and Ca 2§ ionophore 
(not shown). Thus, while it is possible that TNF-ot or LT-ot 
may participate in the cytotoxic mechanism by which CTLL- 
N-LCK and CTLL-A-LCK cells kill target cells, p56- 
Lck-mediated alterations in the expression of these genes do 
not appear to account for the superior cytolytic activity of 
CTLL-2 cells that contain gene transfer-mediated elevations 
in Lck kinase activity. 

Lck Enhances Activation-induced Secretion by CTLL-2 Cells. 
During T cell-mediated cytolytic killing, granules are released 
by the T cells through an exocytosis process, thus delivering 
perforins, proteases, apoptosins, Ca 2+, ATP, and probably 
other potentially cytotoxic substances to the target cell. Also 
contained within these granules is ~-glucuronidase, an en- 
zyme whose activity can be measured by a simple colorimetric 
assay (50). 

To determine whether Lck influences the process of granule 
exocytosis, parental CTLL-2 cells, as well as control trans- 
fected CTLL-NEO cells, and the CTLL-N-LCK and CTLL- 
A-LCK cells were cultured for 4 h in the presence or absence 
of PMA and the Ca 2 +-ionophore, A23187. The combina- 
tion of PMA and A23187 is known to trigger granule exocy- 
tosis in a process that recapitulates many of the biochemical 
events that occur during normal T cell activation (35). Both 
parental and genetically modified CTLL-2 cells displayed very 
little spontaneous secretion of/3-glucuronidase regardless of 
their levels of Lck kinase activity. Activation-induced secre- 
tion, however, was much higher (~7-14-fold) for CTLL-A- 
LCK cells which contain the activated Tyr505 --~ Phe version 
of Lck kinase, compared with parental CTLL-2 and CTLL- 
NEO cells (Table 1). CTLL-N-LCK cells, which overproduce 
normal Lck kinase, secreted at levels intermediate to those 
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Table 1. Lck Enhances Activation-induced Exocytosis 

Experiment 1 Experiment 2 Experiment 3 

~-glucuronidase 

Percent Total Percent Total Percent Total 

CTLL-2 0 _+ 0.6 
CTLL-NEO 1.6 _+ 1.0 
CTLL-N-LCK 12.1 _+ 1.2 
CTLL-A-LCK 28.5 _+ 0.8 

0.63 _+ 0.02 0.8 _+ 0.4 0.39 _+ 0.01 1.4 _+ 0.3 0.18 _+ 0.0 
0.49 _+ 0.01 2.6 _+ 0.3 0.36 + 0.01 3.7 _+ 0.0 0.13 _+ 0.02 
0.39 _+ 0.03 11.2 _+ 1.0 0.24 _+ 0.07 16.8 _+ 3.1 0.13 _+ 0.0 
0.39 _+ 0.01 19.7 _+ 10.5 0.19 _+ 0.0 42.0 +_ 1.7 0.16 _+ 0.01 

BLT-esterase 

Total Secreted Total Secreted Total Secreted 

CTLL-2 0.004 -+ 0.004 0.137 + 0.036 0 -+ 0 0.631 -+ 0.068 0.008 -+ 0.01 0.409 +- 0.034 
CTLL-NEO ND ND ND ND 0.002 _+ 0.002 0.245 -+ 0.025 
CTLL-N-LCK 0.004 _+ 0.001 0.006 +_ 0.007 0 +_ 0 0.004 _+ 0.004 0 -+ 0 0 -+ 0 
CTLL-A-LCK 0.003 _+ 0.002 0.004 _+ 0.002 0 _+ 0 0 +_ 0 ND ND 

CTLL-2, CTLL-NEO, CTL-N-LCK, and CTLL-LCK ceils were cultured for 4 h in medium with or without the combination of PMA and A23187. 
Culture supernatants were then assayed for relative levels of/3-glucuronidase or BLT esterase enzyme activities (mean _+ SD; n = 3). Total cellular 
associated B-glucuronidase and BLT esterase enzyme activity was also measured using cell lysates prepared from an equal number of unstimulated 
cells. In the top half, the percent of cellular/3-glucuronidase activity released into culture supernatants was calculated, after subtraction of spontaneous 
release that occurred in the absence of stimulation with PMA and A23187 (always ~<5% of total cellular 3-glucuronidase). The total cellular levels 
of/3-glucuronidase were also compared among control and transfected CTLL-2 cells and the data expressed as OD 550 nm units. In the bottom 
half, relative amounts of secreted and total BLT esterase activity were measured and the data expressed as OD 412 nm units. Secreted BLT esterase 
activity represents the difference between PMA and A23187-induced and spontaneous released. Spontaneous BLT esterase release was comparable 
for all cell lines (not shown). 

observed for CTLL-A-LCK and parental CTLL-2 cells (Table 
1). The increased levels of/~-glucuronidase release from CTLL-2 
cells that contained elevated levels of  p56-Lck kinase activity 
was not due to induction of cell lysis by PMA and A23187, 
since >95% of cells continued to exclude trypan blue dye 
at the end of  the 4-h assay (not shown). 

