

# Is Baseline Orthostatic Hypotension Associated With a Decline in Global Cognitive Performance at 4-Year Follow-Up? Data From TILDA (The Irish Longitudinal Study on Ageing)

Triona McNicholas, MB, BcH, BAO; Katy Tobin, PhD; Daniel Carey, PhD; Susan O'Callaghan, MB, BcH, BAO; Rose Anne Kenny, MD, FRCPI

**Background**—It is postulated that orthostatic hypotension (OH), a reduction in blood pressure ( $\geq 20/10$  mm Hg) within 3 minutes of standing, may increase cognitive decline because of cerebral hypoperfusion. This study assesses the impact of OH on global cognition at 4-year follow-up, and the impact of age and hypertension on this association.

*Methods and Results*—Data from waves 1 and 3 of TILDA (The Irish Longitudinal Study on Ageing) were used. Baseline blood pressure response to active stand was assessed using beat-to-beat blood pressure monitoring. Two measures of OH were used—at 40 seconds (OH40) and 110 seconds (OH110). Global cognition was measured using the Montreal Cognitive Assessment. Mixed-effects Poisson regression assessed whether baseline OH was associated with a decline in global cognition at 4-year follow-up. The analysis was repeated, stratifying by age (age 50–64 years and age  $\geq$ 65 years), and including an interaction between OH and hypertension. Baseline OH110 was associated with an increased error rate in Montreal Cognitive Assessment at follow-up (incident rate ratio 1.17, *P*=0.028). On stratification by age, the association persists in ages 50 to 64 years (incident rate ratio 1.25, *P*=0.048), but not ages  $\geq$ 65 years. Including an interaction with hypertension found those with co-existent OH110 and hypertension (incident rate ratio 1.27, *P*=0.011), or OH40 and hypertension (incident rate ratio 1.18, *P*=0.017), showed an increased error rate; however, those with isolated OH110, OH40, or isolated hypertension did not.

*Conclusions*—OH is associated with a decline in global cognition at 4-year follow-up, and this association is dependent on age and co-existent hypertension. (*J Am Heart Assoc.* 2018;7:e008976. DOI: 10.1161/JAHA.118.008976.)

Key Words: age • aging • cognition • cognitive impairment • hypertension • orthostatic hypotension

O rthostatic hypotension (OH) is traditionally defined as a sustained reduction in systolic blood pressure (BP) of at least 20 mm Hg or diastolic BP of 10 mm Hg within 3 minutes of standing.<sup>1</sup> It can occur within 30 seconds of stand (initial OH), between 30 seconds and 3 minutes of stand (classical OH), or after 3 minutes of stand (delayed OH).<sup>2</sup> The prevalence of OH increases with age, and previous analysis of the TILDA (The Irish Longitudinal Study on Ageing) data has found a prevalence of impaired BP stabilization on stand of 15.6% of participants, rising from 14.3% of men and 16.9% of women aged 50 to 59 years, to 43.4% of men and 39.9% of women over the age of 80 years.<sup>3</sup> Several mechanisms are responsible for impairment in BP control, including impaired baroreflex sensitivity, abnormal neurohumeral regulation, impaired thirst, dehydration, and impaired venomotor tone.<sup>4,5</sup>

Recently, more refined methods of measurement of BP behavior during orthostasis using technologies that measure beat-to-beat BP have demonstrated that failure to stabilize BP during early stages of stand are associated with falls and syncope,<sup>2</sup> depression,<sup>6</sup> and with cognitive impairment.<sup>7</sup>

Aging may be associated with a decline in cognitive abilities such as memory, attention, processing speed, language, and visuospatial and executive function.<sup>8</sup> The prevalence of age-associated cognitive decline is 15% in persons over 60 years.<sup>9</sup> Mild cognitive impairment is a decline in cognition that is worse than normative data for a

From the Irish Longitudinal Study on Ageing (T.M., K.T., D.C., S.O'., R.A.K.), The Department of Medical Gerontology (T.M., S.O'., R.A.K.), and Global Brain Health Institute, School of Medicine (K.T.), Trinity College Dublin, Ireland; Mercer's Institute for Successful Ageing, St James' Hospital, Dublin, Ireland (R.A.K.).

Accompanying Tables S1 through S8 are available at https://www.ahajournals. org/doi/suppl/10.1161/JAHA.118.008976

**Correspondence to:** Triona McNicholas, MB, BcH, BAO, The Irish Longitudinal Study on Ageing, Lincoln Gate, Trinity College Dublin, Dublin 2, Ireland. E-mail: mcnichca@tcd.ie

Received April 26, 2018; accepted August 1, 2018.

<sup>© 2018</sup> The Authors. Published on behalf of the American Heart Association, Inc., by Wiley. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

### **Clinical Perspective**

#### What Is New?

- Baseline orthostatic hypotension (OH), assessed using beatto-beat blood pressure response to stand, is associated with a decline in global cognitive performance at 4-year followup.
- This association is most evident in the middle-age group (50-64 years), who demonstrated a decline in cognition at follow-up.
- Participants with both OH and hypertension demonstrate the most dramatic decline in cognition.

#### What Are the Clinical Implications?

- OH in midlife (50–64 years) is associated with a decline in global cognitive performance at 4-year follow-up, and further studies are required to assess whether intervention in OH could prevent or slow cognitive decline.
- Recognition of co-existent OH in individuals with hypertension is important, given evidence of a decline in global cognition in these individuals.

set age and education level, but does not meet the criteria for the diagnosis of dementia.<sup>10</sup> Prevalence data for mild cognitive impairment vary greatly, with the prevalence of mild cognitive impairment having been reported as up to 42% of individuals.<sup>9</sup> The main differentiating criterion for dementia is the existence of functional impairment.<sup>11</sup> The brain is highly metabolically active, and precise regulation of cerebral blood flow (cerebral autoregulation) is required to maintain a constant nutrient and oxygen supply to the brain.<sup>12</sup> There is evidence that cerebral blood flow can be compromised in OH,<sup>13,14</sup> and it has been postulated that OH can increase the risk of cognitive impairment through alterations in cerebral blood flow. Several cross-sectional studies have shown an association between OH and cognitive decline,<sup>7,15-18</sup> including cross-sectional analysis of the first wave of the TILDA data set.<sup>7,15</sup> A number of longitudinal studies have investigated directionality of this association; however, in contrast to most cross-sectional studies, a majority did not find an association.<sup>19-23</sup> BP measurement in the majority of these studies was assessed using oscillometric lying and standing BP, a more crude method of BP measurement than beat-tobeat measurement.<sup>19,20,22</sup> The TILDA data set provides a unique opportunity to study the effect of more dynamic shifts in orthostatic BP, as measured by beat-to-beat BP, on cognitive function.

The aim of this study is to assess whether baseline OH at 40 and 110 seconds after stand is associated with a decline in cognitive scores at 4-year follow-up in a community-dwelling sample over the age of 50 years.

## Methods

## Study Sample

Data from TILDA (The Irish Longitudinal Study on Ageing) were used. The anonymized TILDA data set is available to researchers who meet the criteria for access from the Irish Science Data Archive at University College Dublin and the Interuniversity Consortium for Political and Social Research at the University of Michigan, and TILDA also considers applications for privileged access to the data set through an onsite "hot desk" facility (visit www.tilda.ie for further information).

TILDA is a large prospective cohort study comprising community-dwelling adults over the age of 50 years in the Republic of Ireland, repeatedly assessed at 2-year intervals. At wave 1, a nationally representative sample was drawn from a listing of all residential addresses in the Republic of Ireland using the RANSAM sampling procedure,<sup>24</sup> with a response rate of 62%. Details of the sampling method have been published elsewhere.<sup>24</sup> The TILDA study comprised (1) a computer-aided personal interview (CAPI), carried out by trained interviewers in participants' homes; (2) a selfcompletion questionnaire; and (3) a health assessment carried out by trained research nurses. All participants who completed the CAPI were invited to attend 1 of 2 health centers for health assessment. As part of a comprehensive health assessment, participants completed a cardiovascular assessment, which included beat-to-beat measurements of BP during active stand and the Montreal Cognitive Assessment (MOCA). This study included all participants who completed both the CAPI and health assessment at wave 1 (2009–2011) and had adequate active stand data for analysis of orthostatic BP behavior, as well as completing both the CAPI and MOCA at wave 3 (4-year follow-up period). Participants who had a self-reported doctor's diagnosis of dementia, a MOCA score <20, Parkinson's disease, or stroke at wave 1 or a subsequent diagnosis of Parkinson's or stroke between waves 1 and 3, were excluded from the analyses.

Ethical approval for TILDA was obtained from the Trinity College Research Ethics committee, and participants provided written informed consent.

#### **BP** Measurement

 Participants who attended the health center underwent active stand, which noninvasively measures beat-to-beat BP response to orthostasis using digital photoplethysmography (Finometer MIDI device; Finapres Medical Systems). Participants underwent assessment of BP response to stand, following 10 minutes of supine rest. Baseline BP was measured as the mean value between 60 and 30 seconds before stand, during the supine rest period. BP response to stand was measured up to 110 seconds post stand. BP was estimated at 10-second intervals, using 5-second moving averages around each point. Two measurements of OH were analyzed. OH at 40 seconds (OH40) was defined as a sustained drop of ≥20 mm Hg systolic BP (SBP) or  $\geq$ 10 mm Hg diastolic BP (DBP) at each time point up to 40 seconds post stand. Previous analysis of the TILDA data has demonstrated that while there is a wide range of BP response patterns to active stand, the majority of participants stabilize their BP by 30 seconds,<sup>3</sup> and so we chose the 40 seconds cut-off to represent the participants who fail to stabilize their BP by this time point. A subset of these participants with OH at 110 seconds (OH110) was also analyzed and defined as a sustained drop of ≥20 mm Hg SBP or  $\geq$ 10 mm Hg DBP at each time point up to 110 seconds post stand. As BP was estimated at intervals using 5-second moving averages, the point at 120 seconds (duration of the stand at wave 1) in most individuals would include edge effects and so we chose the 110-seconds point to assess a subset of the participants with OH that represent the "worst" group—that is, those who do not stabilize their BP throughout. Standardized protocols were used for the active stand procedure; however, it was not possible to control for factors such as last meal, smoking, and time of medication administration. Baseline OH as measured at wave 1 health center assessment using the finometer was used.

BP was also measured seated, using the traditional oscillometric methods. Two seated SBP and DBP measurements were obtained, separated by 1 minute, using an automatic digital BP monitor (Model M10-IT; OMRON, Kyoto, Japan). Seated hypertension was assessed using oscillometric BP. Hypertension was defined as a systolic BP ≥140 mm Hg or diastolic BP ≥90 mm Hg.

### **Cognitive Assessment**

Global cognitive function was assessed using the MOCA. The MOCA is a cognitive test including assessment of the cognitive domains of executive and visuospatial function, memory, language, and attention; the test yields a single score ranging from 0 to 30. MOCA was administered at the health center. The MOCA is used frequently in the clinical setting,<sup>25</sup> is sensitive to mild deficits, and is useful in identifying patients with mild cognitive impairment.<sup>26</sup> In addition to this, it demonstrates good test-retest and interrater reliability.<sup>27</sup> The MOCA was assessed as a total score to assess global cognition (maximum score 30). The results of MOCA were then divided into subdomains and assessed individually, including recall, visuospatial, executive function, attention, and working memory, language, and orientation. To assess recall, the delayed recall section of the MOCA was used (maximum score 5). To assess the visuospatial domain, cube drawing and clock drawing were used (maximum score 4). Executive function was assessed using the trail test within the MOCA, language fluency and a 2-item verbal abstraction task (maximum score 4). Attention and working memory was assessed using digits forward and backward, a sustained attention task, and serial subtraction task (maximum score 6). Language was assessed using animal naming, repetition, and the language fluency task (maximum score 6). Finally, orientation to time and place was assessed using questions regarding date, month, year, day, place, and city were used (maximum score 6).

Baseline results of MOCA from wave 1 and follow-up MOCA scores at wave 3 were used.

### **Covariates**

Results were adjusted for variables that have a known association with OH and cognitive decline. Information on age, sex, education attainment, smoking status, and alcohol use (using the CAGE questionnaire<sup>28</sup>) was collected during the CAPI. The CAPI also collected information on self-reported comorbidities including self-reported hypertension, heart failure, angina, myocardial infarction, diabetes mellitus, stroke, transient ischemic attack, murmur, atrial fibrillation, or other arrhythmia. Mean of 2 seated BP measurements was used to assess as objective BP measurements. In wave 1, depressive symptoms were assessed using the Centre for Epidemiological Studies Depression scale.<sup>29</sup> A cut-off score of 16 was used to assess the presence of depression. In wave 3, a short form of the Centre for Epidemiological Studies Depression scale was used,<sup>30</sup> with a cut-off score of 10 used to assess the presence of depression. Height and baseline BP were measured at the health assessment. Frailty was assessed using the Fried Frailty scale, 31 and individuals were grouped in 3 groups-not frail, pre-frail, or frail.

