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With the rapid advancement of sequencing technologies, next generation sequencing (NGS) 
analysis has been widely applied in cancer genomics research. More recently, NGS has 
been adopted in clinical oncology to advance personalized medicine. Clinical applications 
of precision oncology require accurate tests that can distinguish tumor-specific mutations 
from artifacts introduced during NGS processes or data analysis. Therefore, there is an 
urgent need to develop best practices in cancer mutation detection using NGS and the need 
for standard reference data sets for systematically measuring accuracy and reproducibility 
across platforms and methods. Within the SEQC2 consortium context, we established paired 
tumor-normal reference samples and generated whole-genome (WGS) and whole-exome 
sequencing (WES) data using sixteen library protocols, seven sequencing platforms at six 
different centers. We systematically interrogated somatic mutations in the reference samples 
to identify factors affecting detection reproducibility and accuracy in cancer genomes. These 
large cross-platform/site WGS and WES datasets using well-characterized reference samples 
will represent a powerful resource for benchmarking NGS technologies, bioinformatics 
pipelines, and for the cancer genomics studies.

Background & Summary
The NGS technology has become a powerful tool for precision medicine. More researchers and clinicians are 
utilizing NGS to identify clinically actionable mutations in cancer patients and to establish targeted therapies 
for patients based on the patient’s genetic makeup or genetic variants of their tumor1, there is a critical need to 
have a full understanding of the many different variables affecting the NGS analysis output. The rapid growing 
number of sample processing protocols, library preparation methods, sequencing platforms, and bioinformatics 
pipelines to detect mutations in cancer genome, presents great technical challenges for the accuracy and repro-
ducibility of utilizing NGS for cancer genome mutation detections. To investigate how these experimental and 
analytical elements may affect mutation detection accuracy, recently we carried out a comprehensive bench-
marking study2 using both whole-genome (WGS) and whole-exome sequencing (WES) data sets generated from 
two well-characterized reference samples: a human breast cancer cell line (HCC1395) and a B lymphocytes cell 
line (HCC1395BL) derived from the same donor3. We generated WGS and WES data using various NGS library 
preparation protocols, seven NGS platforms (NovaSeq, HiSeq, PacBio, 10X Genomics, Ion Torrent, Miseq, and 
Affymetrix CytoScan HD) at six centers including Illumina (IL), National Cancer Institute (NC), Novartis (NV), 
European Infrastructure for Translational Medicine (EA), Fudan University (FD), and Loma Linda University 
(LL) (Fig. 1).

Figure 1 shows our overall study design. Briefly, DNA was extracted from fresh cells or cell pellets mimicking 
the formalin-fixed paraffin-embedded (FFPE) process with fixation time of 1, 2, 6, or 24 hours. A small amount 
of DNA from fresh cells of HCC1395 and HCC1395BL was pooled at various ratios (3:1, 1:1, 1:4, 1:9 and 1:19) 
to create mixtures. Both fresh DNA and FFPE DNA were profiled on NGS or microarray platforms following 
manufacturer recommended protocols. To assess the reproducibility of WGS and WES, six sequencing centers 
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performed a total of 12 replicates (3 × 3 + 3) on each platform. In addition, 12 WGS libraries constructed using 
three different library preparation protocols (TruSeq PCR-free, TruSeq-Nano, and Nextera Flex) in four differ-
ent quantities of DNA inputs (1, 10, 100, and 250 ng) were sequenced on an Illumina HiSeq 4000, and nine 
WGS libraries constructed using the TruSeq PCR-free protocol were sequenced on an Illumina NovaSeq. Finally, 
Affymetrix Cytoscan HD and single-cell sequencing with 10X Genomics platform were performed to uncover 
the cytogenetics and heterogeneity of two cell lines. Table 1 contains the details of the platform, library protocols 
and read coverage information.

We first established reference call sets with evidence from 21 replicates of Illumina WGS runs with cover-
age ranging from 50X to 100X (1150X in total). We split mutation call confidence levels into four categories: 
HighConf, MedConf, LowConf, and Unclassified3. By combining all WGS runs, we were able to further confirm 
and improve our call set with tumor-normal pairs of 1500X data sets and identified mutations with VAF as low as 
1.5%. A subset of reference mutation calls was validated by targeted exome sequencing (WES at 2,500X coverage) 
using HiSeq, and deep sequencing from AmpliSeq (at 2,000X coverage) using Miseq, and Ion Torrent (at 34X 
coverage), and long-read WGS by PacBio Sequel (at 40X coverage). In addition, we inferred subclones and het-
erogeneity of HCC1395 with bulk DNA sequencing. The results were confirmed by single-cell DNA sequencing 
analysis3.

With defined reference call sets, we then systematically interrogated somatic mutations to identify factors 
affecting detection reproducibility and accuracy. By examining the interactions and effects of NGS platform, 
library preparation protocol, tumor content, read coverage, and bioinformatics process concomitantly, we 
observed that each component of the sequencing and analysis process can affect the final outcome. Overall 
WES and WGS results have high concordance and correlation. WES had a better coverage/cost ratio than WGS. 
However, sequencing coverage of the WES target regions was not even. In addition, WES showed more batch 
effects/artifacts due to laboratory processing and thus had larger variation between runs, laboratories, and 
likely between researchers preparing the libraries. As a result, WES had much larger inter-center variation and 
was less reproducible than WGS. Biological (library) replicates removed some artifacts due to random events 
(“Non-Repeatable” calls) and offered much better calling precision than did a single test. Analytical repeats (two 
bioinformatics pipelines) also increased calling precision at the cost of increased false negatives. We found that 
biological replicates are more important than bioinformatics replicates in cases where high specificity and sensi-
tivity are needed1.

Methods
Detailed methods were described in our two companion papers2,3.