Though  C T L L - N - L C K  and CTLL-A-LCK cells released 
more 3-glucuronidase into the medium than parental CTLL-2 
and C T L L - N E O  cells after stimulation, the total cellular levels 
of  this enzyme were not higher in CTLL-2  cells that contain 
gene transfer-mediated elevations in Lck kinase activity com- 
pared to control cells (Table 1). Also, the approximate number 
and size of  granules was not increased in CTLL-A-LCK cells 
relative to parental CTLL-2 cells, based on conventional light 
and electron microscopic analyses (our unpublished observa- 
tions). Thus,  high levels of p56-Lck kinase activity are as- 
sociated wi th  a marked increase in the efficiency or rate of 
activation-induced exocytosis rather than due to elevations 
in the size of  the cytotoxic granule pool. Though  increased 
levels of p56-Lck kinase activity clearly enhanced exocytosis 
induced by PMA and Ca 2 +-ionophore, we have been unable 
to confirm these results using tumor  targets cells in place 
of  pharmacological T cell activating agents, because of the 
complication of/~-glucuronidase release from dying targets. 

In contrast to/~-glucuronidase, CTLL-2  cells did not se- 
crete N-c~-benzyloxycarbonyl-L-lysine thiobenzyl ester (BLT) 
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esterases after stimulation with PMA and A23187. In fact, 
lysates prepared from parental and genetically modified CTLL-2 
cells contained little BLT esterase activity, suggesting that 
these cells are relatively deficient in this class of  enzymes com- 
monly used as a measure of  degranulation of CTLs  (Table 1). 

Discussion 

Increases in the specific activity of  the p56-Lck kinase can 
be induced in lymphocytes via a number  of  plasma mem- 
brane receptors whose cytoplasmic domains can interact 
directly or indirectly wi th  this PTK, including CD4,  CD8,  
CD16, and the/5-chain of  the IL-2 receptor complex (2-6). 
Here we used gene transfer approaches to explore the func- 
tion of Lck in an IL-2-dependent cytolytic T cell clone de- 
rived from the CTLL-2 cell line. Gene transfer-mediated ele- 
vations in the levels of p56-Lck kinase activity markedly 
enhanced the cytolytic effector function of these T cells (Figs. 
1 and 2) without altering their dependence on IL-2 for growth 
and survival in culture (18), The events involved in CTL 
effector function can be divided into at least four discrete steps: 
(a) binding of T cells to target cells; (b) triggering of the 
T cells through appropriate receptors to induce a variety of  
intracellular biochemical events broadly termed T cell "acti- 
vation"; (c) exocytosis of granules that release toxic proteins 
and other substances onto the surface of the target cell; and 



in some cases (d) delivery of additional cell death signals to 
the target cell via membrane-associated or secreted cytokines 
and other proteins such as Fas-ligand (reviewed in 49). Lck 
appears to regulate at least two of these four steps: binding 
and exocytosis. 

Both CTLL-2 and 32D.3 cells that contained gene 
transfer-mediated elevations in Lck kinase activity displayed 
higher surface levels of CDlla and CD18, the ~- and 
3-subunits of the 32 integrin LFA-1. The affinity of LFA-1 
for its ICAM counter-receptors becomes strikingly increased 
upon T cell activation through a poorly understood mecha- 
nism that appears to depend on protein kinase C and that 
can be emulated by stimulation of LFA-l-expressing cells with 
the phorbol esters such as PMA (41, 42). Thus, LFA-1 can 
potentially participate in two phases of the cell adhesion pro- 
cess involved in CTL function. First, low-affinity binding 
of LFA-1 to its receptors may help to increase the time of 
interaction between effector and target, thus allowing for trig- 
gering of other receptors on the T cell that can generate signals 
for T cell activation (e.g., TCR with MHC-class I/antigen). 
After T cell activation, LFA-1 then mediates high-affinity 
binding of T cell and target, an event that also indirectly facili- 
tates TCR interaction with MHC/antigen in many cases, and 
thus potentiates the TCR-mediated activation process. In 
CTLL-2 ceils, gene transfer-mediated elevations in p56-Lck 
kinase activity increased both constitutive and PMA-induced 
binding of these T ceils to a recombinant fragment of ICAM-1 
(Fig. 4), suggesting that the elevated levels of LFA-1 on 
CTLL-2 cells may enhance both pre- and postactivation adhe- 
sion to tumor target cells, Though it remains to be deter- 
mined whether a general role for Src-like kinases in the regu- 
lation of cell adhesion will be found, we have also observed 
elevations in LFA-1 expression in Lyn-transfected myeloid cell 
lines (Torigoe, T., J. Millan, and J. C. Reed, manuscript in 
preparation), which are known to undergo specific elevations 
in their levels of Lyn kinase activity in response to IL-3 and 
GM-CSF (51). 