All medications were recorded at the CAPI and classified according to the Anatomical therapeutic classification codes. Medication categories adjusted for were antihypertensive agents ("CO2"), diuretics ("CO3"),  $\beta$ -blockers ("CO7"), calcium channel blockers ("CO8"), angiotensin converting enzyme inhibitors ("CO9"), antipsychotic ("N05A"), antidepressants ("N06A"), anxiolytics ("N05B"), hypnotics and sedatives ("N05C"), anticholinergic agents ("N04A"), anticholinesterases ("N06DA"), and diabetic medication ("A10").

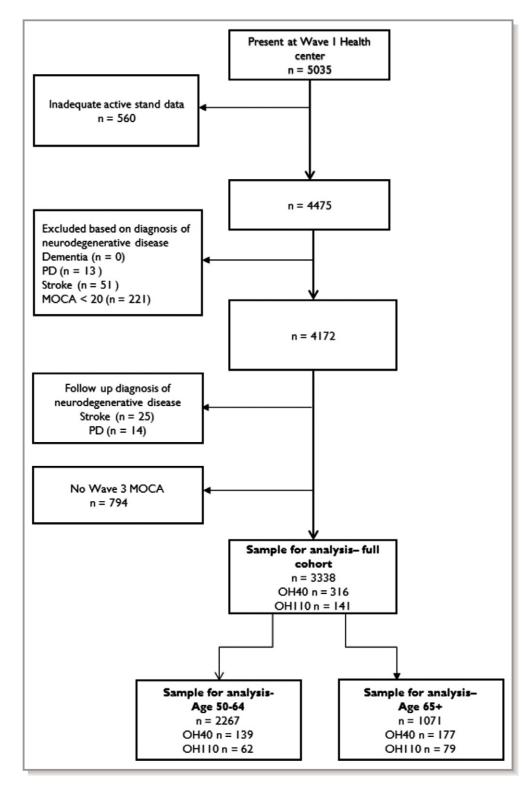
### **Statistical Analysis**

All statistical analyses were carried out using STATA 14 (Stata Corporation). For description of data, normally distributed continuous variables were compared using *t* tests; nonnormally distributed continuous variables were compared using Mann–Whitney tests and categorical variables were compared using  $\chi^2$  tests. Q-Q plots were used to assess normality.

MOCA scores showed a left-skewed distribution at waves 1 and 3. Therefore, we calculated the number of errors on MOCA at each wave (ie, 30 minus MOCA score), and modeled the change in participants' MOCA error rates between waves using mixed effects Poisson models. Interactions with a variable representing wave (wave 1-baseline assessment; wave 3-assessment at 4-year follow-up interval) for each predictor variable were included to probe change in number of errors on the MOCA (presented as incident rate ratio [IRR]). Wave was also included as a fixed effect predictor in the model. For analysis of subdomains in MOCA, the number of errors was calculated by subtracting the score obtained for that domain from the maximum score possible for the domain. Separate models were fitted to assess the impact of OH40 and OH110 on MOCA. All models treated participant as a random effect, with random intercept (ie, MOCA errors at wave 1 and wave 3 were nested participant-wise). Three models were fitted for OH40 and for OH110; model A, with fixed effect of OH only; model B, a multivariable model controlling for fixed effects of age, sex, and education; and model C, a multivariable model controlling for fixed effects of age, sex, education, self-reported hypertension, self-reported heart failure, number of cardiovascular conditions, diabetes mellitus, alcohol use, smoking status, depression, height, frailty, baseline SBP, pulse pressure, heart rate before stand (wave 1), and medication use (grouped as antihypertensive use, antidepressant use, antipsychotic use, and anticholinesterase, anticholinergic or sedative use, and antidiabetic use). Covariates were chosen based on clinical relevance and current literature. Variables were assessed for multicollinearity using variance inflation factors with a cutoff score of 10, with the exception of interactions and the fixed effect for wave. Information on available covariates from both waves was included in the fully adjusted model, and an interaction with the variable representing wave was included.

Models were then repeated testing the interaction between OH and the presence or absence of hypertension; this was assessed by including a 3-way interaction term between the variable representing wave, OH, and hypertension. All models were then repeated including only age group 50 to 64 years and including only age group  $\geq$ 65 years, both with and without inclusion of a 3-way interaction with wave, OH, and hypertension. This was to assess the impact of the presence of hypertension as well as to assess how the results differ in the younger and older age groups.

### **Results**


In total, 8175 participants over the age of 50 years were recruited to wave 1 of the TILDA study, of whom 5035 attended the health center for assessment at wave 1. There

were 4475 participants  $\geq$ 50 years of age with adequate active stand data for analysis, of whom 4172 fulfilled inclusion criteria. Of these individuals, 3338 were present at the wave 3 health center for assessment and did not receive a diagnosis of Parkinson's disease or stroke between waves 1 and 3, and were included in the study. Figure 1 details a flow chart of participants included for analysis. Characteristics of participants who were included in the baseline sample but did not have a follow-up MOCA and therefore were not included in the final sample are provided in Table 1. Participants who did not have a follow-up MOCA assessment were older, with lower MOCA scores and higher prevalence of OH.

Population characteristics are described in Table 2. OH40 was present in 9.46% of participants, and OH110 was present in 4.22% of participants included for analyses. Individuals with OH40 and OH110 on active stand were older, showed lower levels of education, had higher systolic BP, lower baseline heart rate, and higher burden of cardiovascular disease. They were more likely to be taking both antihypertensive and antidepressant medications. Those with OH40 also had higher levels of frailty.

The change between waves in number of errors on MOCA in individuals with OH40 is described in Table 3, with change in rates of errors presented as IRR. Participants with OH40 at baseline had an increase in rates of errors over the 4 years in model A (IRR 1.12, 95% confidence interval [CI], 1.04–1.21, P=0.004); however, this was no longer significant when controlling for age, sex, and level of education (IRR 1.05, 95% CI, 0.97–1.15, P=0.205), or on controlling for all covariates (IRR 1.09, 95% CI, 0.99–1.20, P=0.067). Results of the full multivariable analysis are provided in Table S1. There was no significant increase in rates of errors in MOCA between the 2 waves including only participants in the age group 50 to 64 years, or including only participants in the age group  $\geq$ 65 years (Table 3).

The change between waves in rates of errors in MOCA in individuals with OH110 compared with those without OH110 is also described in Table 3. Participants with OH110 had an increase in number of errors in MOCA compared with those without OH110 on univariate analysis (IRR 1.17, 95% CI, 1.04-1.31, P=0.007); this remained significant on controlling for all covariates (1.17, 95% Cl, 1.02-1.33, P=0.028). Results of the full multivariable analysis for the full age cohort are provided in Table S2. The analysis was then repeated including only age group 50 to 64 years and including only age group  $\geq$ 65 years, and results are also presented in Table 3. In the age group 50 to 64 years, individuals with OH110 had an increase in rates of errors on the MOCA between waves, compared with those without OH on univariate analysis (IRR 1.22, 95% CI, 1.01–1.47, P=0.038), which remained significant on controlling for all confounders (IRR 1.25, 95% CI, 1.01–1.57, P=0.048). In the age group  $\geq$ 65 years there was no significant increase in rates of errors on MOCA in those with OH110 compared with those



**Figure 1.** Sample for analysis. MOCA indicates Montreal Cognitive Assessment; OH110, orthostatic hypotension sustained up to 110 seconds post stand; OH40, orthostatic hypotension sustained up to 40 seconds post stand; PD, Parkinson's disease.

without OH110 between waves (Table 3). The results of the full multivariable models for age group 50 to 64 years are presented in Tables S3 and S4. The results of the full multivariable models

for age group  $\geq$ 65 years are presented in Tables S5 and S6. The decrease in absolute MOCA scores in those with OH110 compared with those without OH110 is small (0.65 points on

#### Table 1. Description of Attrition

|                                            | No Follow-up MOCA (N=794) | Analytic Sample (N=3338) |
|--------------------------------------------|---------------------------|--------------------------|
| Age, mean±SD                               | 61.9±8.7*                 | 61.1±8.0                 |
| MOCA, mean±SD                              | 25.0±2.7 <sup>‡</sup>     | 25.9±2.5                 |
| OH40, % (n)                                | 12.5% (99)*               | 9.5% (316)               |
| OH110, % (n)                               | 4.9 (39)                  | 4.2% (141)               |
| Female, % (n)                              | 54.3% (431)               | 54.2% (1808)             |
| Education, % (n)                           |                           |                          |
| Primary                                    | 24.1% (191) <sup>‡</sup>  | 17.4% (581)              |
| Secondary                                  | 44.2% (352) <sup>‡</sup>  | 42.3% (1411)             |
| Higher                                     | 31.5% (250) <sup>‡</sup>  | 40.3% (1347)             |
| Smoking status, % (n)                      |                           |                          |
| Current                                    | 20.15% (160) <sup>‡</sup> | 13.6% (454)              |
| CVD disease prevalence, % (n)              |                           |                          |
| ≥2 cardiovascular diseases                 | 12.3% (98)                | 11.9% (396)              |
| Seated systolic BP, mean±SD                | 131.6±21.6*               | 129.8±20.3               |
| Seated diastolic BP, mean±SD               | 68.6±10.8                 | 68.0±10.7                |
| Taking antihypertensive medications, % (n) | 12.3% (98)                | 11.9% (396)              |
| Taking antidepressant medications, % (n)   | 6.7% (53)                 | 5.2% (174)               |
| Frailty, % (n)                             | · · · ·                   | ·                        |
| Pre frail/frail                            | 30.8% (237) <sup>‡</sup>  | 24.1% (789)              |

BP indicates blood pressure; CVD, cardiovascular disease; MOCA, Montreal Cognitive Assessment; OH110, orthostatic hypotension sustained to 110 seconds post stand; OH40, Orthostatic hypotension sustained to 40 seconds post stand.

\**P*<0.05.

<sup>†</sup>*P*<0.01. <sup>‡</sup>*P*<0.001.

\**P*<0.001.

MOCA); however, there is a clear divergence between the 2 groups seen in the results (Figure 2).

All analyses were then repeated testing for the interaction with the presence of hypertension at baseline in the full age cohort, in the age group 50 to 64 years and in the age group  $\geq$ 65 years. These results are presented in Table 4. In the full age cohort, individuals with both OH40 and hypertension were more likely to show an increased rate of MOCA errors over the 4-year follow-up period, which was significant on controlling for all confounders (IRR 1.18, 95% Cl, 1.03-1.34, P=0.017). Individuals with OH40 alone or hypertension alone were no more likely to show a difference in error rate than those without OH40 or hypertension on controlling for confounders (Table 4). In the age group 50 to 64 years, participants with OH40 and hypertension at baseline had an increase in the rates of errors on MOCA, which was significant on controlling for all confounders (IRR 1.29, 95% CI, 1.03-1.62, P=0.025). Again, those with OH40 alone or hypertension alone were no more likely to show an increase in rates of errors compared with those with no OH40 and no hypertension (Table 4). Results of the full multivariable analysis for OH40 in the full cohort are presented in Table S7.

Participants with OH110 and hypertension also showed an increase in rates of errors in MOCA between the time points, compared with those with no OH110 and no hypertension, which was significant on controlling for all confounders (IRR 1.27, 95% CI, 1.06–1.53, P=0.011). Results of the full multivariable analysis are presented in Table S8. Repeating the analysis including only those in the 50 to 64 year age group at baseline showed similar results, with those with both OH110 and hypertension showing an increase in the rates of errors on the MOCA (IRR 1.52, 95% CI, 1.08–2.15, P=0.017) compared with reference (no OH, no hypertension). Again there was no significant increase in rates of errors in those with OH110 alone or those with hypertension alone, nor was there any significant increase in those aged  $\geq$ 65 years (Table 4).