Fig. 1  Study design for the experiment. DNA was extracted from either fresh cells or FFPE processed cells. 
Both fresh DNA and FFPE DNA were profiled on WGS and WES platforms for intra-center, inter-center and 
cross-platform reproducibility benchmarking. For fresh DNA, six centers performed WGS and WES in parallel 
following manufacture recommended protocols with limited deviation. Three library preparation protocols 
(TruSeq-Nano, Nextera Flex, and TruSeq PCR-free,) were used with four different quantities of DNA inputs 
(1, 10, 100, and 250 ng). DNA from HCC1395 and HCC1395BL was pooled at various ratios to create mixtures 
of 75%, 50%, 20%, 10%, and 5%. For FFPE samples, each fixation time point (1h, 2 h, 6 h, 24 h) had six blocks 
that were sequenced at two different centers. All libraries from these experiments were sequenced on the HiSeq 
series. In addition, nine libraries using the TruSeq PCR-free preparation were run on a NovaSeq for WGS 
analysis.
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Cell line culture and DNA extraction.  HCC1395; Breast Carcinoma; Human (Homo sapiens) cells 
(expanded from ATCC CRL-2324) were cultured in ATCC-formulated RPMI-1640 Medium, (ATCC 30–2001) 
supplemented with fetal bovine serum (ATCC 30–2020) to a final concentration of 10%. Cells were maintained 
at 37 °C with 5% carbon dioxide (CO2) and were sub-cultured every 2 to 3 days, per ATCC recommended pro-
cedures using 0.25% (w/v) Trypsin-0.53 mM EDTA solution (ATCC 30–2101), until appropriate densities were 
reached. HCC1395BL; B lymphoblast; Epstein-Barr virus (EBV) transformed; Human (Homo sapiens) cells 
(expanded from ATCC CRL-2325) were cultured in ATCC-formulated Iscove’s Modified Dulbecco’s Medium, 
(ATCC Catalog No. 30–2005) supplemented with fetal bovine serum (ATCC 30–2020) to a final concentration 
of 20%. Cells were maintained at 37 °C with 5% CO2 and were sub-cultured every 2 to 3 days, per ATCC recom-
mended procedures, using centrifugation with subsequent resuspension in fresh medium until appropriate den-
sities were reached. Final cell suspensions were spun down and re-suspended in PBS for nucleic acid extraction.

All cellular genomic material was extracted using a modified Phenol- Chloroform-Iso-Amyl alcohol extrac-
tion approach. Essentially, cell pellets were re-suspended in TE, subjected to lysis in a 2% TritonX-100/0.1% 
SDS/0.1 M NaCl/10 mM Tris/1 mM EDTA solution and were extracted with a mixture of glass beads and Phenol- 
Chloroform-Iso-Amyl alcohol. Following multiple rounds of extraction, the aqueous layer was further treated 
with Chloroform-IAA and finally underwent RNases treatment and DNA precipitation using sodium acetate 
(3 M, pH 5.2) and ice-cold Ethanol. The final DNA preparation was re-suspended in TE and stored at −80 °C 
until use.

FFPE processing and DNA extraction.  Please see Online methods in our companion paper2 for details.

Illumina WGS library preparation.  The TruSeq DNA PCR-Free LT Kit (Illumina, FC-121-3001) was used 
to prepare samples for whole genome sequencing. WGS libraries were prepared at six sites with the TruSeq DNA 
PCR-Free LT Kit according to the manufacturers’ protocol. The input DNA amount for WGS library preparation 
with fresh DNA for TruSeq-PCR-free libraries was 1 ug unless otherwise specified. All sites used the same frag-
mentation conditions for WGS by using Covaris with targeted size of 350 bp. All replicated WGS were prepared 
on a different day.

The concentration of the TruSeq DNA PCR-Free libraries for WGS was measured by qPCR with the KAPA 
Library Quantification Complete Kit (Universal) (Roche, KK4824). The concentration of all the other libraries 
was measured by fluorometry either on the Qubit 1.0 fluorometer or on the GloMax Luminometer with the 
Quant-iT dsDNA HS Assay kit (ThermoFisher Scientific, Q32854). The quality of all libraries was assessed by 
capillary electrophoresis either on the 2100 Bioanalyzer or TapeStation instrument (Agilent) in combination with 
the High Sensitivity DNA Kit (Agilent, 5067-4626) or the DNA 1000 Kit (Agilent, 5067-1504) or on the 4200 
TapeStation instrument (Agilent) with the D1000 assay (Agilent, 5067–5582 and 5067–5583).

For the WGS library preparation from cross-site study, the sequencing was performed at six sequencing sites 
using three different Illumina platforms including HiSeq 4000 instrument at 2 × 150 bases read length with HiSeq 
3000/4000 SBS chemistry (cat# FC-410-1003), and on a NovaSeq instrument at 2 × 150 bases read length using 
the S2 configuration (cat#PN 20012860), or on a HiSeq X Ten at 2 × 150 bases read length using the X10 SBS 
chemistry (cat# FC-501-2501). Sequencing was performed following the manufacturer’s instructions.

Study 
Design Technology Library Prep (input amount) Platform Sequecing

Number of Reads (coverage)

HCC1395 HCC1395BL

Discovery
WGS (Fresh DNA)

TruSeq DNA PCR Free (1000 ng) HiSeq 6 centers (24 libraries) 21 billion (750X) 21 billion (750X)

TruSeq DNA PCR Free (1000 ng) NovaSeq 1 center (18 libraries) 13 billion (400X) 13 billion (400X)

WES (Fresh DNA) Agilent SureSelect Human All Exon v6 + UTRs HiSeq 6 centers (24 libraries) 3 billion (2,500X) 3 billion (2,500X)

Validation

WGS Protocol & Input 
Amount

TruSeq-DNA-Nano (1, 10, 100 ng), Nextera flex 
(1, 10, 100 ng), TruSeq PCR free (250 ng) HiSeq 2 center (14 libraries) 9 billion (315X) 9 billion (315X)

WGS Tumor Content TruSeq DNA PCR Free (1000 ng) HiSeq 1 center (21 libraries) 64 billion (Mixture of samples, total 2300X)

WGS FFPE NEBNext Ultra II (200 ng) HiSeq 2 center (26 libraries) 30 billion (980X) 27 billion (900X)

WGS 10x Linked-Read 10X Chromium Genome Library Prep v2 
(1250 ng) 10X Genomics 5 centers (22 libraries) 20 billion (880X) 20 billion (880X)

WGS PacBio Preparing >30 kbp SMRTbell Libraries PacBio 1 center (2 libraries) 19 million (40X) 22 million (44X)

WES FFPE Agilent SureSelect Human All Exon v6 + UTRs HiSeq 2 centers (17 libraries) 3 billion (2600X) 4 billion (3600X)

 WES Agilent SureSelect Human All Exon v6 + UTRs Ion Torrent 1 centers (2 libraries) 67 million (34X) 82 million (47X)