In addition to upregulation of LFA-1 expression, gene 
transfer-mediated elevations in Lck kinase activity resulted 
in markedly enhanced granule secretion by CTLL-2 cells. Pre- 
viously, pp60-c-Src has been implicated in the regulation of 
exocytosis in bovine chromafhn cells, where it is found in 
association not only with the plasma membrane but also with 
the membranes of chroma~n granules which contain nor- 
epinephrine and other secretory products (52, 53). Further- 
more, pp60-c-Src has been found in direct association with 
synaptophysin, and can induce phosphorylation of this 38-kD 
protein which is a major constituent of synaptic vesicles and 
is thought to play a critical role in the exocytosis of synaptic 
vesicles in neuroendocrine cells (54). In CTLL-2 cells, secre- 
tion of/3-glucuronidase, a lysosomal protein that is stored 
in the cytotoxic granules of cytolytic T cells (50), did not 
occur constitutively but rather required activation signals 
which could be provided by the combination of PMA and 
A23187 (Table 1). Lck appeared to potentiate those signals 
for exocytosis of granules, with the constitutively activated 
F505 version of Lck having greater effect than over-production 

of normal Lck kinase. It remains to be determined whether 
I.ck directly regulates degranulation in cytolytic T cells by 
analogy to pp60-c-Src that associates with and phosphory- 
lates proteins associated with secretory vesicles in neuroen- 
docrine cells. 

Within the cytotoxic granules of CTLs are at least three 
substances that have been reported to induce rapid DNA frag- 
mentation and apoptosis in target cells: TIA-1, proteases, and 
ATP. Both TIA-1 and proteases require perforin or perforin- 
like proteins to gain access to the cytosol of target cells and 
thus exert their cell death-inducing effects. ATP, in contrast, 
can exert its effect extracellularly, perhaps via purinergic 
receptors or ectokinases (55). Though perforin mRNA levels 
were very low in CTLL-N-LCK and CTLL-A-LCK cells, 
it is possible that enough perforin is made by these T cells 
to provide at least a transient passage through the plasma 
membrane of target cells for entry of TIA-1 or pro teases (56). 
Similarly, though granzyme A mRNA was undetectable in 
CTLL-N-LCK and CTLL-A-LCK cells and BLT esterase ac- 
tivity was very low in these cells, granzyme A represents only 
one of many different serine proteases that can be present 
within the granules of CTLs and the BLT esterase assay does 
not detect some classes of proteases such as cysteine proteases 
(57). Thus, a perforin- or protease-dependent mechanism for 
induction of cell death cannot be excluded from the data avail- 
able thus far. Alternatively, the CTLL-2 cells may use mech- 
anisms for induction of cell death that do not depend on in- 
jection of molecules across the plasma membrane of the target 
cell, such as those involving ATP release or interactions of 
plasma membrane-associated TNF-a, LT, and Fas-ligand with 
their specific receptors on target cells. Preliminary attempts 
to block the cytolytic function of parental and Ick-transfected 
CTLL-2 cells using neutralizing anti-TNF-o~ antibodies how- 
ever have been unsuccessful (our unpublished observations). 
We have also found that kk-transfected CTLL-2 cells do not 
lyse the TNF-sensitive target, WEHI-164 (our unpublished 
observations). Whatever the cell death mechanism used by 
CTLL-2 cells to induce target cell lysis, our findings are in 
agreement with those of other investigators who have noted 
a lack of correlation between cytolytic activity and the per- 
forin and BLT esterase content of T cells and their granules 
(39, 58, 59). 