When analyzing the results of individual subdomains assessed by MOCA, there is an increase in the rate of errors in the domain of executive function in those with OH40 (IRR 1.32; 95% CI, 1.11, 1.57; P=0.002), which remains significant on controlling for all confounders (IRR 1.27; 95% CI, 1.03, 1.56; P=0.027). Those with OH110 also showed an increase in the rate of errors made in

#### Table 2. Population Characteristics by Presence of OH

| Characteristics                            | OH40 (n=316)             | OH110 (n=141)           | No OH (n=3023) |
|--------------------------------------------|--------------------------|-------------------------|----------------|
| Age, mean±SD                               | 66.1±8.7*                | 65.3±8.3*               | 60.7±7.7       |
| Female, % (n)                              | 60.3% (193) <sup>†</sup> | 66.9% (95) <sup>‡</sup> | 53.2% (1623)   |
| Education, % (n)                           |                          | · · · ·                 | ·              |
| Primary                                    | 23.8% (76) <sup>†</sup>  | 23.9% (34) <sup>†</sup> | 16.9% (517)    |
| Secondary                                  | 39.1% (125) <sup>†</sup> | 45.1% (64) <sup>†</sup> | 42.5% (1297)   |
| Third/higher                               | 37.2% (119) <sup>†</sup> | 30.2% (44) <sup>†</sup> | 40.6% (1239)   |
| Smoking status, % (n)                      |                          | · · ·                   |                |
| Never                                      | 45.6% (146)              | 47.9% (68)              | 47.3% (1443)   |
| Past                                       | 40.0% (128)              | 34.5% (49)              | 39.1% (1194)   |
| Current                                    | 14.4% (46)               | 17.6% (25)              | 13.6% (416)    |
| Alcohol (CAGE)                             |                          |                         |                |
| 0                                          | 75.9% (230)              | 75.7% (100)             | 75.6% (2048)   |
| 1                                          | 10.9% (33)               | 10.6% (14)              | 12.6% (355)    |
| 2                                          | 8.3% (25)                | 4.6% (6)                | 9.5% (268)     |
| 3                                          | 1.0% (3)                 | 1.0% (3)                | 0.7% (19)      |
| Height, mean $\pm$ SD                      | 165.1±9.0 <sup>†</sup>   | 164.1±9.2*              | 166.7±9.1      |
| MOCA, mean±SD                              | 25.6±2.6 <sup>†</sup>    | 25.8±2.6                | 26.0±2.5       |
| Self-reported hypertension, % (n)          | 38.8% (124) <sup>‡</sup> | 40.9% (58) <sup>†</sup> | 30.9% (944)    |
| Self-reported heart failure, % (n)         | 0.6% (2)                 | n=0                     | 0.8% (25)      |
| Self-reported diabetes mellitus, % (n)     | 6.9% (22)                | 7.8% (11)               | 6.0% (183)     |
| Disease prevalence, % (n)                  | ·                        |                         | ·              |
| ≥2 CVDs                                    | 16.9% (54)*              | 14.8 (20) <sup>†</sup>  | 11.6% (355)    |
| Seated systolic BP, mean±SD                | 136.9±23.8*              | 140.3±23.2*             | 129.1±19.8     |
| Seated diastolic BP, mean $\pm$ SD         | 67.8±11.1*               | 70.6±11.5 <sup>‡</sup>  | 70.1±11.1      |
| Taking antihypertensive medications, % (n) | 39.1% (125)*             | 39.4% (56) <sup>‡</sup> | 29.8% (909)    |
| Taking antidepressant medications, % (n)   | 8.8% (28) <sup>†</sup>   | 9.2% (13) <sup>†</sup>  | 4.9% (148)     |
| Taking antipsychotic medications, % (n)    | 1.3% (4)                 | 0.7% (1)                | 0.9% (28)      |
| Taking antidiabetic medication, % (n)      | 5.3% (17)                | 6.3% (9)                | 4.3% (132)     |
| Frailty, % (n)                             |                          |                         |                |
| Pre-frail/frail                            | 31.2% (97) <sup>‡</sup>  | 28.1% (39)              | 23.5% (706)    |
| CES-D score, mean±SD                       | 4.8±5.8                  | 4.3±4.8                 | 5.2±6.5        |
| Baseline HR, mean±SD                       | 62.5±10.1%*              | 61.8±934*               | 65.2±9.8       |

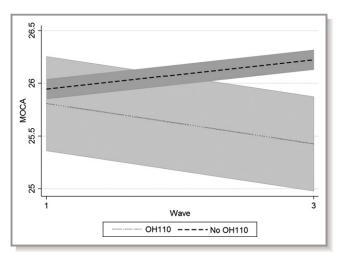
BP indicates blood pressure; CAGE, CAGE Questionnaire; CES-D, Centre for Epidemiological Studies Depression; HR, heart rate; MOCA, Montreal Cognitive Assessment; OH, orthostatic hypotension; OH110, OH up to 110 seconds; OH40, OH up to 40 seconds.

\**P*<0.001.

†*P*<0.05.

*‡P*≤0.01.

the domain of executive function (IRR 1.53; 95% CI, 1.18, 1.99; P=0.002), and again this remained significant on controlling for all confounders (IRR 1.40; 95% CI, 1.03, 1.94; P=0.032). There was no significant increase in error rates seen in the other subdomains assessed by MOCA.


## Discussion

Adults with OH are more likely to show an increase in rate of MOCA errors at 4-year follow-up, which remains significant following adjustment for confounders. The association is strongest in participants who fail to recover blood pressure

|                | OH40              |         | OH110             |         |
|----------------|-------------------|---------|-------------------|---------|
|                | IRR (95% CI)      | P Value | IRR (95% CI)      | P Value |
| Full cohort, I | V=3338            |         |                   |         |
| Model A        | 1.12 (1.04, 1.21) | 0.004*  | 1.17 (1.04, 1.31) | 0.007*  |
| Model B        | 1.05 (0.97, 1.14) | 0.205   | 1.11 (0.99, 1.25) | 0.065*  |
| Model C        | 1.09 (0.99, 1.20) | 0.067   | 1.17 (1.02, 1.33) | 0.028*  |
| Age 50 to 64   | 4 y, N=2267       |         |                   |         |
| Model A        | 1.09 (0.96, 1.24) | 0.170   | 1.22 (1.01, 1.47) | 0.038*  |
| Model B        | 1.09 (0.96, 1.24) | 0.197   | 1.22 (1.02, 1.48) | 0.034*  |
| Model C        | 1.13 (0.98, 1.31) | 0.104   | 1.25 (1.01, 1.57) | 0.048*  |
| Age ≥65 y, I   | N=1071            |         |                   |         |
| Model A        | 1.05 (0.95, 1.17) | 0.306   | 1.06 (0.92, 1.22) | 0.441   |
| Model B        | 1.02 (0.92, 1.13) | 0.688   | 1.05 (0.90, 1.21) | 0.549   |
| Model C        | 1.05 (0.92, 1.19) | 0.459   | 1.09 (0.91, 1.30) | 0.370   |

Model A—Univariate; Model B—Controls for age, sex, and education; Model C— Controls for all covariates—age, sex, education level, self-reported cardiovascular conditions, diabetes mellitus, alcohol use, smoking status, medications, depression, frailty, mean blood pressure, pulse pressure height, and baseline heart rate. Cl indicates confidence interval; IRR, incidence rate ratio; OH110, orthostatic hypotension sustained to 110 seconds; OH40, orthostatic hypotension sustained to 40 seconds. \*Statistically significant *P* values.

throughout the 110-seconds stand. There is evidence that cerebral perfusion is impaired in OH,<sup>13,14</sup> and we hypothesize that those individuals who fail to recover their BP throughout the 110 seconds stand at baseline are therefore exposed to the highest "load" of cerebral hypoperfusion. This association may reflect periods of cerebral hypoperfusion. The association appears to be dependent on the presence of coexistent hypertension, and on age. Individuals with both OH (OH40,



**Figure 2.** MOCA at wave 1 and wave 3 with 95% Cl by presence of OH110 at wave 1. Cl indicates confidence interval; MOCA, Montreal Cognitive Assessment; OH110, orthostatic hypotension sustained to 110 seconds.

OH110) and hypertension showed an increase in rates of errors on MOCA between waves, but this was true only in those aged <65 years. On analysis of the domains assessed by the MOCA individually, it is the domain of executive dysfunction within the MOCA that appears to drive this increase in errors on MOCA. Hypoperfusion of the prefrontal cortex has been reported in OH compared with controls,<sup>32</sup> which may explain these results because executive function is largely controlled by the prefrontal cortex.

The relationship between BP and cognitive function is complex, with both high and low BP being linked with cognitive decline and dementia.<sup>33</sup> A nonlinear, U-shaped relationship between BP and cognitive function has been proposed, with individuals with both high and low BP performing worse on cognitive tests than individuals with BP in the midrange.<sup>34</sup> Hypertension has been consistently linked with cognitive impairment and dementia, particularly midlife hypertension.<sup>33</sup> It is postulated that microvascular dysfunction and damage induced by hypertension leads to white matter disease, microinfarcts, and microhemorrhages, which are correlated with cognitive dysfunction.<sup>35</sup> Several mechanisms are proposed to explain the association between cognitive decline and OH. Cerebral autoregulation may be attenuated with aging, with subsequent failure to adapt to repeated oscillations in BP.36 This may result in impaired cerebral perfusion and cell damage.<sup>14,37</sup> Enhanced white matter hyperdensities are evident in such circumstances,<sup>18</sup> and increasing white matter lesion burden is associated with an increased risk of dementia and also predicts an increased risk of cognitive decline in mild cognitive impairment.<sup>5</sup>

In the current study, individuals with both OH and hypertension exhibited a higher rate of decline in cognitive test scores, whereas individuals with isolated OH or isolated hypertension did not show a decline. Both hypertension<sup>38</sup> and OH<sup>39</sup> are associated with impaired baroreflex, and coexistent OH and hypertension represents a more severe baroreflex dysfunction and exaggerated BP variability. Hypertension causes alterations in the structure and function of cerebral arteries, with loss of elasticity and compliance, resulting in increased myogenic tone, affecting cerebral autoregulation.<sup>5</sup> Thus, hypertension coupled with OH leads to greater BP variability as well as a diminished ability to protect against periods of hypotension when SBP falls below a critical threshold.

These findings are in line with a number of recent longitudinal studies that have found an increase in the rate of incident dementia based on baseline OH, including the Rotterdam Study,<sup>40</sup> the Malmo Preventative Project,<sup>41</sup> and the Three-City Study.<sup>42</sup> The follow-up period for these studies is longer (12–28 years) than in the current study. All assessed incident dementia rather than change in global cognitive test scores such as MOCA. The baseline age ranges were

### Table 4. Change in Global Cognition Between Waves Based on Baseline OH and Stratified by Baseline HTN

|                             | OH40              |         | OH110             |         |
|-----------------------------|-------------------|---------|-------------------|---------|
|                             | IRR (95% CI)      | P Value | IRR (95% CI)      | P Value |
| Full cohort, N=3338         |                   |         |                   |         |
| Model A (base No OH, no HTI | N)                |         |                   |         |
| No OH, HTN                  | 1.09 (1.01, 1.12) | 0.013*  | 1.07 (1.02, 1.13) | 0.006*  |
| OH, No HTN                  | 1.08 (0.94, 1.23) | 0.262   | 1.12 (0.92, 1.37) | 0.264   |
| OH and HTN                  | 1.19 (1.09, 1.32) | <0.001* | 1.25 (1.09, 1.44) | 0.001*  |
| Model B (base No OH, no HT  | N)                |         | ·                 |         |
| No OH, HTN                  | 1.03 (0.97, 1.08) | 0.326   | 1.03 (0.98, 1.08) | 0.241   |
| OH, No HTN                  | 1.01 (0.88, 1.15) | 0.907   | 1.08 (0.89, 1.32) | 0.438   |
| OH and HTN                  | 1.10 (0.99, 1.22) | 0.06    | 1.16 (1.01, 1.33) | 0.042*  |
| Model C (base No OH, no HTI | N)                |         |                   |         |
| No OH, HTN                  | 1.03 (0.95, 1.11) | 0.478   | 1.04 (0.96, 1.13) | 0.365   |
| OH, No HTN                  | 1.00 (0.86, 1.17) | 0.976   | 1.07 (0.84, 1.35) | 0.594   |
| OH and HTN                  | 1.18 (1.03, 1.34) | 0.017*  | 1.27 (1.06, 1.53) | 0.011*  |
| Age 50–64 y, N=2267         |                   |         |                   |         |
| Model A (base No OH, no HTI | N)                |         |                   |         |
| No OH, HTN                  | 1.03 (0.97, 1.10) | 0.330   | 1.04 (0.97, 1.10) | 0.265   |
| OH, No HTN                  | 1.00 (0.83, 1.21) | 0.982   | 1.08 (0.83, 1.41) | 0.562   |
| OH and HTN                  | 1.20 (1.01, 1.42) | 0.036*  | 1.42 (1.09, 1.85) | 0.010*  |
| Model B (base No OH, no HT  | N)                | I       | I                 |         |
| No OH, HTN                  | 1.03 (0.96, 1.10) | 0.394   | 1.03 (0.97, 1.10) | 0.314   |
| OH, No HTN                  | 0.98 (0.82, 1.20) | 0.909   | 1.08 (0.82, 1.41) | 0.577   |
| OH and HTN                  | 1.20 (1.01, 1.43) | 0.035*  | 1.43 (1.10, 1.87) | 0.008*  |
| Model C (base No OH, no HTI | N)                | I       |                   |         |
| No OH, HTN                  | 1.00 (0.91, 1.11) | 0.940   | 1.01 (0.91, 1.13) | 0.762   |
| OH, No HTN                  | 1.01 (0.82, 1.24) | 0.932   | 1.07 (0.79, 1.45) | 0.670   |
| OH and HTN                  | 1.29 (1.03, 1.62) | 0.025*  | 1.52 (1.08, 2.15) | 0.017*  |
| Age ≥65 y, N=1071           |                   | I       |                   |         |
| Model A (base No OH, no HTI | N)                |         |                   |         |
| No OH, HTN                  | 1.05 (0.96, 1.14) | 0.302   | 1.05 (0.96, 1.14) | 0.269   |
| OH, No HTN                  | 1.07 (0.89, 1.29) | 0.484   | 1.11 (0.82, 1.50) | 0.518   |
| OH and HTN                  | 1.09 (0.96, 1.24) | 0.187   | 1.08 (0.92, 1.28) | 0.346   |
| Model B (base No OH, no HTI | N)                | I       |                   |         |
| No OH, HTN                  | 1.03 (0.94, 1.12) | 0.573   | 1.03 (0.95, 1.12) | 0.517   |
| OH, No HTN                  | 1.02 (0.84, 1.24) | 0.837   | 1.09 (0.81, 1.48) | 0.577   |
| OH and HTN                  | 1.04 (0.92, 1.19) | 0.511   | 1.06 (0.89, 1.25) | 0.529   |
| Model C (base No OH, no HT  | N)                |         |                   | 1       |
| No OH, HTN                  | 1.09 (0.96, 1.25) | 0.160   | 1.09 (0.97, 1.24) | 0.148   |
| OH, No HTN                  | 1.05 (0.82, 1.34) | 0.690   | 1.07 (0.73, 1.57) | 0.716   |
| OH and HTN                  | 1.15 (0.96, 1.34) | 0.126   | 1.19 (0.95, 1.50) | 0.123   |