AmpliSeq AmpliSeq Targeted Amplicon Panel MiSeq 1 center (2 libraries) 25 million (2900x) 22 million (3300x)

Microarray AffyChip CytoScan AffyChip 
CytoScan HD 1 center (2 libraries) 2.1 million probes

Single Cell CNV 10x Chromium Single Cell CNV Solution HiSeq 1 center (2 libraries) 1.5 billion (1465 cells) 1.3 billion (983 cells)

Table 1.  Summary of all experiment data including WGS, WES discovery and validation data sets used in 
the study. The table columns describe the data sets generated for either Discovery or Validation purpose of 
the study. For each experiment, the input DNA bio-sample preservation types and sequencing platforms are 
specified. There are total six sequencing centers for cross-site study. The total number of librarys are listed for 
HCC1395 and HCC1395BL together while the read coverages for each cell line are listed separately. For the QC 
statistics for each data set, please reference the Online-Only Tables 1–10 for details.
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For the comparison study of WGS library protocol using different input DNA amounts, Illumina TruSeq DNA 
PCR-free protocol used 250 ng input DNA, Illumina TruSeq Nano protocol libraries were prepared with 1 ng, 
10 ng, and 100 ng input DNA amounts. Illumina Nextera Flex libraries were prepared with 1 ng, 10 ng, and 100 ng 
input DNA amounts. These libraries sequenced at two sequencing sites using two different Illumina platforms 
including HiSeq 4000 instrument (Illumina) at 2 × 150 bases read length with HiSeq 3000/4000 SBS chemistry 
(Illumina, FC-410-1003) and NovaSeq instrument (Illumina) at 2 × 150 bases read length using the S2 configura-
tion (Illumina, PN 20012860). Sequencing was performed following the manufacturer’s instructions.

For the tumor purity study, 1 µg tumor:normal dilutions were made in the following ratios using Resuspension 
Buffer (Illumina): 1:0, 3:1, 1:1, 1:4, 1:9, 1:19 and 0:1. Each ratio was diluted in triplicate. DNA was sheared using 
the Covaris S220 to target a 350 bp fragment size (Peak power 140w, Duty Factor 10%, 200 Cycles/Bursts, 55 s, 
Temp 4 °C). NGS library preparation was performed using the Truseq DNA PCR-free protocol (Illumina) fol-
lowing the manufacturer’s recommendations. The sample purity WGS libraries were sequenced on a HiSeq 4000 
instrument (Illumina) at 2 × 150 bases read length with HiSeq 3000/4000 SBS chemistry (Illumina, FC-410-
1003). Sequencing was performed following the manufacturer’s instructions.

Whole exome library construction and sequencing.  SureSelect Target Enrichment Reagent kit, PTN 
(Part No G9605A), SureSelect Human All Exon v6 + UTRs (Part No 5190–8881), Herculase II Fusion DNA 
Polymerase (Part No 600677) from Agilent Technologies and Ion Xpress Plus Fragment kit (Part No 4471269, 
Thermo Fischer Scientific Inc) were combined to prepare library according to the manufacturer’s guidelines (User 
guide: SureSelect Target Enrichment System for Sequencing on Ion Proton, Version C0, December 2016, Agilent 
Technologies). Prior, during and after library preparation the quality and quantity of genomic DNA (gDNA) 
and/or libraries were evaluated applying QubitTM fluorometer 2.0 with dsDNA HS Assay Kit (Thermo Fischer 
Scientific Inc) and Agilent Bioanalyzer 2100 with High Sensitivity DNA Kit (Agilent Technologies).

WES libraries were sequenced at six sequencing sites with two different Illumina platforms, Hiseq 4000 instru-
ment (Illumina) at 2 × 150 bases read length with HiSeq 3000/4000 SBS chemistry (Illumina, FC-410-1003) 
and Hiseq 2500 (Illumina) at 2 × 100 bases read length with HiSeq 2500 chemistry (Illumina, FC-401-4003). 
Sequencing was performed following the manufacturer’s instructions.

Whole genome FFPE sample library preparation and sequencing.  For the FFPE WGS study, 
NEBNext Ultra II (NEB) libraries were prepared according to the manufacturer’s instructions. However, input 
adjustments were made according to the dCq obtained for each sample using the TruSeq FFPE DNA Library Prep 
QC Kit (Illumina) to account for differences in sample amplifiability. A total of 33 ng of amplifiable DNA was used 
as input for each sample.

FFPE WGS libraries were sequenced on two different sequencing canters on Hiseq 4000 instrument (Illumina) 
at 2 × 150 bases read length with HiSeq 3000/4000 SBS chemistry (Illumina, FC-410-1003). Sequencing was per-
formed following the manufacturer’s instructions.

Whole exome FFPE sample library preparation and sequencing.  For the FFPE study, SureSelect 
(Agilent) WES libraries were prepared according to the manufacturer’s instructions for 200 ng of DNA input, 
including reducing the shearing time to four minutes. Additionally, the adaptor-ligated libraries were split in half 
prior to amplification. One half was amplified for 10 cycles and the other half for 11 cycles to ensure adequate 
yields for probe hybridization. Both halves were combined after PCR for the subsequent purification step.

FFPE WES libraries were sequenced on at two sequencing sites with different Illumina platforms, Hiseq 4000 
instrument (Illumina) at 2 × 150 bases read length with HiSeq 3000/4000 SBS chemistry (Illumina, FC-410-1003) 
and Hiseq 2500 (Illumina) at 2 × 100 bases read length with HiSeq 2500 chemistry (Illumina, FC-401-4003). 
Sequencing was performed following the manufacturer’s instructions.

PacBio library preparation and sequencing.  15 ug of material was sheared to 40 kbp with Megarupter 
(Diagenode). Per the Megarupter protocol the samples were diluted to <50 ng/ul. A 1x AMPure XP bead cleanup 
was performed. Samples were prepared as outlined on the PacBio protocol titled “Preparing >30 kbp SMRTbell 
Libraries Using Megarupter Shearing and Blue Pippin Size-Selection for PacBio RS II and Sequel Systems.” After 
library preparation, the library was run overnight for size selection using the Blue Pippin (Sage). The Blue Pippin 
was set to select a size range of 15–50 kbp. After collection of the desired fraction, a 1x AMPure XP bead cleanup 
was performed. The samples were loaded on the PacBio Sequel (Pacific Biosciences) following the protocol titled 
“Protocol for loading the Sequel.” The recipe for loading the instrument was generated by the Pacbio SMRTlink 
software v5.0.0. Libraries were prepared using Sequel chemistry kits v2.1, SMRTbell template kit 1.0 SPv3, mag-
bead v2 kit for magbead loading, sequencing primer v3, and SMRTbell clean-up columns v2. Libraries were 
loaded at between 4 pM and 8 pM.Sequencing was performed following the manufacturer’s instructions.