Analysis of CTLL-N-LCK and CTLL-A-LCK cells revealed 
reduced levels of granzyme A mRNA relative to parental 
CTLL-2 cells, suggesting that p56-Lck downregulates ex- 
pression of this serine protease-encoding gene. Velotti et al. 
(60) previously demonstrated that interaction of target cells 
with NK cell and LAK cells induces transient decreases in 
granzyme A mRNA levels. Thus, if p56-Lck kinase activa- 
tion occurs during the stimulation of NK and LAK cells by 
appropriate target cells, it could be that p56-I.ck regulates 
a negative feedback loop that involves downmodulation of 
granzyme A. We cannot exclude the possibility however that 
the reductions in granzyme A, as well as those in CD3 and 
NKI.1, seen in/ck-transfected CTLL-2 reflect a selection pro- 
cess as opposed to direct downregulation by a p56-Lck-de- 
pendent signal transduction pathway. For example, the ex- 
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pression of CD3, NKI.1, and granzyme A could somehow 
be detrimental to the growth or survival of T cells that have 
constitutively high levels p56-Lck kinase activity. In this re- 
gard, cross-linking of CD4 on the surface of T cells (a proce- 
dure known to transiently activate p56-Lck [2]) prior to stim- 
ulation through CD3 has been shown to induce apoptosis 
of T cells (61), suggesting that constitutively high levels of 
p56-Lck kinase activity could be deleterious for CD3-bearing 
T cells. 

The receptor(s) used by CTLL-2 cells for target cell recog- 
nition and triggering of T cell activation and exocytosis are 
unknown. Though cytolytic killing by CTLL-2 cells was 
clearly not MHC restricted, there was a specificity to the killing 
in that only 3 of 10 tumor lines were effective targets for 
these T ceils. It seems unlikely that either CD3 or NKI.1 
are involved in this process, since Lck gene transfer markedly 
downregulated the expression of these cell surface antigens 
that are known to be capable of mediating cytolytic killing 
in antibody-redirected cytolysis assays. Consistent with pre- 
vious studies of LFA-1/ICAM-1 interactions (41), the ex- 
pression of ICAMs on the surface of the target cell is also 
insufficient for triggering cytolysis by CTLL-2 cells, since 
FACS | analysis demonstrated high relative levels of ICAM-1 
on the surface of some tumor cell lines which CTLL-2 cells 
failed to lyse (our unpublished observations). Though the 
specific recognition receptors involved are unknown, prob- 
ably the cytolytic activity of parental and genetically modified 
CTLL-2 cells can be enlikened to that of LAK cells, which 

are functionally characterized by their ability to lyse a variety 
of NK-sensitive and -resistant tumor cell targets in an MHC- 
nonrestricted fashion (62). Consistent with this notion, the 
original report of CTLL-2 ceils described cytolytic activity 
against both syngenic and allogenic tumor cells (26). The 
presence of both a classical T cell marker CD3 and the NK 
cell marker NKI.1 on parental CTLL-2 cells is also reminis- 
cent of LAK cells, since immunophenotypic analysis of these 
ceils has sometimes revealed subpopulations of cells that ex- 
press combinations of T cell and NK cell markers (63). 

Recent investigations of lymphocytes recovered from the 
spleens of animals that bear solid tumors have demonstrated 
a decrease in the relative levels of p56-Lck and some other 
signal transducing proteins, suggesting that tumor-induced 
defects in T cell signal transduction pathways may provide 
an explanation for the failure of the immune system to re- 
spond to and eliminate cancer cells in many cases (24). Simi- 
larly, reduced levels of p56-Lck as well as the TCR-~" chain 
have been described in the TILs of patients with renal carci- 
noma (25). The findings presented here which link p56-Lck 
to the regulation of specific events involved in cytolytic effector 
function may therefore provide additional insights into the 
molecular mechanisms of tolerance induction by tumors. Fur- 
ther in vitro and in vivo studies are required however to assess 
the overall significance of p56-Lck in the complex series of 
molecular and cellular events that determine the outcome of 
host immune responses to tumors. 

We wish to thank Paul Anderson, Mark Boothby, Ray Goodwin, Jane Parnes, Ed Podack, James Ryan, 
Bart Sefton, Craig Smith, Carl Ware, and David Ucher for reagents and helpful discussions; and Chiton, 
Inc., for recombinant IL-2. 

This work was supported in part by a grant from the American Cancer Society IM-708 and by National 
Institutes of Health grants CA-54957 and GM-48054. Dr. Reed is a Scholar of the Leukemia Society 
of America. 