Results of comparison to base of No OH and no HTN. Model A—Univariate; Model B—Controls for age, sex, and education; Model C—Controls for all covariates. Cl indicates confidence interval; HTN, hypertension; IRR, incidence rate ratio; OH110, orthostatic hypotension sustained to 110 seconds; OH40, orthostatic hypotension sustained to 40 seconds. \*Statistically significant *P* values.

 $68.5\pm8.6$  years in the Rotterdam Study,  $45\pm7$  and  $50\pm5$ years in the Dementia-negative and Dementia-positive groups, respectively, in the Malmo Preventative Project, and  $74\pm5$  in the Three-City Cohort. It is not reported that younger individuals within these groups showed a stronger association with dementia. In all 3 studies OH was assessed using traditional oscillometric methods. Phenotypes of OH as defined in the current study (OH40 and OH110) were not assessed, and therefore it is not possible to elicit whether individuals with a higher "load" of cerebral hypoperfusion (ie, OH110 in the current study) were more likely to develop dementia. However, in the Three-City Study, they assessed the traditional thresholds for OH, as well as assessing increasing levels of severity, based on the size of the BP drop, and found that there was a stronger association with the severe OH group. Similarly, in the Rotterdam study, OH was characterized into 3 groups of increasing "severity" of OH; however, in this study they did not observe that increasing severity of OH influenced the association with dementia, possibly because individuals with more severe OH have higher morbidity and mortality.<sup>43</sup> In the Malmo Preventative Study, postural changes in SBP and DBP were assessed as well as the presence of OH as defined traditionally, and found the association between postural DBP changes and dementia was strongest. These studies did not report that the association between OH and dementia was dependent on coexistent hypertension.

The increased rates of errors on MOCA are most robustly observed in the younger age group in our sample (age 50-64 years). This is consistent with studies on hypertension, where midlife hypertension is consistently linked with cognitive impairment. The picture is more complex in older adults, where the association between late-life measures of BP and cognition are less consistent.<sup>44</sup> Whether OH could represent an early, modifiable risk factor for cognitive impairment and dementia requires further exportation given these observational data. However, the management of supine hypertension coupled with OH is complicated because pharmacological interventions for OH exacerbate supine hypertension.45 Management using conservative measures such as fluid hydration, physical counter maneuvers, and compression hosiery may provide a nonpharmacological alternative.<sup>46,47</sup> Supine hypertension and OH often coexist,<sup>46</sup> and hypertension can lead to alteration of cerebral autoregulation capacity, the process of maintaining stable cerebral perfusion despite variation in peripheral blood pressure,<sup>12</sup> further exposing individuals with hypertension to ischemia and hypoxia when systemic BP drops.48

There are some limitations to the current study. The followup period is relatively short for assessing decline in global cognition. Cardiovascular confounders that were controlled for relied on self-reported conditions, and exclusion based on a doctor's diagnosis of dementia also relied on self-reporting. The population included in the study was a predominantly white population. The MOCA was used to assess cognition as it is commonly used in clinical practice; however, it is not specifically designed to assess longitudinal changes in cognition. The principal strength of the current study is its use of beat-to-beat measurement of BP response to stand using a finometer, which allows a precise assessment of BP behavior in response to orthostasis and can detect more subtle fluctuations in BP. TILDA allows inclusion of a large number of confounders, including both self-reported and objective measures. It is noteworthy that individuals without OH110 showed a slight improvement in their MOCA scores, which may reflect in a practice effect.<sup>49</sup> In contrast, cognition declined in those with OH, indicating the potential detrimental effect of BP variability.

In conclusion, we found that OH is associated with a decline in global cognition over a 4-year follow-up period in a community-dwelling population over the age of 50 years. This association appears to be dependent on the presence of coexistent hypertension and is strongest in the middle-aged group. Follow-up at future waves of the TILDA data set will allow assessment of the impact of BP behavior on the rate of cognitive decline and rate of incident dementia in these individuals.

## Acknowledgments

The authors thank Dr Robert Coen, clinical neuropsychologist, St James's Hospital, Dublin, Ireland.

## Sources of Funding

Financial support for TILDA was provided by the Irish Government Department of Health, the Atlantic Philanthropies and Irish Life plc. The funders had no involvement in the study design, collection, analysis and interpretation of data, or preparation of this article. Any views expressed in this report are not necessarily those of the Department of Health and Children or of the Minister for Health.

## Disclosures

None.

#### References

 Freeman R, Wieling W, Axelrod FB, Benditt DG, Benarroch E, Biaggioni I, Cheshire WP, Chelimsky T, Cortelli P, Gibbons CH, Goldstein DS, Hainsworth R, Hilz MJ, Jacob G, Kaufmann H, Jordan J, Lipsitz LA, Levine BD, Low PA, Mathias C, Raj SR, Robertson D, Sandroni P, Schatz I, Schondorff R, Stewart JM, van Dijk JG. Consensus statement on the definition of orthostatic hypotension, neurally mediated syncope and the postural tachycardia syndrome. *Clin Auton Res.* 2011;21:69–72.

- Task Force for the D, Management of S, European Society of C, European Heart Rhythm A, Heart Failure A, Heart Rhythm S, Moya A, Sutton R, Ammirati F, Blanc JJ, Brignole M, Dahm JB, Deharo JC, Gajek J, Gjesdal K, Krahn A, Massin M, Pepi M, Pezawas T, Ruiz Granell R, Sarasin F, Ungar A, van Dijk JG, Walma EP, Wieling W. Guidelines for the diagnosis and management of syncope (version 2009). *Eur Heart J.* 2009;30:2631–2671.
- Finucane C, O'Connell MD, Fan CW, Savva GM, Soraghan CJ, Nolan H, Cronin H, Kenny RA. Age-related normative changes in phasic orthostatic blood pressure in a large population study: findings from The Irish Longitudinal Study on Ageing (TILDA). *Circulation*. 2014;130:1780–1789.
- Low PA, Tomalia VA. Orthostatic hypotension: mechanisms, causes, management. J Clin Neurol. 2015;11:220–226.
- O'Callaghan S, Kenny RA. Neurocardiovascular instability and cognition. Yale J Biol Med. 2016;89:59–71.
- Regan CO, Kearney PM, Cronin H, Savva GM, Lawlor BA, Kenny R. Oscillometric measure of blood pressure detects association between orthostatic hypotension and depression in population based study of older adults. *BMC Psychiatry*. 2013;13:266.
- Frewen J, Finucane C, Savva GM, Boyle G, Kenny RA. Orthostatic hypotension is associated with lower cognitive performance in adults aged 50 plus with supine hypertension. J Gerontol A Biol Sci Med Sci. 2014;69:878–885.
- Harada CN, Natelson Love MC, Triebel KL. Normal cognitive aging. *Clin Geriatr Med.* 2013;29:737–752.
- Ward A, Arrighi HM, Michels S, Cedarbaum JM. Mild cognitive impairment: disparity of incidence and prevalence estimates. *Alzheimers Dement*. 2012;8:14–21.
- Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, Fox NC, Gamst A, Holtzman DM, Jagust WJ, Petersen RC, Snyder PJ, Carrillo MC, Thies B, Phelps CH. The diagnosis of mild cognitive impairment due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. *Alzheimers Dement*. 2011;7:270–279.
- 11. McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR Jr, Kawas CH, Klunk WE, Koroshetz WJ, Manly JJ, Mayeux R, Mohs RC, Morris JC, Rossor MN, Scheltens P, Carrillo MC, Thies B, Weintraub S, Phelps CH. The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. *Alzheimers Dement*. 2011;7:263–269.
- Willie CK, Tzeng YC, Fisher JA, Ainslie PN. Integrative regulation of human brain blood flow. J Physiol. 2014;592:841–859.
- Mehagnoul-Schipper DJ, Vloet LC, Colier WN, Hoefnagels WH, Jansen RW. Cerebral oxygenation declines in healthy elderly subjects in response to assuming the upright position. *Stroke*. 2000;31:1615–1620.
- Novak V, Novak P, Spies JM, Low PA. Autoregulation of cerebral blood flow in orthostatic hypotension. *Stroke*. 1998;29:104–111.
- Frewen J, Savva GM, Boyle G, Finucane C, Kenny RA. Cognitive performance in orthostatic hypotension: findings from a nationally representative sample. J Am Geriatr Soc. 2014;62:117–122.
- Czajkowska J, Ozhog S, Smith E, Perlmuter LC. Cognition and hopelessness in association with subsyndromal orthostatic hypotension. J Gerontol A Biol Sci Med Sci. 2010;65:873–879.
- Mehrabian S, Duron E, Labouree F, Rollot F, Bune A, Traykov L, Hanon O. Relationship between orthostatic hypotension and cognitive impairment in the elderly. J Neurol Sci. 2010;299:45–48.
- Matsubayashi K, Okumiya K, Wada T, Osaki Y, Fujisawa M, Doi Y, Ozawa T. Postural dysregulation in systolic blood pressure is associated with worsened scoring on neurobehavioral function tests and leukoaraiosis in the older elderly living in a community. *Stroke*. 1997;28:2169–2173.
- Yap PL, Niti M, Yap KB, Ng TP. Orthostatic hypotension, hypotension and cognitive status: early comorbid markers of primary dementia? *Dement Geriatr Cogn Disord*. 2008;26:239–246.
- Curreri C, Giantin V, Veronese N, Trevisan C, Sartori L, Musacchio E, Zambon S, Maggi S, Perissinotto E, Corti MC, Crepaldi G, Manzato E, Sergi G. Orthostatic changes in blood pressure and cognitive status in the elderly: the Progetto Veneto Anziani Study. *Hypertension*. 2016;68:427–435.
- Feeney J, O'Leary N, Kenny RA. Impaired orthostatic blood pressure recovery and cognitive performance at two-year follow up in older adults: the Irish Longitudinal Study on Ageing. *Clin Auton Res.* 2016;26:127–133.
- Rose KM, Couper D, Eigenbrodt ML, Mosley TH, Sharrett AR, Gottesman RF. Orthostatic hypotension and cognitive function: the Atherosclerosis Risk in Communities Study. *Neuroepidemiology*. 2010;34:1–7.
- Viramo P, Luukinen H, Koski K, Laippala P, Sulkava R, Kivela SL. Orthostatic hypotension and cognitive decline in older people. J Am Geriatr Soc. 1999;47:600–604.