10X Genomics Chromium genome library preparation and sequencing.  Sequencing libraries 
were prepared from 1.25 ng DNA using the Chromium Genome Library preparation v2 kit (10X Genomics, cat 
#120257/58/61/62) according to the manufacturer’s protocol (#CG00043 Chromium Genome Reagent Kit v2 
User Guide). The quality of the libraries was evaluated using the TapeStation D1000 Screen Tape (Agilent). The 
adapter-ligated fragments were quantified by qPCR using the library quantification kit for Illumina (KK4824, KAPA 
Biosystems) on a CFX384Touch instrument (BioRad) prior to cluster generation and sequencing. Chromium libraries 
were sequenced on a HiSeq X Ten or a HiSeq 4000 instrument at 2 × 150 base pair (bp) read length and using sequenc-
ing chemistry v2.5 or HiSeq 3000/4000 SBS chemistry (Illumina, cat# FC-410-1003) across five sequencing sites.

Sequencing was performed following the manufacturer’s instructions.
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AmpliSeq library construction and sequencing.  AmpliSeq libraries were prepared in triplicate and 
prepared as specified in the Illumina protocol (Document # 1000000036408 v04) following the two oligo pools 
workflow with 10 ng of input genomic DNA per pool. The number of amplicons per pool was 1517 and 1506 
respectively. The libraries were quality-checked using an Agilent Tapestation 4200 with the DNA HS 1000 kit 
and quantitated using a Qubit 3.0 and DNA high sensitivity assay kit. The libraries were applied to a MiSeq v2.0 
flowcell. They were then amplified and sequenced with a MiSeq 300 cycle reagent cartridge with a read length 
of 2 × 150 base pair (bp). The MiSeq run produced 7.3 Gbp (94.5%) at ≥Q30. The total number of reads passing 
filter was 47,126,128 reads.

Whole exome library Ion platform sequencing.  SureSelect Target Enrichment Reagent kit, PTN 
(Part No G9605A), SureSelect Human All Exon v6 + UTRs (Part No 5190–8881), Herculase II Fusion DNA 
Polymerase (Part No 600677) from Agilent Technologies and Ion Xpress Plus Fragment kit (Part No 4471269, 
Thermo Fisher Scientific Inc) were combined to prepare libraries according to the manufacturer’s guidelines 
(User guide: SureSelect Target Enrichment System for Sequencing on Ion Proton, Version C0, December 2016, 
Agilent Technologies). Prior, during, and after library preparation the quality and quantity of genomic DNA 
(gDNA) and/or libraries were evaluated applying QubitTM fluorometer 2.0 with dsDNA HS Assay Kit (Thermo 
Fisher Scientific Inc) and Agilent Bioanalyzer 2100 with High Sensitivity DNA Kit (Agilent Technologies).

For sequencing the WES libraries, the Ion S5 XL Sequencing platform with Ion 540-Chef kit (Part No A30011, 
Thermo Fisher Scientific Inc) and the Ion 540 Chip kit (Part No A27766, Thermo Fisher Scientific Inc) were used. 
One sample per 540 chip was sequenced, generating up to 60 million reads with average length of 200 bp.

10X Genomics Single Cell CNV library construction, sequencing and analysis.  HCC1395 and 
HCC1395 BL were cultured as described above. 500,000 cells of each culture were suspended in 1 mL suspen-
sion medium (10% DMSO in cell culture medium). Cells were harvested the next day for single-cell copy num-
ber variation (CNV) analysis via the 10X Genomics Chromium Single Cell CNV Solution (Protocol document 
CG000153) produces Single Cell DNA libraries ready for Illumina sequencing according to manufacturer’s rec-
ommendations. Libraries were sequenced on a HiSeq 4000 instrument at 2 × 150 base pair (bp) read length and 
using sequencing chemistry v2.5 or HiSeq 3000/4000 SBS chemistry (Illumina, cat# FC-410-1003). Demultiplex 
BCL from sequencing run and Copy Number Variation analysis were performed using 10X Genomics Cell Ranger 
DNA version 1.1 software. CNV and heterogeneity visualization analysis was performed via 10X Genomics Loupe 
scDNA browser.

Affymetrix Cytoscan HD microarray.  DNA concentration was measured spectrophotometrically using 
a Nanodrop (Life technology), and integrity was evaluated with a TapeStation 4200 (Agilent). Two hundred and 
fifty nanograms of gDNA were used to proceed with the Affymetrix CytoScan Assay kit (Affymetrix). The work-
flow consisted of restriction enzyme digestion with Nsp I, ligation, PCR, purification, fragmentation, and end 
labeling. DNA was then hybridized for 16 hr at 50 °C on a CytoScan array (Affymetrix), washed and stained in 
the Affymetrix Fluidics Station 450 (Affymetrix), and then scanned with the Affymetrix GeneChip Scanner 3000 
G7 (Affymetrix). Data were processed with ChAS software (version 3.3). Array-specific annotation (NetAffx 
annotation release 36, built with human hg38 annotation) was used in the analysis workflow module of ChAS. 
Karyoview plot and segments data were generated with default parameters.

Reference genome.  The reference genome we used was the decoy version of the GRCh38/hg38 human 
reference genome (https://gdc.cancer.gov/about-data/data-harmonization-and-generation/gdc-reference-files; 
GRCh38.d1.dv1.fa), which was utilized by the Genomic Data Commons (GDC).

The gene annotation GTF file was downloaded from the 10X website as refdata-cellranger-GRCh38-1.2.0.tar.gz,  
which corresponds to the GRCh38 genome and Ensmebl v84 transcriptome.

All the following bioinformatics data analyses are based on the above reference genome and gene annotation.

Preprocessing and alignment of WGS Illumina data.  For each of the paired-end read files (i.e., 
FASTQ 1 and 2 files) generated by Illumina sequencers (HiSeq, NovaSeq, X Ten platforms), we first trimmed 
low-quality bases and adapter sequences using Trimmomatic4. The trimmed reads were mapped to the human 
reference genome GRCh38 (see the read alignment section) using BWA MEM (v0.7.17)5 in paired-end mode and 
bwa-mem was run with the –M flag for downstream Picard6 compatibility.