Address correspondence to Dr. J. C. Reed, Cancer Research Center, LaJolla Cancer Research Foundation, 
10901 N. Torrey Pines Road, La Jolla, CA 92037. 

Received for publication 2 March 1994 and in revised form 18 May 1994. 

References 
1. Bolen, J.B. 1991. Signal transduction by the SRC family of 

tyrosine protein kinases in hemopoietic ceils. Celt Growth & 
D/ff 2:409. 

2. Veillette, A., M.A. Bookman, E.M. Horak, and J.B. Bolen. 
1988. The CD4 and CD8 T cell surface antigens are associated 
with the internal membrane tyrosine-protein kinase p56 lck. 
Cell. 55:301. 

3. Rudd, C.E., J.M. Trevillyan, J.D. Dasgupta, L.L. Wong, and 
S.F. Schlossman. 1988. The CD4 receptor is complexed in de- 
tergent lysates to a protein-tyrosine kinase (pp58) from human 
T lymphocytes. Proc. Natl. Acad. Sci. USA. 85:5190. 

4. Hatakeyama, M., T. Kono, N. Kobayashi, A. Kawahara, S.D. 
Levin, R.M. Perlmutter, and T. Taniguchi. 1991. Interaction 

of the 1I,-2 receptor with the src-family kinase p561ck: iden- 
tification of novel intermolecular association. Science (Wash. DC). 
252:1523. 

5. Bell, G.M., J.B. Bolen, and J.B. Imboden. 1992. Association 
of Src-like protein kinases with the CD2 cell surface molecule 
in rat T lymphocytes and natural killer cells. Mol. Cell. Biol. 
12:5548. 

6. Reed, J.C., T. Torigoe, B.C. Turner, I. Merida, G. Gauhon, 
H.U. Saragovi, U.R. Rapp, and R. Taichman. 1993. Proto- 
oncogene-encoded protein kinases in Interleukin-2 signal trans- 
duction. In Seminars in Immunology. Vol. 5. G.B. Mills, editors. 
W.B. Saunders Company, Philadelphia. 327-336. 

7. Molina, T.J., K. Kishihara, D.P. Siderovski, W. van Ewijk, 

1125 Torigoe et al. 



A. Narendran, E. Timms, A. Wakeham, C.J. Paige, K.-U. 
Hartmann, A. Veillette, et al. 1992. Profound block in thymo- 
cyte development in mice lacking p56 lck. Nature (Lond.). 357: 
161. 

8. Abraham, N., M.C. Miceli, J.R. Parnes, and A. Veilette. 1991. 
Enhancement of T-cell responsiveness by the lymphocyte-specific 
tyrosine protein kinase p56 lck. Nature (Lond.). 350:6. 

9. Luo, K., and B.M. Sefton. 1992. Activated kk tyrosine protein 
kinase stimulates antigen-independent interleukin-2 produc- 
tion in T cells. Mol. Cell. Biol. 12:4724. 

10. Straus, D.B., and A. Weiss. 1992. Genetic evidence for the in- 
volvement of the Ick tyrosine kinase in signal transduction 
through the T cell antigen receptor. Cell. 70:585. 

11. Glaichenhaus, N., N. Shastri, D.R. Littman, andJ.M. Turner. 
1991. Requirement for association of p56 ~k with CD4 in 
antigen-specific signal transduction in T cells. Cell. 64:511. 

12. Collins, T.L., S. Uniyal, J. Shin, J.L. Strominger, R.S. Mit- 
tler, and S.J. Burakoff. 1992. p56 kk association with CD4 is 
required for the interaction between CD4 and the TCK/CD3 
complex and for optimal antigen stimulation. J. Immunol. 
148:2159. 

13. Luo, K., and B.M. Sefton. 1990. Cross-linking of T-ceil sur- 
face molecules CD4 and CD8 stimulates phosphorylation of 
the kk tyrosine protein kinase at the autophosphorylation site. 
Mol. Cell. Biol. 10:5305. 

14. Zamoyska, R., P. Derham, S.D. Gorman, P. yon Hoegen, J.B. 
Bolen, A. Veillette, and J.R. Parnes. 1989. Inability of CD8& 
polypeptides to associate with p56 ~k correlates with impaired 
function in vitro and lack of expression in vivo. Nature (Lond.). 
342:278. 

15. Chalupny, N.J.,J.A. Ledbetter, and P. Kavathas. 1991. Associ- 
ation of CD8 with p56 tck is required for early T cell signalling 
events. EMBO (Eur. Mol. Biol. Organ.) J. 10:1201. 