- Whelan BJ, Savva GM. Design and methodology of the Irish Longitudinal Study on Ageing. J Am Geriatr Soc. 2013;61(suppl 2):S265–S268.
- 25. Sheehan B. Assessment scales in dementia. *Ther Adv Neurol Disord*. 2012;5:349–358.
- Larner AJ. Screening utility of the Montreal Cognitive Assessment (MoCA): in place of—or as well as—the MMSE? *Int Psychogeriatr.* 2012;24:391– 396.
- Gill DJ, Freshman A, Blender JA, Ravina B. The Montreal Cognitive Assessment as a screening tool for cognitive impairment in Parkinson's disease. *Mov Disord*. 2008;23:1043–1046.
- Mayfield D, McLeod G, Hall P. The CAGE questionnaire: validation of a new alcoholism screening instrument. Am J Psychiatry. 1974;131:1121–1123.
- Radloff LS. The CES-D scale: a self-report depression scale for research in the general population. *Appl Psychol Meas.* 1977;1:385–401.
- Karim J, Weisz R, Bibi Z, Rehman SU. Validation of the eight-item Center for Epidemiologic Studies Depression Scale (CES-D) among older adults. *Curr Psychol.* 2015;34:681–692.
- Fried LP, Tangen CM, Walston J, Newman AB, Hirsch C, Gottdiener J, Seeman T, Tracy R, Kop WJ, Burke G, McBurnie MA; Cardiovascular Health Study Collaborative Research G. Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci. 2001;56:M146–M156.
- Hayashida K, Nishiooeda Y, Hirose Y, Ishida Y, Nishimura T. Maladaptation of vascular response in frontal area of patients with orthostatic hypotension. J Nucl Med. 1996;37:1–4.
- Novak V, Hajjar I. The relationship between blood pressure and cognitive function. Nat Rev Cardiol. 2010;7:686–698.
- Waldstein SR, Giggey PP, Thayer JF, Zonderman AB. Nonlinear relations of blood pressure to cognitive function: the Baltimore Longitudinal Study of Aging. *Hypertension*. 2005;45:374–379.
- 35. ladecola C. Hypertension and dementia. Hypertension. 2014;64:3-5.
- Moretti R, Torre P, Antonello RM, Manganaro D, Vilotti C, Pizzolato G. Risk factors for vascular dementia: hypotension as a key point. *Vasc Health Risk Manag.* 2008;4:395–402.
- Tzeng YC, Ainslie PN. Blood pressure regulation IX: cerebral autoregulation under blood pressure challenges. *Eur J Appl Physiol*. 2014;114:545–559.
- Mancia G, Grassi G. The autonomic nervous system and hypertension. Circ Res. 2014;114:1804–1814.
- Goldstein DS, Pechnik S, Holmes C, Eldadah B, Sharabi Y. Association between supine hypertension and orthostatic hypotension in autonomic failure. *Hypertension*. 2003;42:136–142.
- Wolters FJ, Mattace-Raso FU, Koudstaal PJ, Hofman A, Ikram MA; Heart Brain Connection Collaborative Research G. Orthostatic hypotension and the longterm risk of dementia: a population-based study. *PLoS Med.* 2016;13: e1002143.
- Holm H, Nagga K, Nilsson ED, Melander O, Minthon L, Bachus E, Fedorowski A, Magnusson M. Longitudinal and postural changes of blood pressure predict dementia: the Malmo Preventive Project. *Eur J Epidemiol.* 2017;32:327–336.
- Cremer A, Soumaré A, Berr C, Dartigues J-F, Gabelle A, Gosse P, Tzourio C. Orthostatic hypotension and risk of incident dementia: Results from a 12-Year Follow-Up of the Three-City Study Cohort. *Hypertension*. 2017;70:44–49.
- Fedorowski A, Stavenow L, Hedblad B, Berglund G, Nilsson PM, Melander O. Orthostatic hypotension predicts all-cause mortality and coronary events in middle-aged individuals (The Malmo Preventive Project). *Eur Heart J.* 2010;31:85–91.
- Hughes TM, Sink KM. Hypertension and its role in cognitive function: current evidence and challenges for the future. Am J Hypertens. 2016;29:149–157.
- Baker J, Kimpinski K. Management of supine hypertension complicating neurogenic orthostatic hypotension. CNS Drugs. 2017;31:653–663.
- 46. Romero-Ortuno R, O'Connell MD, Finucane C, Soraghan C, Fan CW, Kenny RA. Insights into the clinical management of the syndrome of supine hypertension–orthostatic hypotension (SH-OH): the Irish Longitudinal Study on Ageing (TILDA). *BMC Geriatr.* 2013;13:73.
- Naschitz JE, Slobodin G, Elias N, Rosner I. The patient with supine hypertension and orthostatic hypotension: a clinical dilemma. *Postgrad Med* J. 2006;82:246–253.
- Kennelly S, Collins O. Walking the cognitive 'minefield' between high and low blood pressure. J Alzheimers Dis. 2012;32:609–621.
- Cooley SA, Heaps JM, Bolzenius JD, Salminen LE, Baker LM, Scott SE, Paul RH. Longitudinal change in performance on the Montreal Cognitive Assessment in older adults. *Clin Neuropsychol.* 2015;29:824–835.

**Supplemental Material** 

| Total Errors                              | IRR    | 95% CI           | P- value |
|-------------------------------------------|--------|------------------|----------|
| Wave                                      | 0.4887 | [0.3316][0.7203] | 0.0003   |
| OH40, (base 0)                            | 0.9883 | [0.9091][1.0743] | 0.7817   |
| Age                                       | 1.0098 | [1.0064][1.0133] | <0.0001  |
| Sex                                       | 0.9182 | [0.8565][0.9843] | 0.0162   |
| Education, (base "Primary/none")          |        |                  |          |
| Secondary                                 | 0.8584 | [0.8036][0.9168] | <0.0001  |
| Third level/higher                        | 0.6678 | [0.6234][0.7153] | <0.0001  |
| No. Cardiovascular conditions, (base "0") |        |                  |          |
| 1                                         | 1.0507 | [0.9781][1.1288] | 0.1756   |
| 2                                         | 0.9697 | [0.8695][1.0816] | 0.581    |
| Hypertension, (Base "No")                 | 0.9897 | [0.9217][1.0627] | 0.7747   |
| Heart failure, (base "No")                | 1.1446 | [0.8911][1.4703] | 0.2903   |
| Diabetes, (base "No")                     | 1.116  | [0.9411][1.3233] | 0.2071   |
| Alcohol CAGE score, (base 0)              |        | -                |          |
| 1                                         | 0.9347 | [0.8698][1.0045] | 0.066    |
| 2                                         | 0.8887 | [0.8164][0.9674] | 0.0064   |
| 3                                         | 0.928  | [0.8301][1.0375] | 0.1891   |
| 4                                         | 1.1398 | [0.8788][1.4785] | 0.324    |
| Smoking status, (base "Never smoked")     |        |                  |          |
| Past smoker                               | 0.9823 | [0.9314][1.0360] | 0.5106   |
| Current smoker                            | 1.1047 | [1.0250][1.1905] | 0.0091   |
| Anticholinesterase or Anticholinergic     | 1.1857 | [1.0362][1.3567] | 0.0132   |
| Antihypertensive medications              | 1.0168 | [0.9444][1.0947] | 0.6591   |
| Antipsychotic medications                 | 0.98   | [0.7806][1.2304] | 0.8618   |
| Antidepressant medications                | 1.0261 | [0.9225][1.1412] | 0.6357   |
| Diabetic medications                      | 1.0122 | [0.8344][1.2279] | 0.902    |
| Depression                                | 1.0353 | [0.9503][1.1280] | 0.4271   |
| Pulse pressure, mmHg                      | 1.0003 | [0.9972][1.0034] | 0.8444   |
| Systolic BP, mmHg                         | 1      | [0.9976][1.0024] | 0.9805   |
| Wave#OH40                                 | 1.0927 | [0.9919][1.2037] | 0.0726   |
| Wave# age                                 | 1.0105 | [1.0063][1.0147] | <0.0001  |
| Wave# Sex                                 | 0.9768 | [0.9192][1.0381] | 0.4496   |
| Wave# Education, base primary/none        |        |                  |          |
| Secondary                                 | 0.9631 | [0.8922][1.0397] | 0.3359   |
| Third/higher                              | 0.9809 | [0.9059][1.0620] | 0.634    |
| Wave# No. CVD conditions, (base 0)        |        |                  |          |
| 1                                         | 0.985  | [0.8914][1.0884] | 0.7666   |
| ≥2                                        | 1.0264 | [0.8927][1.1801] | 0.7146   |
| Wave# Hypertension                        | 1.0415 | [0.9608][1.1289] | 0.3228   |
| Wave# heart failure                       | 0.6684 | [0.4514][0.9896] | 0.0442   |
| Wave# Diabetes                            | 0.9542 | [0.7516][1.2114] | 0.7003   |
| Wave# CAGE score, base 0                  |        |                  |          |

 Table S1. Results of Multivariate mixed effects poisson regression for IRR of errors in MOCA based

 on the presence of baseline OH40 for full cohort.

| 1                                        | 0.9475 | [0.8600][1.0440] | 0.2761 |
|------------------------------------------|--------|------------------|--------|
| 2                                        | 0.993  | [0.8873][1.1114] | 0.9027 |
| 3                                        | 0.9571 | [0.8212][1.1155] | 0.575  |
| 4                                        | 0.7217 | [0.4323][1.2050] | 0.2124 |
| Wave# Smoking status, base never         |        |                  |        |
| Past                                     | 1.0226 | [0.9619][1.0872] | 0.474  |
| Current                                  | 0.9905 | [0.8957][1.0955] | 0.8531 |
| Wave# Anticholinesterase/Anticholinergic |        |                  |        |
| medication                               | 0.9641 | [0.8168][1.1380] | 0.6659 |
| Wave# Antihypertensive medication        | 0.979  | [0.8821][1.0866] | 0.6903 |
| Wave# Anti-psychotic medication          | 1.2177 | [0.9191][1.6134] | 0.17   |
| Wave# Anti-depressant                    | 1.1454 | [1.0072][1.3025] | 0.0385 |
| Wave# Diabetic medication                | 1.0481 | [0.8050][1.3647] | 0.7271 |
| Wave# Depression                         | 1.009  | [0.8909][1.1428] | 0.8879 |
| Wave# Pulse Pressure                     | 0.9975 | [0.9930][1.0021] | 0.2921 |
| Wave# Mean SBP                           | 1.0002 | [0.9969][1.0035] | 0.8949 |
| Frailty, base not frail                  |        |                  |        |
| Pre-frail                                | 1.0765 | [1.0240][1.1317] | 0.0038 |
| Frail                                    | 1.111  | [0.8524][1.4481] | 0.4361 |
| Height, sm                               | 0.9956 | [0.9921][0.9991] | 0.0133 |
| Baseline HR, bpm                         | 1.0003 | [0.9981][1.0025] | 0.8148 |
|                                          |        |                  |        |

IRR – Incidence rate ratio; OH40 – Orthostatic hypotension sustained to 40 seconds post stand; CAGE – Alcohol screening questionnaire; HTN - Hypertension; BP – Blood pressure; HR – Heart rate.

| Total Errors                              | IRR    | 95% CI           | P- value |
|-------------------------------------------|--------|------------------|----------|
| Wave                                      | 0.4841 | [0.3290][0.7124] | 0.0002   |
| OH110, (base 0)                           | 0.9453 | [0.8380][1.0665] | 0.3609   |
| Age                                       | 1.0099 | [1.0064][1.0133] | <0.0001  |
| Sex                                       | 0.9201 | [0.8582][0.9864] | 0.019    |
| Education, (base "Primary/none")          |        |                  |          |
| Secondary                                 | 0.8583 | [0.8036][0.9168] | <0.0001  |
| Third level/higher                        | 0.6671 | [0.6227][0.7147] | <0.0001  |
| No. Cardiovascular conditions, (base "0") |        |                  |          |
| 1                                         | 1.0508 | [0.9782][1.1289] | 0.1747   |
| 2                                         | 0.9704 | [0.8701][1.0824] | 0.59     |
| Hypertension, (Base "No")                 | 0.9887 | [0.9208][1.0617] | 0.7547   |
| Heart failure, (base "No")                | 1.1406 | [0.8879][1.4652] | 0.3031   |
| Diabetes, (base "No")                     | 1.1163 | [0.9414][1.3238] | 0.2057   |
| Alcohol CAGE score, (base 0)              |        |                  |          |
| 1                                         | 0.9353 | [0.8703][1.0051] | 0.0686   |
| 2                                         | 0.8885 | [0.8162][0.9672] | 0.0063   |
| 3                                         | 0.9294 | [0.8313][1.0391] | 0.1982   |
| 4                                         | 1.1462 | [0.8837][1.4868] | 0.3038   |
| Smoking status, (base "Never smoked")     |        |                  |          |
| Past smoker                               | 0.9818 | [0.9309][1.0355] | 0.4994   |
| Current smoker                            | 1.105  | [1.0254][1.1908] | 0.0089   |
| Anticholinesterase or Anticholinergic     | 1.1882 | [1.0384][1.3595] | 0.0121   |
| Antihypertensive medications              | 1.018  | [0.9456][1.0960] | 0.6354   |
| Antipsychotic medications                 | 0.9746 | [0.7762][1.2238] | 0.8248   |
| Antidepressant medications                | 1.0264 | [0.9229][1.1415] | 0.6313   |
| Diabetic medications                      | 1.0136 | [0.8355][1.2296] | 0.8912   |
| Depression                                | 1.0324 | [0.9475][1.1249] | 0.4663   |
| Pulse pressure, mmHg                      | 1.0003 | [0.9972][1.0034] | 0.8313   |
| Systolic BP, mmHg                         | 1      | [0.9976][1.0024] | 0.9979   |
| Wave#OH110                                | 1.1683 | [1.0164][1.3430] | 0.0286   |
| Wave# age                                 | 1.0107 | [1.0065][1.0149] | <0.0001  |
| Wave# Sex                                 | 0.9752 | [0.9176][1.0364] | 0.4183   |
| Wave# Education, base primary/none        |        |                  |          |
| Secondary                                 | 0.9635 | [0.8925][1.0400] | 0.3402   |
| Third/higher                              | 0.9831 | [0.9080][1.0645] | 0.6753   |
| Wave# No. CVD conditions, (base 0)        |        |                  |          |
| 1                                         | 0.9869 | [0.8932][1.0906] | 0.7964   |
| ≥2                                        | 1.0286 | [0.8947][1.1825] | 0.6919   |
| Wave# Hypertension                        | 1.0434 | [0.9626][1.1310] | 0.3013   |
| Wave# heart failure                       | 0.6742 | [0.4554][0.9983] | 0.049    |
| Wave# Diabetes                            | 0.9528 | [0.7505][1.2096] | 0.6914   |
| Wave# CAGE score, base 0                  |        |                  |          |