Post alignment QC was performed based both FASTQ on BWA alignment BAM files, the read quality and 
adapter content were reported by FASTQC7 software. The genome mapped percentages and mapped reads dupli-
cation rates calculated by BamTools (v2.2.3) and Picard (v1.84). The genome coverage and exome target region 
coverages as well as mapped reads insert sizes, and G/C contents were profiled using Qualimap(v2.2)8 and custom 
scripts. Preprocessing QC reports were generated during each step of the process. MultiQC(v1.9)9 was run to 
generate an aggregated report in html format. A standard QC metrics report was generated from a custom script. 
The preprocessing and alignment QC analysis pipeline is described in Suppl. Figure 1a.

Preprocessing and alignment of WES Illumina data.  For each of the paired-end read files generated 
by Illumina sequencers (HiSeq 2500, HiSeq 4000 platforms), we first trimmed low-quality bases and adapter 
sequences using Trimmomatic. The trimmed reads were mapped to the human reference genome GRCh38 (see 
the read alignment section) using BWA MEM (v0.7.17) in paired-end mode. We calculated on-target rate based 
on the percentage of mapped reads that were overlap the target capture bait region file (target.bed). The post 
alignment QC methods are same as WGS Illumina data pre-processing.
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DNA damage estimate for WGS, WES and FFPE samples.  The DNA Damage Estimator(v3)10 was 
used to calculate the GIV score based on an imbalance between R1 and R2 variant frequency of the sequencing 
reads to estimate the level of DNA damage that was introduced in the sample/library preparation processes. GIV 
score above 1.5 is defined as damaged. At this GIV score, there are 1.5 times more variants on R1 than on R2. 
Undamaged DNA samples have a GIV score of 1.

Preprocessing and alignment of PacBio data.  PacBio raw data were merged bam files using SMRTlink 
tool v6.0.1. which used minimap211 as default aligner. The non-human reads were removed and minimap BAM 
files were used for downstream analysis. Duplicate reads were mark and removed from PBSV alignment bases on 
the reads coming from the same ZMW, the base pair tolerance was set to 100 bp to remove the duplicated reads. 
The preprocessing and alignment QC analysis pipeline for PacBio data is described in Suppl. Figure 1b.

Genome coverage profiling.  We used indexcov12 to estimate coverage from the Illumina whole genome 
sequencing library cross-site comparison data set. The bam file for each library used as input to indexcov to gener-
ate a linear index for each chromosome indicating the file (and virtual) offset for every 16,384 bases in that chro-
mosome. This gives the scaled value for each 16,384-base chunk (16KB resolution) and provides a high-quality 
coverage estimate per genome. The output is scaled to around 1. A long stretch with values of 1.5 would be a 
heterozygous duplication; a long stretch with values of 0.5 would be a heterozygous deletion.

Preprocessing and alignment of 10X Genomics WGS data.  The 10X Genomics Chromium fastq 
files were mapped and reads were phased using LongRanger to the hg38/GRCh38 reference genome using the 
LongRanger v2.2.2 pipeline [https://genome.cshlp.org/content/29/4/635.full]. The linked-reads were aligned 
using the Lariat aligner13, which uses BWA MEM to generate alignment candidates, and duplicate reads 
are marked after alignment. Linked-Read data quality was assessed using the 10X Genome browser Loupe. 
MultiQC(v1.9) was run to generate an aggregated report in html format. A standard QC metrics report was 
generated from a custom script. The preprocessing and alignment QC analysis pipeline is described in Suppl. 
Figure 1a.

Preprocessing and alignment of Ion Torrent data.  Raw reads were first filtered for low-quality reads 
and trimmed to remove adapter sequences and low-quality bases. This step was performed using the BaseCaller 
module of the Torrent SuitTM software package v5.8.0 (Thermo Fischer Scientific Inc). Low-quality reads were 
retained from further analysis in the raw signal processing stage. Low-quality bases were trimmed from the 5′ end 
if the average quality score of the 16-base window fell below 16 (Phred scale), cleaving 8 bases at once. Processed 
reads were mapped to the GRCh38 reference genome by TMAP module of the Torrent Suite software package 
using the default map4 algorithm with recommended settings. Picard (v1.84) was then used to mark PCR and 
optical duplicates on the BAM files.

Preprocessing and alignment for AmpliSeq  Low-quality bases and adapter sequences were trimmed 
with Trimmomatic. The trimmed reads were mapped to the human reference genome GRCh38 (see the read 
alignment section) using BWA MEM (v0.7.17) in paired-end mode. We calculated on-target rate based on the 
percentage of mapped reads that were overlap the target capture bait region file (target.bed). We counted the 
number of variant-supporting reads and total reads for each variant position with MQ ≥ 40 and BQ ≥ 30 cutoffs. 
The preprocessing and alignment QC analysis pipeline is described in Suppl. Figure 1a.

Somatic variant analysis.  Four somatic variant callers, MuTect2 (GATK 3.8-0)14, SomaticSniper (1.0.5.0)15, 
Strelka2 (2.8.4)16, and Lancet (1.0.7)17, which are readily available on the NIH Biowulf cluster, were run using the 
default parameters or parameters recommended by the user’s manual. Specifically, for MuTect2, we included 
flags for “-nct 1 -rf DuplicateRead -rf FailsVendorQualityCheck -rf NotPrimaryAlignment -rf BadMate -rf 
MappingQualityUnavailable -rf UnmappedRead -rf BadCigar”, to avoid the running exception for “Somehow 
the requested coordinate is not covered by the read”. For MuTect2, we used COSMIC v82 as required inputs. 
For SomaticSniper, we added a flag for “-Q 40 -G -L –F”, as suggested by its original author, to ensure quality 
scores and reduce likely false positives. For TNscope (201711.03), we used the version implemented in Seven 
Bridges’s CGC with the following command, “sentieon driver -i $tumor_bam -i $normal_bam -r $ref–algo 
TNscope–tumor_sample $tumor_sample_name–normal_sample $normal_sample_name -d $dbsnp $output_
vcf ”. For Lancet, we ran with 24 threads on the following parameters “–num-threads 24–cov-thr 10–cov-ratio 
0.005–max-indel-len 50 -e 0.005”. Strelka2 was run with 24 threads with the default configuration. The rest of 
the software analyzed was run as a single thread on each computer node. All mutation calling on WES data was 
performed with the specified genome region in a BED file for exome-capture target sequences.