16. Chan, I.T., A. Limmer, M.C. Louie, E.D. Bullock, W.-P. Fung- 
Leung, T.W. Mak, and D.Y. I,oh. 1993. Thymic selection of 
cytotoxic T ceils independent of CD8c~-Lck association. Science 
(Wash. DC). 261:1581. 

17. Horak, I.D., R.E. Gress, P.J. Lucas, E.M. Horak, T.A. 
Waldman, and J.B. Bolen. 1991. T-lymphocyte interleukin 
2-dependent tyrosine protein kinase signal transduction involves 
the activation of p56 tck. Proc. Natl. Acad. Sci. USA. 88:1996. 

18. Taichman, R., T. Torigoe, S. Tanaka, Y. Miyashita, and J.C. 
Reed. 1992. Gene transfer investigations ofp56-LCK function 
in II~2-dependent T-cell lines: implications for mechanisms of 
IL-2-signal transduction. C~,tokine. 4:441. 

19. Taichman, R., I. Merida, G. Gaulton, and J.C. Reed. 1993. 
Evidence that p56-LCK regulates the activity of phosphatidy- 
linositol-3'-kinase in Interleukin-2-dependent T-cell clones. J. 
Biol. Chem. 268:20031. 

20. Minami, Y., T. Kono, K. Yamada, N. Kobayashi, A. Kawa- 
hara, R.M. Perlmutter, and T. Taniguchi. 1993. Association 
of p56 l̀ k with IL-2 receptor/~ chain is critical for the IL-2- 
induced activation of p56 l~k. EMBO (Eur. Mol. Biol. Organ.) 
J. 12:759. 

21. Salcedo, T.W., T. Kurosaki, P. Kanakaraj, J.V. Ravetch, and 
B. Perussia. 1993. Physical and functional association of p56 ~ 
with Fc3'RIIIA (CD16) in natural killer cells. J. Exp. Med. 
177:1475. 

22. Karnitz, L., S. Sutor, T. Torigoe, J. Reed, D. McKearn, P. 
I.gibson, and R. Abraham. 1992. Phenotypic alterations in- 
duced by p56-LCK deficiency in an IL-2-dependent T-cell line. 
Mol. Cell. Biol. 12:4521. 

23. Molna, T.J., M.F. Bachmann, T.M. Kiindig, R.M. Zinkernagel, 

and T.W. Mak. 1993. Peripheral T cells in mice lacking p56 ~ 
do not express significant antiviral effector functions. J. Ira. 
munol. 151:699. 

24. Mizoguchi, H., J.J. O'Shea, D.L. Longo, C.M. Loeffler, D.W. 
McVicar, and A.C. Ochoa. 1992. Alterations in signal trans- 
duction molecules in T lymphocytes from tumor-bearing mice. 
Science (Wash. DC). 258:1795. 

25. Finke, J.H., A.H. Zea, J. Stanley, D.L. Longo, H. Mizoguchi, 
R.R. Tubbs, R.H. Wiltrout, J.J. O'Shea, S. Kodoh, E. Klein, 
et al. 1993. Loss of T-cell receptor ~" chain and p56 lc~ in T-cells 
infiltrating human renal cell carcinoma. Cancer Res. 53:5613. 

26. Gillis, S., and K. Smith. 1977. Long term culture of tumour- 
specific cytotoxic T cells. Nature (Lond.). 268:154. 

27. Mavilio, E, B.L. Kreider, M. Valtieri, G. Naso, N. Shirat, D. 
Venturelli, E.P. Reddy, and G. Rovera. 1989. Alterations of 
growth and differentiation factors response by Kirsten and 
Harvey sarcoma viruses in the IL-3-dependent murine hema- 
topoietic cell lines 32D-C13. Oncogene. 4:301. 

28. Marth, J.D., J.A. Cooper, C.S. King, S.F. Ziegler, D.A. Tinker, 
R.W. Overell, E.G. Krebs, and R.M. Perlmutter. 1985. Neo- 
plastic transformation induced by an activated lymphocyte 
specific protein tyrosine kinase (pp56kk). Mol. Ceil. Biol. 8:540. 

29. Cepko, C.L., B.E. Roberts, and R.C. Mulligan. 1984. Con- 
struction and applications of a highly transmissible murine 
retrovirus shuttle vector. Cell. 37:1053. 

30. Reed, J.C., W. Tadmori, M. Kamoun, G.A. Koretzky, and 
PC. Nowell. 1985. Suppression of interleukin 2 receptor ac- 
quisition by monoclonal antibodies recognizing the 50 kd pro- 
tein associated with the sheep erythrocyte receptor on human 
T lymphocytes. J. Immunol. 134:1631. 