 Table S2. Results of Multivariate mixed effects poisson regression for IRR of errors in MOCA based

 on the presence of baseline OH110 for full cohort.

| 0.9466 | [0.8591][1.0430]                                                                                                                                          | 0.2676                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.9929 | [0.8871][1.1112]                                                                                                                                          | 0.9007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0.96   | [0.8236][1.1188]                                                                                                                                          | 0.601                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0.7168 | [0.4294][1.1967]                                                                                                                                          | 0.203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|        |                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1.0242 | [0.9634][1.0888]                                                                                                                                          | 0.4434                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0.989  | [0.8943][1.0938]                                                                                                                                          | 0.8297                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        |                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.9642 | [0.8169][1.1380]                                                                                                                                          | 0.6662                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0.9755 | [0.8789][1.0826]                                                                                                                                          | 0.6402                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1.2216 | [0.9219][1.6188]                                                                                                                                          | 0.1635                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1.1494 | [1.0110][1.3068]                                                                                                                                          | 0.0335                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1.0484 | [0.8051][1.3651]                                                                                                                                          | 0.7258                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1.0112 | [0.8927][1.1454]                                                                                                                                          | 0.8611                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0.9977 | [0.9931][1.0022]                                                                                                                                          | 0.3161                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1.0001 | [0.9968][1.0034]                                                                                                                                          | 0.9334                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        |                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1.0769 | [1.0244][1.1321]                                                                                                                                          | 0.0037                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1.1056 | [0.8482][1.4410]                                                                                                                                          | 0.4579                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0.9957 | [0.9922][0.9991]                                                                                                                                          | 0.0144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1.0002 | [0.9980][1.0024]                                                                                                                                          | 0.8502                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        | 0.9929<br>0.96<br>0.7168<br>1.0242<br>0.989<br>0.9642<br>0.9755<br>1.2216<br>1.1494<br>1.0484<br>1.0112<br>0.9977<br>1.0001<br>1.0769<br>1.1056<br>0.9957 | 0.9929       [0.8871][1.1112]         0.96       [0.8236][1.1188]         0.7168       [0.4294][1.1967]         1.0242       [0.9634][1.0888]         0.989       [0.8943][1.0938]         0.9642       [0.8169][1.1380]         0.9755       [0.8789][1.0826]         1.2216       [0.9219][1.6188]         1.1494       [1.0110][1.3068]         1.0484       [0.8051][1.454]         0.9977       [0.9931][1.0022]         1.0001       [0.9968][1.0034]         1.0769       [1.0244][1.1321]         1.1056       [0.8482][1.4410]         0.9957       [0.9922][0.9991] |

IRR – Incidence rate ratio; OH110 – Orthostatic hypotension sustained to 110 seconds post stand; CAGE – Alcohol screening questionnaire; HTN - Hypertension; BP – Blood pressure; HR – Heart rate.

| Total Errors                              | IRR    | 95% CI           | P- value |
|-------------------------------------------|--------|------------------|----------|
| Wave                                      | 0.7484 | [0.3947][1.4194] | 0.3749   |
| OH40, (base 0)                            | 0.9539 | [0.8340][1.0910] | 0.4909   |
| Age                                       | 1.0082 | [1.0004][1.0160] | 0.0397   |
| Sex                                       | 0.9379 | [0.8557][1.0281] | 0.1713   |
| Education, (base "Primary/none")          |        |                  |          |
| Secondary                                 | 0.8326 | [0.7581][0.9145] | 0.0001   |
| Third level/higher                        | 0.6226 | [0.5644][0.6867] | <0.0001  |
| No. Cardiovascular conditions, (base "0") |        |                  |          |
| 1                                         | 1.062  | [0.9660][1.1675] | 0.2132   |
| 2                                         | 0.8917 | [0.7625][1.0429] | 0.1515   |
| Hypertension, (Base "No")                 | 0.9941 | [0.9030][1.0945] | 0.9044   |
| Heart failure, (base "No")                | 1.264  | [0.8949][1.7852] | 0.1837   |
| Diabetes, (base "No")                     | 1.1788 | [0.9216][1.5078] | 0.1902   |
| Alcohol CAGE score, (base 0)              |        |                  |          |
| 1                                         | 0.96   | [0.8803][1.0469] | 0.3558   |
| 2                                         | 0.8995 | [0.8142][0.9938] | 0.0373   |
| 3                                         | 0.9138 | [0.7999][1.0439] | 0.1842   |
| 4                                         | 1.3093 | [0.8760][1.9569] | 0.1888   |
| Smoking status, (base "Never smoked")     |        |                  |          |
| Past smoker                               | 0.9807 | [0.9143][1.0521] | 0.5873   |
| Current smoker                            | 1.0848 | [0.9907][1.1879] | 0.0787   |
| Anticholinesterase or Anticholinergic     | 1.1647 | [0.9201][1.4744] | 0.2049   |
| Antihypertensive medications              | 1.0322 | [0.9324][1.1427] | 0.5414   |
| Antipsychotic medications                 | 1.0612 | [0.8226][1.3690] | 0.6477   |
| Antidepressant medications                | 0.9891 | [0.8633][1.1333] | 0.8746   |
| Diabetic medications                      | 1.0445 | [0.7910][1.3791] | 0.759    |
| Depression                                | 1.0343 | [0.9298][1.1506] | 0.5346   |
| Pulse pressure, mmHg                      | 1.0005 | [0.9963][1.0047] | 0.8184   |
| Systolic BP, mmHg                         | 0.9998 | [0.9967][1.0029] | 0.9143   |
| Wave#OH40                                 | 1.1318 | [0.9750][1.3137] | 0.1036   |
| Wave# age                                 | 1.0028 | [0.9939][1.0116] | 0.5412   |
| Wave# Sex                                 | 0.9407 | [0.8710][1.0160] | 0.1197   |
| Wave# Education, base primary/none        |        |                  |          |
| Secondary                                 | 0.94   | [0.8449][1.0457] | 0.2551   |
| Third/higher                              | 0.9927 | [0.8883][1.1093] | 0.8966   |
| Wave# No. CVD conditions, (base 0)        |        |                  |          |
| 1                                         | 1.0065 | [0.8879][1.1409] | 0.9193   |
| ≥2                                        | 1.1145 | [0.9193][1.3510] | 0.2698   |
| Wave# Hypertension                        | 1.0201 | [0.9165][1.1353] | 0.716    |
| Wave# heart failure                       | 0.5107 | [0.3071][0.8493] | 0.0096   |
| Wave# Diabetes                            | 0.9037 | [0.6435][1.2689] | 0.5586   |
| Wave# CAGE score, base 0                  |        |                  |          |

Table S3. Results of Multivariate mixed effects poisson regression for IRR of errors in MOCA based on the presence of baseline OH40 for Age group  $\geq$ 50 and <65.

| 1                                        | 0.9645 | [0.8582][1.0840] | 0.5444 |
|------------------------------------------|--------|------------------|--------|
| 2                                        | 1.0134 | [0.8904][1.1534] | 0.8401 |
| 3                                        | 0.9727 | [0.8118][1.1654] | 0.7639 |
| 4                                        | 0.5464 | [0.2912][1.0256] | 0.0599 |
| Wave# Smoking status, base never         |        |                  |        |
| Past                                     | 1.026  | [0.9485][1.1098] | 0.5219 |
| Current                                  | 1.0141 | [0.9019][1.1403] | 0.8148 |
| Wave# Anticholinesterase/Anticholinergic |        |                  |        |
| medication                               | 0.9725 | [0.7400][1.2781] | 0.8417 |
| Wave# Antihypertensive medication        | 0.9434 | [0.8232][1.0812] | 0.4024 |
| Wave# Anti-psychotic medication          | 1.1553 | [0.8386][1.5915] | 0.3772 |
| Wave# Anti-depressant                    | 1.2183 | [1.0407][1.4261] | 0.014  |
| Wave# Diabetic medication                | 1.1246 | [0.7701][1.6421] | 0.5434 |
| Wave# Depression                         | 0.9944 | [0.8549][1.1567] | 0.9424 |
| Wave# Pulse Pressure                     | 0.9955 | [0.9895][1.0016] | 0.1492 |
| Wave# Mean SBP                           | 1.0015 | [0.9972][1.0057] | 0.4966 |
| Frailty, base not frail                  |        |                  |        |
| Pre-frail                                | 1.0509 | [0.9821][1.1246] | 0.1506 |
| Frail                                    | 1.4248 | [0.9445][2.1492] | 0.0914 |
| Height, sm                               | 0.9949 | [0.9904][0.9995] | 0.0309 |
| Baseline HR, bpm                         | 0.9999 | [0.9969][1.0028] | 0.922  |
| Baseline HR, bpm                         | 0.9999 | [0.9969][1.0028] | 0.922  |

IRR – Incidence rate ratio; OH40 – Orthostatic hypotension sustained to 40 seconds post stand; CAGE
 – Alcohol screening questionnaire; HTN - Hypertension; BP – Blood pressure; HR – Heart rate.
 (N=2148)

| Total Errors                              | IRR    | 95% CI           | P- value |
|-------------------------------------------|--------|------------------|----------|
| Wave                                      | 0.7537 | [0.3974][1.4296] | 0.3867   |
| OH110, (base 0)                           | 0.9157 | [0.7473][1.1220] | 0.3953   |
| Age                                       | 1.0081 | [1.0003][1.0159] | 0.0419   |
| Sex                                       | 0.9393 | [0.8569][1.0296] | 0.181    |
| Education, (base "Primary/none")          |        |                  |          |
| Secondary                                 | 0.8342 | [0.7595][0.9161] | 0.0002   |
| Third level/higher                        | 0.6233 | [0.5651][0.6875] | <0.0001  |
| No. Cardiovascular conditions, (base "0") |        |                  |          |
| 1                                         | 1.0604 | [0.9645][1.1658] | 0.225    |
| 2                                         | 0.8916 | [0.7624][1.0427] | 0.1509   |
| Hypertension, (Base "No")                 | 0.9929 | [0.9019][1.0932] | 0.8848   |
| Heart failure, (base "No")                | 1.2675 | [0.8974][1.7904] | 0.1785   |
| Diabetes, (base "No")                     | 1.1849 | [0.9263][1.5157] | 0.1769   |
| Alcohol CAGE score, (base 0)              |        | •                |          |
| 1                                         | 0.9602 | [0.8805][1.0471] | 0.358    |
| 2                                         | 0.8996 | [0.8143][0.9939] | 0.0375   |
| 3                                         | 0.9139 | [0.8001][1.0440] | 0.1851   |
| 4                                         | 1.3139 | [0.8791][1.9636] | 0.183    |
| Smoking status, (base "Never smoked")     |        |                  |          |
| Past smoker                               | 0.9799 | [0.9135][1.0512] | 0.5714   |
| Current smoker                            | 1.0857 | [0.9914][1.1889] | 0.076    |
| Anticholinesterase or Anticholinergic     | 1.1697 | [0.9239][1.4809] | 0.1929   |
| Antihypertensive medications              | 1.033  | [0.9332][1.1436] | 0.5309   |
| Antipsychotic medications                 | 1.0533 | [0.8164][1.3590] | 0.6896   |
| Antidepressant medications                | 0.9876 | [0.8621][1.1314] | 0.8572   |
| Diabetic medications                      | 1.0375 | [0.7855][1.3704] | 0.7952   |
| Depression                                | 1.0319 | [0.9276][1.1480] | 0.5633   |
| Pulse pressure, mmHg                      | 1.0005 | [0.9964][1.0047] | 0.8025   |
| Systolic BP, mmHg                         | 0.9998 | [0.9967][1.0029] | 0.9134   |
| Wave#OH110                                | 1.2541 | [1.0012][1.5709] | 0.0488   |
| Wave# age                                 | 1.0029 | [0.9941][1.0117] | 0.5263   |
| Wave# Sex                                 | 0.9379 | [0.8683][1.0131] | 0.1034   |
| Wave# Education, base primary/none        |        |                  |          |
| Secondary                                 | 0.9365 | [0.8417][1.0419] | 0.2279   |
| Third/higher                              | 0.991  | [0.8868][1.1075] | 0.8738   |
| Wave# No. CVD conditions, (base 0)        |        |                  |          |
| 1                                         | 1.0097 | [0.8908][1.1445] | 0.8798   |
| ≥2                                        | 1.1135 | [0.9186][1.3499] | 0.2735   |
| Wave# Hypertension                        | 1.0228 | [0.9189][1.1384] | 0.6801   |
| Wave# heart failure                       | 0.5102 | [0.3068][0.8485] | 0.0095   |
| Wave# Diabetes                            | 0.9014 | [0.6419][1.2658] | 0.5489   |
| Wave# CAGE score, base 0                  |        |                  |          |