The high confidence outputs or SNVs flagged as “PASS” in the resulting VCF files were applied to our com-
parison analysis. Results from each caller used for comparison were all mutation candidates that users would 
otherwise consider as “real” mutations detected by this caller.

GATK indel realignment and quality score recalibration.  The GATK (3.8-0)-IndelRealigner was used 
to perform indel adjustment with reference indels defined in the 1000Genome project (ftp://ftp.1000genomes.
ebi.ac.uk/vol1/ftp/technical/reference/GRCh38_reference_genome/other_mapping_resources/ALL.wgs.1000G_
phase3.GRCh38.ncbi_remapper.20150424.shapeit2_indels.vcf.gz). The resulting BAM files were then recalibrated 
for quality with “BaseRecalibrator” and dbSNP build 146 as the SNP reference. Finally,”PrintReads” was used to 
generate recalibrated BAM files.

https://doi.org/10.1038/s41597-021-01077-5
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Tumor ploidy and clonality analysis from whole genome and exome data.  To estimate the 
HCC1395 cell line ploidy, we used PURPLE18 to determine the purity and copy number profile. To determine 
the clonality of HCC1395 and HCC1395 BL, we performed somatic SNV and CAN analysis using superFreq19. 
on capture WES datasets. Mapped and markDuplicate bam files of a pair of HCC1395 and HCC1395BL were 
used as input and bam files of the remaining replicates of the HCC1395BL library were used to filter background. 
Analysis was run using the superFreq default parameters. The clonality of each somatic SNV was calculated based 
on the VAF, accounting for local copy number. The SNVs and CNAs undergo hierarchical clustering based on the 
clonality and uncertainty across replicates for the tumor sample.

Assessment of reproducibility and O_Score calculation.  we established following formula to measure 
reproducibility based on the overlapping SNVs:
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where n is the total number of VCF results in the pool set, i is the number of overlaps, Oi is the number of accu-
mulated SNVs in the set with i number of overlapping.

Data Records
All raw data (FASTQ files) are available on NCBI’s SRA database (SRP162370)20. The call set for somatic muta-
tions in HCC1395, VCF files derived from individual WES and WGS runs, and source codes are available on 
NCBI’s ftp site (ftp://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/seqc/Somatic_Mutation_WG/)21.

Technical Validation
Assessment of whole genome and exome sequencing data quality.  Data set described in this 
paper was mainly used in our two companion studies, to assess the effect of variables during the process of WGS 
and WES, including biosample types, tumor content, library protocol and DNA inputs, sequencing site and repli-
cates, reads coverage and bioinformatics tools, on the performance of cancer mutation detection2 and to charac-
terize a pair of tumor-normal cell lines as community reference samples3.

The quality metrics including Total Reads, Total Reads After Trimming, Percent Total Reads after Trimming, 
Total Mapped Reads, Percent Total Mapped Reads (Trimmed), Percent Non-duplicated Reads (Mapped 
Trimmed), Mean Coverage Depth, Mean Coverage Depth SD, Percent of Coverages (> = 5x, > = 15x, > = 30x, 
> = 100x), Effect Mean Coverage Inside Target Region (Exome only), Percent of GC, Median Insert Size 
(Online-Only Tables 1–10).

For whole genome sequencing, fresh DNA samples were prepared using standard TruSeq PCR-free libraries 
prepared from 1000 ng input DNA. A total of 24 data sets were generated from six sequencing centers. There were 
three different Illumina sequencing platforms in the cross-platform comparison including HiSeq 4000, HiSeq X 
Ten, and NovaSeq 6000.

All sequencing centers and platforms produced high quality data as base call Phred quality scores above Q30, 
and greater than 99% of reads mapped to the reference genome (Fig. 2a). The variation was observed in read 
coverage which was driven by sequencing platform yield differences as well as sequencing library pooling var-
iations. Most sequencing sites produced genome coverage 50X (1,250 millions pair-end reads) per library, one 
sequencing site targeted about 100X (2,500 millions pair-end reads) per genome sequencing depth (Fig. 2b, Suppl. 
Figure 2a). For whole exome sequencing, SureSelect Target Enrichment Reagent kit, PTN (Part No G9605A), 
SureSelect Human All Exon v6 and SureSelect Human All Exon v6 + UTRs were used by six sequencing centers. 
Illumina Hiseq 4000, Illumina Hiseq 3000/4000, and Illumina Hiseq 2500 were used. Sequencing quality from 
all sequences are high with greater than 99.1% of reads mapped to reference genome across sites. The variation 
was also observed in read coverage, most sequencing sites produced exome region on-target coverage 100X per 
library, and two sequencing sites targeted about 300X and 550X per genome sequencing depth (Fig. 2c). When 
comparing WGS to WES libraries for the percentages of non-duplicated reads, all WGS libraries have consistently 
high percentages of non-duplicate reads, which indicates higher library complexity of WGS libraries than the 
targeted captures. In addition, there are much high variations in targeted exome capture libraries(Fig. 2d).

To determine if the quality of sequencing data was substantially different between different protocols, we 
also compared fresh DNA vs. FFPE DNA, different library protocols and input DNA amount, as well as mixture 
tumor DNA and normal DNA for profiling the tumor purity effect. Among the WGS libraries prepared using 
fresh cells, insert size distribution and G/C content were uniform (40–43% G/C). WES libraries have higher 
GC content (47.2% for fresh cells libraries, 51.1% for FFPE libraries) as well as higher variation (Fig. 2e). All of 
the WGS libraries had very low adapter contamination (<0.5%) (Suppl. Figure 2b), while WES libraries have 
higher adapter content due to smaller DNA fragment insert sizes (Fig. 2f). WES library sizes are between 150 bps 
–280 bps for fresh cells. FFPE WGS libraries all have much shorter libraries sizes (225–300 bps) than fresh DNA 
prepared WGS libraries (360–480 bps). The libraries with higher adapter contamination also had much higher 
G/C content compared with the rest of the WES libraries (Fig. 2e). When comparing library preparation kits 
across different DNA inputs across TruSeq PCR-free (1000 ng), TruSeq-Nano, and Nextera Flex libraries pre-
pared with 250, 100, 10, or 1 ng of DNA input, the percentage of non-redundant reads was very low (<20%) for 
TruSeq-Nano with 1 ng input, due to PCR amplification of a low input amount of DNA; higher input amount 
libraries have better performance; for the same input amount, Nextera Flex libraries have less variation and higher 
percentages of non-duplicated reads (Suppl. Figure 2c). We conclude the Nextera Flex library protocol might be 
a better option for low input DNA library preparation. The average GC% for WES and WGS samples are 48% 