31. Wunderlich, J.R., and G. Shearer. 1991. Induction and mea- 
surement of cytotoxic T lymphocyte activity. In Current Pro- 
tocols in Immunology. Greene Publishing Association, New 
York. 3.11.1-3.11.15. 

32. Kuhlman, P., VSF. Moy, B.A. Lollo, and A.A. Brian. 1991. The 
accessory function of murine intercellular adhesion molecule-1 
in T lymphocyte activation. J. Immunol. 146:1773. 

33. Reed, J.C., D.E. Sabbath, R.G. Hoover, and M.B. Prystowsky. 
1985. Recombinant interleukin-2 regulates levels of c-myc 
mRNA in a cloned murine T lymphocyte. Mol. Cell. Biol. 
5:3361. 

34. Torigoe, T., R. O'Connor, D. Santoli, and J.C. Reed. 1992. 
Interleukin-4 inhibits IL-2-induced proliferation of a human 
T-leukemia cell line without interfering with p56-Lck kinase 
activation. Cytokine. 4:369. 

35. Taffs, R., and M. Sitkovsky. 1991. Granule enzyme exocytosi3 
assay for cytotoxic T lymphocyte activation. In Current Pro- 
tocols in Immunology. Greene Publishing Association, New 
York. 3.16.1-3.16.8. 

36. Duke, R.C., R. Chervenak, and J.J. Cohen. 1983. Endoge- 
nous endonuclease-induced DNA fragmentation: an early event 
in cell-mediated cytolysis. Proc. Natl. Acad. Sci. USA. 80:6361. 

36a.Torigoe, T., J.A. Millan, S. Takayama, R. Taichman, T. 
Miyashita, and J.C. Reed. 1994. Bcl-2 suppresses T-cell-mediated 
cytolysis of a leukemia cell line. Cancer Res. In press. 

37. Zychlinsky, A., L.M. Zheng, C.-C. Liu, and J.D.E. Young. 
1991. Cytolytic lymphocytes induce both apoptosis and necrosis 
in target cells. J. Immunol. 146:393. 

38. Ferrini, S., S. Miescher, M.R. Zocchi, V. Von Fliedner, and 
A. Moretta. 1987. Phenotypic and functional characterization 
of recombinant interleukin 2 (rlL-2)-induced activated killer 
cells: analysis at the population and clonal levels.J, lmmunol. 
138:1297. 

1126 p56-Lck Regulates Cytotoxic T Cell Effector Function 



39. Kato, K., N. Sato, T. Tanabe, H. Yagita, T. Agatsuma, and 
Y. Hashimoto. 1991. Establishment of mouse lymphokine- 
associated killer cell clones and their properties. Jpn.J. Cancer 
Res. 82:456. 

40. Altomonte, M., A. Gloghini, G. Bertola, A. Gasparollo, A. 
Carhone, S. Ferrone, and M. Maio. 1993. Differential expres- 
sion of cell adhesion molecules CD54/CD11a and CD58/CD2 
by human melanoma cells and functional role in their interac- 
tion with cytotoxic cells. Cancer Res. 53:3343. 

41. Dustin, M.L., and T.A. Springer. 1991. Role of lymphocyte 
adhesion receptors in transient interactions and cell locomo- 
tion. Annu. Rev. Immunol. 9:27. 

42. Lollo, B.A., K.W.H. Chan, E.M. Hanson, V.T. Moy, and A.A. 
Brian. 1993. Direct evidence for two affinity states for lym- 
phocyte function-associated antigen 1 (LFA-1) on activated T 
cells. J. Biol. Chem. 268:21693. 

43. Johnston, S.C., M.L. Dustin, M.L. Hibbs, and T.A. Springer. 
1990. On the species specificity of the interaction of LFA-1 
with intercellular adhesion molecules. J. Immunol. 145:1181. 

44. Ruegemer, J.J., S.N. Ho, J.A. Augustine, J.W. Schlager, M.P. 
Bell, D.J. McKean, and R.T. Abraham. 1990. Regulatory effects 
of transforming growth factor-beta on IL-2 and IL-4-dependent 
T cell-cycle progression. J. Immunol. 144:1767. 

45. Lowrey, D.M., T. Aebischer, K. Olsen, M. Lichtenheld, F. 
Fupp, H. Hengartner, and E.R. Podack. 1989. Cloning, anal- 
ysis, and expression of murine perforin I cDNA, a component 
of cytolytic T-cell granules with homology to complement com- 
ponent C9. Proc. Natl. Acad. Sci. USA. 86:247. 