Table S4. Results of Multivariate mixed effects poisson regression for IRR of errors in MOCA basedon the presence of baseline OH110 for Age group  $\geq 50$  and < 65.

| 1                                        | 0.9623 | [0.8562][1.0816] | 0.5195 |
|------------------------------------------|--------|------------------|--------|
| 2                                        | 1.0134 | [0.8904][1.1533] | 0.8405 |
| 3                                        | 0.9773 | [0.8157][1.1710] | 0.8033 |
| 4                                        | 0.5434 | [0.2896][1.0199] | 0.0576 |
| Wave# Smoking status, base never         |        |                  |        |
| Past                                     | 1.0273 | [0.9497][1.1112] | 0.502  |
| Current                                  | 1.0138 | [0.9016][1.1399] | 0.8194 |
| Wave# Anticholinesterase/Anticholinergic |        |                  |        |
| medication                               | 0.9655 | [0.7345][1.2691] | 0.8011 |
| Wave# Antihypertensive medication        | 0.9406 | [0.8208][1.0780] | 0.3786 |
| Wave# Anti-psychotic medication          | 1.1656 | [0.8458][1.6062] | 0.3491 |
| Wave# Anti-depressant                    | 1.2207 | [1.0429][1.4287] | 0.013  |
| Wave# Diabetic medication                | 1.1339 | [0.7764][1.6561] | 0.5155 |
| Wave# Depression                         | 0.9958 | [0.8561][1.1584] | 0.9566 |
| Wave# Pulse Pressure                     | 0.9957 | [0.9897][1.0018] | 0.1678 |
| Wave# Mean SBP                           | 1.0013 | [0.9971][1.0056] | 0.5384 |
| Frailty, base not frail                  |        |                  |        |
| Pre-frail                                | 1.0513 | [0.9825][1.1250] | 0.1473 |
| Frail                                    | 1.4186 | [0.9404][2.1400] | 0.0956 |
| Height, sm                               | 0.995  | [0.9904][0.9996] | 0.032  |
| Baseline HR, bpm                         | 0.9999 | [0.9970][1.0028] | 0.9303 |
|                                          |        |                  |        |

IRR – Incidence rate ratio; OH110 – Orthostatic hypotension sustained to 110 seconds post stand; CAGE – Alcohol screening questionnaire; HTN - Hypertension; BP – Blood pressure; HR – Heart rate.

| Total Errors                              | IRR    | 95% CI           | P- value |
|-------------------------------------------|--------|------------------|----------|
| Wave                                      | 0.72   | [0.3088][1.6788] | 0.4469   |
| OH40, (base 0)                            | 1.012  | [0.9146][1.1198] | 0.8178   |
| Age                                       | 1.0092 | [1.0014][1.0171] | 0.021    |
| Sex                                       | 0.8872 | [0.7983][0.9860] | 0.0263   |
| Education, (base "Primary/none")          |        |                  |          |
| Secondary                                 | 0.8808 | [0.8039][0.9651] | 0.0065   |
| Third level/higher                        | 0.7326 | [0.6665][0.8052] | < 0.0001 |
| No. Cardiovascular conditions, (base "0") |        |                  |          |
| 1                                         | 1.0263 | [0.9205][1.1442] | 0.6405   |
| 2                                         | 1.0307 | [0.8857][1.1994] | 0.6961   |
| Hypertension, (Base "No")                 | 0.9829 | [0.8854][1.0912] | 0.7465   |
| Heart failure, (base "No")                | 0.9763 | [0.6710][1.4206] | 0.9002   |
| Diabetes, (base "No")                     | 1.0359 | [0.8238][1.3027] | 0.7626   |
| Alcohol CAGE score, (base 0)              |        |                  |          |
| 1                                         | 0.8781 | [0.7689][1.0028] | 0.0549   |
| 2                                         | 0.9131 | [0.7701][1.0828] | 0.2961   |
| 3                                         | 0.9969 | [0.8069][1.2315] | 0.9767   |
| 4                                         | 1.0424 | [0.7436][1.4613] | 0.8097   |
| Smoking status, (base "Never smoked")     |        |                  |          |
| Past smoker                               | 0.9727 | [0.8970][1.0548] | 0.5031   |
| Current smoker                            | 1.1163 | [0.9717][1.2824] | 0.1202   |
| Anticholinesterase or Anticholinergic     | 1.1725 | [0.9997][1.3752] | 0.0505   |
| Antihypertensive medications              | 1.0025 | [0.9018][1.1145] | 0.9625   |
| Antipsychotic medications                 | 0.6929 | [0.3782][1.2692] | 0.2348   |
| Antidepressant medications                | 1.0681 | [0.8982][1.2701] | 0.4563   |
| Diabetic medications                      | 0.9671 | [0.7434][1.2583] | 0.8035   |
| Depression                                | 1.0526 | [0.9089][1.2190] | 0.4937   |
| Pulse pressure, mmHg                      | 1.0002 | [0.9955][1.0049] | 0.9389   |
| Systolic BP, mmHg                         | 1.0001 | [0.9962][1.0039] | 0.9663   |
| Wave#OH40                                 | 1.0497 | [0.9232][1.1935] | 0.4593   |
| Wave# age                                 | 1.0075 | [0.9976][1.0174] | 0.1373   |
| Wave# Sex                                 | 1.0359 | [0.9359][1.1466] | 0.496    |
| Wave# Education, base primary/none        |        |                  |          |
| Secondary                                 | 0.9927 | [0.8847][1.1139] | 0.9008   |
| Third/higher                              | 0.952  | [0.8457][1.0715] | 0.4147   |
| Wave# No. CVD conditions, (base 0)        |        | _                |          |
| 1                                         | 0.928  | [0.7821][1.1011] | 0.392    |
| ≥2                                        | 0.9181 | [0.7397][1.1394] | 0.4379   |
| Wave# Hypertension                        | 1.0967 | [0.9683][1.2422] | 0.1464   |
| Wave# heart failure                       | 1.0682 | [0.5719][1.9952] | 0.836    |
| Wave# Diabetes                            | 1.0403 | [0.7469][1.4489] | 0.8152   |
| Wave# CAGE score, base 0                  |        |                  |          |

Table S5. Results of Multivariate mixed effects poisson regression for IRR of errors in MOCA basedon the presence of baseline OH40 for Age group  $\geq 65$ .

| 1                                        | 0.9363 | [0.7836][1.1187] | 0.4688 |
|------------------------------------------|--------|------------------|--------|
| 2                                        | 0.8692 | [0.6866][1.1004] | 0.2441 |
| 3                                        | 0.9162 | [0.6799][1.2346] | 0.5652 |
| 4                                        | 1.3827 | [0.4941][3.8695] | 0.5372 |
| Wave# Smoking status, base never         |        |                  |        |
| Past                                     | 1.0226 | [0.9249][1.1305] | 0.6628 |
| Current                                  | 0.9643 | [0.7845][1.1852] | 0.7296 |
| Wave# Anticholinesterase/Anticholinergic |        |                  |        |
| medication                               | 0.9752 | [0.7905][1.2030] | 0.8144 |
| Wave# Antihypertensive medication        | 1.0276 | [0.8700][1.2139] | 0.7483 |
| Wave# Anti-psychotic medication          | 1.5783 | [0.7966][3.1272] | 0.1908 |
| Wave# Anti-depressant                    | 1.0672 | [0.8501][1.3399] | 0.5751 |
| Wave# Diabetic medication                | 0.9847 | [0.6828][1.4202] | 0.9343 |
| Wave# Depression                         | 0.9976 | [0.7957][1.2507] | 0.9831 |
| Wave# Pulse Pressure                     | 1.0015 | [0.9945][1.0086] | 0.6758 |
| Wave# Mean SBP                           | 0.9973 | [0.9921][1.0026] | 0.325  |
| Frailty, base not frail                  |        |                  |        |
| Pre-frail                                | 1.1242 | [1.0467][1.2075] | 0.0013 |
| Frail                                    | 0.9269 | [0.6678][1.2866] | 0.6501 |
| Height, sm                               | 0.9969 | [0.9917][1.0020] | 0.2321 |
| Baseline HR, bpm                         | 1.0004 | [0.9972][1.0037] | 0.8069 |
|                                          |        |                  |        |

IRR – Incidence rate ratio; OH40 – Orthostatic hypotension sustained to 40 seconds post stand; CAGE – Alcohol screening questionnaire; HTN - Hypertension; BP – Blood pressure; HR – Heart rate.

| Total Errors                              | IRR    | 95% CI           | P- value |
|-------------------------------------------|--------|------------------|----------|
| Wave                                      | 0.6911 | [0.3001][1.5919] | 0.3855   |
| OH110, (base 0)                           | 0.9747 | [0.8468][1.1220] | 0.7214   |
| Age                                       | 1.0094 | [1.0017][1.0172] | 0.0167   |
| Sex                                       | 0.8897 | [0.8005][0.9888] | 0.0301   |
| Education, (base "Primary/none")          |        |                  |          |
| Secondary                                 | 0.8806 | [0.8037][0.9650] | 0.0064   |
| Third level/higher                        | 0.7314 | [0.6653][0.8041] | <0.0001  |
| No. Cardiovascular conditions, (base "0") |        |                  |          |
| 1                                         | 1.0276 | [0.9216][1.1457] | 0.6241   |
| 2                                         | 1.0328 | [0.8875][1.2018] | 0.6768   |
| Hypertension, (Base "No")                 | 0.983  | [0.8855][1.0914] | 0.7485   |
| Heart failure, (base "No")                | 0.9714 | [0.6674][1.4140] | 0.8796   |
| Diabetes, (base "No")                     | 1.0311 | [0.8202][1.2961] | 0.7931   |
| Alcohol CAGE score, (base 0)              |        |                  |          |
| 1                                         | 0.8784 | [0.7691][1.0031] | 0.0556   |
| 2                                         | 0.9112 | [0.7685][1.0804] | 0.2846   |
| 3                                         | 0.9989 | [0.8084][1.2342] | 0.9916   |
| 4                                         | 1.0474 | [0.7471][1.4684] | 0.7884   |
| Smoking status, (base "Never smoked")     |        |                  |          |
| Past smoker                               | 0.9729 | [0.8972][1.0550] | 0.5064   |
| Current smoker                            | 1.1208 | [0.9767][1.2860] | 0.1042   |
| Anticholinesterase or Anticholinergic     | 1.1749 | [1.0020][1.3777] | 0.0472   |
| Antihypertensive medications              | 1.0036 | [0.9027][1.1157] | 0.9477   |
| Antipsychotic medications                 | 0.6917 | [0.3775][1.2673] | 0.2328   |
| Antidepressant medications                | 1.0699 | [0.8997][1.2723] | 0.4447   |
| Diabetic medications                      | 0.9743 | [0.7487][1.2678] | 0.8464   |
| Depression                                | 1.0495 | [0.9059][1.2159] | 0.52     |
| Pulse pressure, mmHg                      | 1.0001 | [0.9954][1.0049] | 0.9613   |
| Systolic BP, mmHg                         | 1.0002 | [0.9964][1.0040] | 0.9267   |
| Wave#OH110                                | 1.085  | [0.9075][1.2971] | 0.3707   |
| Wave# age                                 | 1.008  | [0.9983][1.0178] | 0.1047   |
| Wave# Sex                                 | 1.0353 | [0.9352][1.1460] | 0.5039   |
| Wave# Education, base primary/none        |        |                  |          |
| Secondary                                 | 0.9932 | [0.8852][1.1144] | 0.9077   |
| Third/higher                              | 0.9543 | [0.8477][1.0743] | 0.4388   |
| Wave# No. CVD conditions, (base 0)        |        |                  |          |
| 1                                         | 0.9291 | [0.7830][1.1023] | 0.3989   |
| ≥2                                        | 0.9207 | [0.7421][1.1424] | 0.4529   |
| Wave# Hypertension                        | 1.0989 | [0.9703][1.2445] | 0.1376   |
| Wave# heart failure                       | 1.087  | [0.5820][2.0305] | 0.7935   |
| Wave# Diabetes                            | 1.0419 | [0.7482][1.4508] | 0.8081   |
| Wave# CAGE score, base 0                  |        |                  |          |