https://doi.org/10.1038/s41597-021-01077-5
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and 41% respectively (Fig. 2e). However, from the binned GC and sequence coverage plots (Suppl. Figure 3a,b), 
we observed a higher sequencing coverage bias in very low GC (<25%) and very high GC content (>70%) in 
WES data. WGS showed more uniformed coverage across the spectrum of GC content except the extremely high 
or low GC content. This was due to different target capture affinity between probes and target DNA fragments. 
Extremely low or high GC content would impact binding affinity and thus can be captured less efficiently. This 
has been reported in the previous study22. As a result, WES reads would have overall higher coverage bias in very 
low GC and very high GC content regions.

Assessment of reference sample sequencing coverage and genome heterogeneity.  We chose 
26 replicates of HCC1395 and HCC1395BL data sets, which were libraries prepared using the Ilumina TruSeq 
DNA PCR free (1000 ng) protocol and sequenced on Illumina HiSeq and NovaSeq. Each library was ranged from 
50X to 100X genome coverage (Fig. 3a, Suppl. Figure 4a). The percentage of genome coverage with less than 5X is 
0.9–7.7% (Online-Only Table 1). We also compared fresh DNA vs. FFPE DNA, the FFPE WGS libraries have 50X 
to 100X genome coverage (Suppl. Figure 4b) and the percentage of genome coverage with less than 5X is 6.3–7.6% 
(Online-only Table 2). For 10X Chromium libraries, each library has 45X–120X genome coverage (Figs. 3b), 
6.4–7.3% of genome regions have read coverage less than 5X (Online-only Table 7). 10X Chromium linked read 
technology produced input DNA molecule length in the range between 54–77 kb. The site-to-site variation was 
due to sequencing depth differences. For WES samples, the target region has nearly 100% coverage by sequencing 
reads, however, we observed high variation in the sequencing coverage within each replicate as well as among 
replicates (Suppl. Figure 4c,d).

In addition, we generated two PacBio libraries with 40X of genome coverage from subreads. Long reads improve 
the map ability in repetitive genome regions where short-reads might fail to map correctly. PacBio long-read 
sequencing may cover the genomic regions where short reads cannot be mapped especially in the high GC/AT or 
low complexity genomic regions (Fig. 3c). However, its higher sequencing error rate than short-read sequencing 
affects the accuracy for the low-frequency somatic mutation discovery. The variation in genome coverage might be 

Fig. 2  Overall data quality for WGS and WES data sets from Illumina platform. (a) Percentage of total reads 
mapped to reference genome (hg38) for WGS (Green) and WES (Red) across 6 sequencing sites. (b) Mean 
coverage depth for WGS libraries across 6 sequencing sites. (c) Mean coverage depth in target capture regions 
for WES libraries across 6 sequencing sites. (d) Percentage of non-duplicated reads mapped to reference genome 
across 6 sequencing sites. WGS (Green) and WES (Red). (e) Percent GC content from different library prep 
protocols. WGS (Green) and WES (Red). (f) Mean insert size distribution from different library prep protocols. 
WGS (Green) and WES (Red).

https://doi.org/10.1038/s41597-021-01077-5


9Scientific Data |           (2021) 8:296  | https://doi.org/10.1038/s41597-021-01077-5

www.nature.com/scientificdatawww.nature.com/scientificdata/

due to differences in sequencing technologies. From the study, short reads WGS has better uniform coverage com-
pared to long reads. However, there is better coverage for certain genomic regions in long-read technologies; most 
noticeable are the highly repetitive regions, extreme GC regions, or around the centromere regions.

The Indexcov scaled read depth on reference genome for HCC1395 and HCC1395BL showed HCC1395 harbor-
ing many Copy Number Variation (gain or loss) events on every chromosome; HCC1395BL genome largely remains 
diploid except for chr6 and chr16 and chrX. Figure 3d showed read coverage on chromose 6, a net loss of one copy 
of the short-arm of chr6 for HCC1395BL and large copy number variations for HCC1395. Cytogenetic analysis with 
Affymetrix Cytoscan HD microarray confirms the Cytogenetic view of HCC1395 which harbors many copy num-
bers gains or losses; Cytogenetic view of HCC1395BL confirms the losses of chr6p, chr16q, and chrX3.

For HCC1395 cell line, the tumor purity and ploidy estimated from Illumina WGS data set (Suppl. Figure 5a) 
using PURPLE software showed the tumor purity is 99% and the ploidy is around 2.85. Cell ploidy histogram 
from 10X Chromium single cell CNV data set (Suppl. Figure 5b) displayed the vast majority of cells form a peak 
around ploidy 2.8. The analysis of 1270 cells for HCC1395 from 10X Single Cell CNV data set also revealed 
numerous chromosome gains and losses events (Suppl. Figure 5c) consistently in sub-populations of cells, which 
confirmed HCC1395 is a heterogeneous cell line.

Assessment DNA damage artifacts.  A previous study has revealed that DNA damage accounts for the 
majority of the false calls for the so-called low-frequency (1–5%) genetic variants in large public databases10. The 
DNA damage directly confounds the determination of somatic variants in those data sets. The Global Imbalance 
Value (GIV) score is commonly used to measure DNA damage based on an imbalance between paired-end 
sequencing R1 and R2 variant frequency10. GIV scores to capture the DNA damage due to the artifacts intro-
duced during genomic library preparation, the combination of heat, shearing, and contaminates can result in the 
8-oxoguanine base pairing with either cytosine or adenine, ultimately leading to G > T transversion mutations 
during PCR amplification23. In addition, Formaldehyde also causes the deamination of guanine. FFPE is known 
to cause G > T/C > A artifacts24.