46. Gershenfeld, H.K., and I.L. Weissman. 1986. Cloning of a 
cDNA for a T cell-specific serine protease from a cytotoxic 
T lymphocyte. Science (Wash. DC). 232:854. 

47. Podack, E.R., H. Hengartner, and M.G. Lichtenheld. 1991. 
A central role of perforin in cytolysis? Annu. Rev. Immunol. 
9:129. 

48. Kawakami, A., Q. Tian, X. Duan, M. Streuli, S.F. Schlossman, 
and P. Anderson. 1992. Identification and functional charac- 
terization of a TIA-l-related nucleolysin. Pro~ Natl. Acad. Sci. 
USA. 89:8681. 

49. Doherty, P.C. 1993. Cell-mediated cytotoxicity. Cell. 75:607. 
50. Takayama, H., G. Trenn, and M.V. Sitkovsky. 1987. A novel 

cytotoxic T lymphocyte activation assay: optimized conditions 
for antigen receptor triggered granule enzyme secretion.J. 1,1- 
munol. Methods. 104:183. 

51. Torigoe, T., R. O'Connor, D. Santoli, andJ. Reed. 1992. IL3 
is a specific regulator of the p53/p56-LYN protein tyrosine 

kinase in myeloid leukemia cells. Blood. 80:617. 
52. Parsons, S.J., and C.E. Creutz. 1986. p60 ~-~ activity detected 

in the chromaffin granule membrane. Biochem. Biophys. Res. 
Commun. 134:736. 

53. Grandori, C., and H. Hanafusa. 1988. p60 c-~ is complexed 
with a cellular protein in subcellular compartments involved 
in exocytosis. J. Cell Biol. 107:2125. 

54. Barnekow, A., R. Jahn, and M. Schartl. 1990. Synaptophysin: 
a substrate for the protein tyrosine kinase pp60 c-"c in intact 
synaptic vesicles. Oncogene. 5:1019. 

55. Filippini, A., R.E. Taffs, and M.V. Sitkovsky. 1990. Extracel- 
lular ATP in T-lymphocyte activation: possible role in effector 
functions. 87:8267. 

56. Jones, J., M.B. Hallett, and B.P. Morgan. 1990. Reversible cell 
damage by T-cell perforins: calcium influx and propidium io- 
dide uptake into K562 cells in the absense of lysis. Biochem. 
j. 267:303. 

57. Hudig, D., G.R. Ewoldt, and S.L. Woodard. 1993. Proteases 
and lymphocyte cytotoxic killing mechanisms. Immunology. 
5:90. 

58. Dennert, G., C.G. Anderson, and G. Prochazka. 1987. High 
activity of N~-benzyloxycarbonyl-L-lysine thiobenzyl ester 
serine esterase and cytolytic perforin in cloned cell lines is not 
demonstrable in in v/to-induced cytotoxic effector cells. Proc. 
Natl. Acad. Sci. USA. 84:5004. 

59. Berke, G., D. Rosen, and D. Ronen. 1992. Mechanism of 
lymphocyte-mediated cytolysis: functional cytolytic T cells 
lacking perforin and granzymes. Immunology. 78:105. 

60. Velotti, F., G. Palmieri, D. Dambrosio, M. Picocoli, L. Frati, 
and A. Santoni. 1992. Differential expression of granzyme A 
and granzyme B proteases and their secretion by fresh rat nat- 
ural killer (NK) and lymphokine activated killer cells with NK 
phenotype (LAK-NK). Eur. j .  Immunol. 22:1049. 

61. NeweU, M.K., L.J. Haughn, C.R. Maroun, and M.H.Julius. 
1990. Death of mature T cells by separate ligation of CD4 
and the T-cell receptor for antigen. Nature (Lond.). 347:286. 

62. Grimm, E.A., A. Mazumbar, H.Z. Zhang, and S.A. Rosen- 
berg. 1982. Lymphokine-activated killer cell phenomenon: lysis 
of natural killer-resistant solid tumor cells by interleukin 
2-activated autologous human peripheral blood lymphocytes. 
J. Exp. Med. 155:1823. 

63. Maeda, K., R. Lafreniere, and L.M. Jerry. 1991. Production 
and characterization of tumor infiltrating lymphocyte clones 
derived from B16-F10 murine melanoma.J. Invest. Derm. 97:183. 

1127 Tofigoe eta|. 