Fig. 3  Genome coverage from WGS data from three technologies including Illumina, PacBio, and 10X 
Genomics. Outer rainbow color track: chromosomes, red track: HCC1395, green track: HCC1395BL. (a) 
Genome coverage from WGS data by reads from Illumina platform. (b) Genome coverage from WGS data by 
reads from 10X Chromium linked-read technology (c) Genome coverage from WGS data by reads from PacBio 
platform. (d) Genome coverage plots generated using Indexcov software for whole genome sequencing cross-
site comparison libraries. The estimated coverages along chromosome 6 for HCC1395BL (top) and HCC1395 
(bottom) are shown. The net loss of one copy of the short-arm of chr6 is shown for HCC1395BL on top. For 
tumor HCC1395 cell line, there are many copy number gain or loss as shown in bottom of the read coverage 
plot for chromosome 6.
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We calculated GIV score to monitor DNA damage in Illumina WGS and WES runs for both fresh DNA librar-
ies as well as FFPE libraries. We found lower GIV scores for the G > T/C > A mutation pairs in fresh DNA WGS 
libraries (Fig. 4a) than FFPE WGS libraries (Fig. 4b). In addition, both fresh cell DNA WES (Fig. 4c) and FFPE 
WES Libraries (Fig. 4d) all showed increased GIV scores for the G > T/C > A mutation pairs relative to WGS 
libraries. The GIV for G > T/C > A scores was inversely correlated with insert fragment sizes, and it is positively 
correlated to DNA shearing time (Suppl. Figure 6a–c); WES libraries have consistently shorter library insert sizes 
than all WGS library sizes (Fig. 2f, Suppl. Figure 6a). Thus, the GIV of G > T/C > A is a good indicator of DNA 
damage introduced during genomic library preparation. We observe the libraries have high G > T/C > A GIV 
scores also have a higher percentage of C/A mutation called in WES from private mutation calls which are not 
shared among replicates as displayed in Suppl. Figure 6d. Therefore, in order to improve cancer genomic variant 
call accuracy, effective mitigation strategies to improve library preparation methods, or software tools to detect 
and remove the DNA damage mutation calls are essential.

Assessment reproducibility of somatic mutation calling from WES and WGS data sets.  To 
assess the concordance and reproducibility of the somatic variant detection with both WES and WGS, we com-
pared 12 replicates of WGS and WES for the matched tumor and normal cell lines carried out at six sequencing 
centers. Using three mutation callers (MuTect2, Strelka2, and SomaticSniper) on alignments from three aligners 
(Bowtie225, BWA MEM, and NovoAlign), we generated a total of 108 variant call files separately. We were able to 
assess inter- and intra-centers reproducibility of the WES and WGS using the 12 repeat runs. The Venn diagram 
is widely used to display concordance of mutation calling results from a small number of repeated analyses; how-
ever, this type of diagram is not suitable for large data sets. To address this challenge, we applied the “UpSet” plot 
to visualize the consistency of mutation called across all conditions. As shown at the top of each plot (Fig. 5a,b), 
we observed relatively more library-specific variants in the WES plots. In contrast, majority of called mutations 
were shared across all 12 WGS (Fig. 5b). Therefore, calling results from WES tended to have more inconsistent 
SNV calls than those from WGS, indicating that WES results were less consistent than WGS results (Fig. 5a,b). 
Here we also introduced the O_Score, a metric to measure reproducibility of repeated analyses (see Methods). O_
Scores for WES runs were not only significantly lower than WGS runs, but also more variable (Suppl. Figure 7). In 
addition, we measured reproducibility between replicates of WGS runs from both NovaSeq and HiSeq platforms 
to assess cross-platform variation. Both platforms were remarkably similar in terms of reproducibility, indicating 
that results from HiSeq and NovaSeq are comparable2. Overall, we observed the cross-center and cross-platform 
variations for WGS were very small, indicating that all individual NGS runs, regardless of sequencing centers or 
NGS platforms, detected most “true” mutations consistently for WGS runs.

Fig. 4  Evaluation of DNA damage for WGS and WES libraries. using GIV scores to capture the DNA damage 
due to the artifacts introduced during genomic library preparation. The estimation of damage is a global 
estimation based in an imbalance between R1 and R2 variant frequency. GIV score above 1.5 is defined as 
damaged. Undamaged DNA samples have a GIV score of 1. (a) DNA damage estimated for fresh cell prepared 
DNA for WGS Illumina libraries across different sites. (b) DNA damage estimated for FFPE WGS Illumina 
libraries. (c) DNA damage estimated for fresh cells prepared DNA for WES Illumina libraries across different 
sites (d) DNA damage estimated for FFPE WES Illumina libraries.
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We also computed SNVs/indels calling concordance between WES and WGS from twelve replicates. For direct 
comparison, SNVs/indels from WGS runs were limited to genomic regions defined by an exome capturing pro-
tocol (SureSelect V6 + UTR). WGS has a smaller number of private calls for each sample than WES (Fig. 5c). We 
observed the overlap between the WES and WGS improved as sequencing depth increased. Moreover, the cor-
relation of MAF in overlapping WGS and WES SNVs/indels from replicates are positively correlated with higher 
sequencing depth (Fig. 5d). This indicates the benefit of high read coverage not only improves the detection 
sensitivity of mutations with low MAF, but also increases reproducibility of the calling sets. Overall, our results 
indicate the inter-center variations for WES were larger than inter-center variations for WGS, whereas the differ-
ence between intra-center variation between WES and WGS was not significant. As a result, WGS had much less 
inter-center variation and thus provided better reproducibility than WES for cancer genomic variants detection.

Fig. 5  Reproducibility of somatic mutation calling from WES and WGS. The reproducibility UpSet plots for 12 
repeated WES (a) and WGS runs (b). The number in each plot represents the reproducibility across the different 
replicates. (c) SNVs/indels calling concordance between WES and WGS from twelve repeated runs. For direct 
comparison, SNVs/indels from WGS runs were limited to genomic regions defined by an exome capturing 
kit (SureSelect V6 + UTR). WES is shown on the left in the Venn diagram and WGS is on the right. Shown 
coverage depths for WES and WGS were effective mean sequence coverage on exome region, i.e. coverage by 
total number of mapped reads after trimming. (d) Correlation of MAF in overlapping WGS and WES SNVs/
indels from repeated runs.
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Code availability
All codes used in processing the whole genome, exome-seq and RNA-seq data are available to download at 
NCBI’s ftp site (https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/seqc/Somatic_Mutation_WG/tools/NGS_
Preprocessing_Pipeline)21.
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