Table S6. Results of Multivariate mixed effects poisson regression for IRR of errors in MOCA based on the presence of baseline OH110 for Age group  $\geq 65$ .

| 1                                        | 0.937  | [0.7842][1.1196] | 0.4737 |
|------------------------------------------|--------|------------------|--------|
| 2                                        | 0.8677 | [0.6856][1.0983] | 0.238  |
| 3                                        | 0.9179 | [0.6811][1.2370] | 0.5735 |
| 4                                        | 1.3721 | [0.4903][3.8399] | 0.5468 |
| Wave# Smoking status, base never         |        |                  |        |
| Past                                     | 1.0244 | [0.9267][1.1325] | 0.6373 |
| Current                                  | 0.9608 | [0.7818][1.1808] | 0.704  |
| Wave# Anticholinesterase/Anticholinergic |        |                  |        |
| medication                               | 0.9766 | [0.7917][1.2045] | 0.8246 |
| Wave# Antihypertensive medication        | 1.0236 | [0.8666][1.2089] | 0.7839 |
| Wave# Anti-psychotic medication          | 1.5747 | [0.7946][3.1207] | 0.1932 |
| Wave# Anti-depressant                    | 1.0733 | [0.8551][1.3471] | 0.5418 |
| Wave# Diabetic medication                | 0.9796 | [0.6792][1.4129] | 0.9121 |
| Wave# Depression                         | 0.9988 | [0.7964][1.2526] | 0.9917 |
| Wave# Pulse Pressure                     | 1.0016 | [0.9946][1.0087] | 0.6518 |
| Wave# Mean SBP                           | 0.9973 | [0.9920][1.0026] | 0.3104 |
| Frailty, base not frail                  |        |                  |        |
| Pre-frail                                | 1.1248 | [1.0472][1.2081] | 0.0013 |
| Frail                                    | 0.9213 | [0.6635][1.2793] | 0.6247 |
| Height, sm                               | 0.997  | [0.9918][1.0021] | 0.2465 |
| Baseline HR, bpm                         | 1.0003 | [0.9971][1.0036] | 0.8449 |
|                                          |        |                  |        |

IRR – Incidence rate ratio; OH110 – Orthostatic hypotension sustained to 110 seconds post stand; CAGE – Alcohol screening questionnaire; HTN - Hypertension; BP – Blood pressure; HR – Heart rate.

| Total Errors                              | IRR    | 95% CI              | P- value |
|-------------------------------------------|--------|---------------------|----------|
| Wave                                      | 0.4888 | [0.3317][0.7205]    | 0.0003   |
| OH40#HTN, (base No HTN, No OH40)          |        |                     |          |
| No OH40, HTN                              | 0.9896 | [0.9204][1.0640]    | 0.7772   |
| OH40, No HTN                              | 0.9941 | [0.8690][1.1372]    | 0.9315   |
| OH40 and HTN                              | 0.9751 | [0.8647][1.0995]    | 0.6802   |
| Age                                       | 1.0098 | [1.0063][1.0133]    | <0.0002  |
| Sex                                       | 0.9179 | [0.8562][0.9840]    | 0.0158   |
| Education, (base "Primary/none")          |        |                     |          |
| Secondary                                 | 0.8583 | [0.8036][0.9168]    | <0.0001  |
| Third level/higher                        | 0.6675 | [0.6231][0.7151]    | <0.0002  |
| No. Cardiovascular conditions, (base "0") |        |                     |          |
| 1                                         | 1.0517 | [0.9790][1.1298]    | 0.1681   |
| 2                                         | 0.9705 | [0.8701][1.0824]    | 0.5903   |
| Heart failure, (base "No")                | 1.1415 | [0.8886][1.4663]    | 0.3004   |
| Diabetes, (base "No")                     | 1.1167 | [0.9418][1.3242]    | 0.2041   |
| Alcohol CAGE score, (base 0)              | -      |                     |          |
| 1                                         | 0.9351 | [0.8701][1.0049]    | 0.0676   |
| 2                                         | 0.8887 | [0.8164][0.9674]    | 0.0064   |
| 3                                         | 0.9273 | [0.8294][1.0367]    | 0.1846   |
| 4                                         | 1.1428 | [0.8810][1.4824]    | 0.3146   |
| Smoking status, (base "Never smoked")     |        | []                  |          |
| Past smoker                               | 0.9819 | [0.9310][1.0356]    | 0.5016   |
| Current smoker                            | 1.1049 | [1.0252][1.1907]    | 0.009    |
| Anticholinesterase or Anticholinergic     | 1.1845 | [1.0351][1.3554]    | 0.0138   |
| Antihypertensive medications              | 1.0163 | [0.9440][1.0942]    | 0.6679   |
| Antipsychotic medications                 | 0.9785 | [0.7793][1.2285]    | 0.8512   |
| Antidepressant medications                | 1.0277 | [0.9239][1.1432]    | 0.6146   |
| Diabetic medications                      | 1.0118 | [0.8341][1.2274]    | 0.905    |
| Depression                                | 1.0351 | [0.9500][1.1277]    | 0.4307   |
| Pulse pressure, mmHg                      | 1.0004 | [0.9973][1.0035]    | 0.8138   |
| Systolic BP, mmHg                         | 1      | [0.9976][1.0024]    | 0.9747   |
| Wave#OH40#HTN, (base no OH40, no HTN)     | -      | [0.007.0] [2.002.1] | 0107.17  |
| No OH40, HTN                              | 1.0302 | [0.9489][1.1184]    | 0.478    |
| OH40, No HTN                              | 1.0025 | [0.8545][1.1761]    | 0.976    |
| OH40 and HTN                              | 1.1821 | [1.0310][1.3553]    | 0.0165   |
| Wave# age                                 | 1.0105 | [1.0063][1.0148]    | <0.0001  |
| Wave# Sex                                 | 0.9771 | [0.9194][1.0384]    | 0.4556   |
| Wave# Education, base primary/none        |        |                     |          |
| Secondary                                 | 0.9644 | [0.8934][1.0411]    | 0.3532   |
| Third/higher                              | 0.9829 | [0.9077][1.0643]    | 0.6702   |
| Wave# No. CVD conditions, (base 0)        |        |                     |          |
| 1                                         | 0.984  | [0.8905][1.0874]    | 0.7521   |
|                                           |        |                     |          |

Table S7. Results of Multivariate mixed effects poisson regression for IRR of errors in MOCA based on the presence of baseline OH40, stratified by the presence of baseline supine HTN for full cohort.

| ≥2                                       | 1.0238 | [0.8904][1.1772] | 0.7412 |
|------------------------------------------|--------|------------------|--------|
| Wave# heart failure                      | 0.6684 | [0.4514][0.9897] | 0.0443 |
| Wave# Diabetes                           | 0.961  | [0.7569][1.2203] | 0.7443 |
| Wave# CAGE score, base 0                 |        |                  |        |
| 1                                        | 0.9484 | [0.8608][1.0450] | 0.2847 |
| 2                                        | 0.9946 | [0.8887][1.1132] | 0.9256 |
| 3                                        | 0.9605 | [0.8241][1.1196] | 0.6066 |
| 4                                        | 0.7204 | [0.4315][1.2027] | 0.2098 |
| Wave# Smoking status, base never         |        |                  |        |
| Past                                     | 1.0231 | [0.9624][1.0877] | 0.4643 |
| Current                                  | 0.9906 | [0.8957][1.0955] | 0.8541 |
| Wave# Anticholinesterase/Anticholinergic |        |                  |        |
| medication                               | 0.963  | [0.8158][1.1366] | 0.6555 |
| Wave# Antihypertensive medication        | 0.9794 | [0.8824][1.0870] | 0.6951 |
| Wave# Anti-psychotic medication          | 1.2161 | [0.9179][1.6112] | 0.1729 |
| Wave# Anti-depressant                    | 1.1416 | [1.0038][1.2984] | 0.0436 |
| Wave# Diabetic medication                | 1.0398 | [0.7984][1.3541] | 0.7724 |
| Wave# Depression                         | 1.0114 | [0.8929][1.1456] | 0.8584 |
| Wave# Pulse Pressure                     | 0.9974 | [0.9929][1.0020] | 0.2719 |
| Wave# Mean SBP                           | 1.0003 | [0.9970][1.0036] | 0.8724 |
| Frailty, base not frail                  |        |                  |        |
| Pre-frail                                | 1.0763 | [1.0239][1.1315] | 0.0039 |
| Frail                                    | 1.1115 | [0.8528][1.4487] | 0.4341 |
| Height, sm                               | 0.9956 | [0.9921][0.9991] | 0.013  |
| Baseline HR, bpm                         | 1.0002 | [0.9980][1.0025] | 0.8276 |

IRR – Incidence rate ratio; OH40 – Orthostatic hypotension sustained to 40 seconds post stand; HTN – Supine hypertension; CAGE – Alcohol screening questionnaire; HTN - Hypertension; BP – Blood pressure; HR – Heart rate.

Table S8. Results of Multivariate mixed effects poisson regression for IRR of errors in MOCA based on the presence of baseline OH110, stratified by the presence of baseline supine HTN for full cohort.

| Total Errors                              | IRR    | 95% CI            | P- value |
|-------------------------------------------|--------|-------------------|----------|
| Wave                                      | 0.4831 | [0.3283][0.7110]  | 0.0002   |
| OH110#HTN, (base No HTN, No OH110)        |        |                   |          |
| No OH110, HTN                             | 0.9861 | [0.9179][1.0593]  | 0.701    |
| OH110, No HTN                             | 0.9115 | [0.7453][1.1147]  | 0.3668   |
| OH110 and HTN                             | 0.9525 | [0.8096][1.1206]  | 0.5569   |
| Age                                       | 1.0098 | [1.0064][1.0132]  | <0.0001  |
| Sex                                       | 0.9197 | [0.8579][0.9860]  | 0.0184   |
| Education, (base "Primary/none")          |        |                   |          |
| Secondary                                 | 0.8588 | [0.8040][0.9173]  | <0.0001  |
| Third level/higher                        | 0.6676 | [0.6231][0.7152]  | <0.0001  |
| No. Cardiovascular conditions, (base "0") |        |                   |          |
| 1                                         | 1.0511 | [0.9784][1.1291]  | 0.1728   |
| 2                                         | 0.9705 | [0.8701][1.0824]  | 0.5907   |
| Heart failure, (base "No")                | 1.1407 | [0.8880][1.4653]  | 0.3027   |
| Diabetes, (base "No")                     | 1.1176 | [0.9425][1.3252]  | 0.2011   |
| Alcohol CAGE score, (base 0)              |        |                   |          |
| 1                                         | 0.9357 | [0.8706][1.0055]  | 0.0703   |
| 2                                         | 0.8887 | [0.8164][0.9674]  | 0.0064   |
| 3                                         | 0.9291 | [0.8311][1.0388]  | 0.1967   |
| 4                                         | 1.1483 | [0.8853][1.4895]  | 0.2973   |
| Smoking status, (base "Never smoked")     |        | []                |          |
| Past smoker                               | 0.9818 | [0.9309][1.0355]  | 0.4985   |
| Current smoker                            | 1.1049 | [1.0252][1.1907]  | 0.009    |
| Anticholinesterase or Anticholinergic     | 1.1873 | [1.0376][1.3586]  | 0.0126   |
| Antihypertensive medications              | 1.0181 | [0.9456][1.0961]  | 0.6338   |
| Antipsychotic medications                 | 0.9744 | [0.7760][1.2236]  | 0.8236   |
| Antidepressant medications                | 1.027  | [0.9235][1.1422]  | 0.6229   |
| Diabetic medications                      | 1.0124 | [0.8345][1.2281]  | 0.9008   |
| Depression                                | 1.0326 | [0.9477][1.1251]  | 0.464    |
| Pulse pressure, mmHg                      | 1.0003 | [0.9972][1.0035]  | 0.8253   |
| Systolic BP, mmHg                         | 1.0005 | [0.9976][1.0024]  | 0.9991   |
| Wave#OH40#HTN, (base no OH110, no HTN)    | -      | [0.5570] [1.0024] | 0.5551   |
| No OH110, HTN                             | 1.0382 | [0.9572][1.1259]  | 0.3658   |
| OH110, No HTN                             | 1.067  | [0.8407][1.3542]  | 0.5939   |
| OH110 and HTN                             | 1.2731 | [1.0583][1.5317]  | 0.0105   |
| Wave# age                                 | 1.0107 | [1.0065][1.0149]  | <0.0001  |
| Wave# Sex                                 | 0.9762 | [0.9185][1.0376]  | 0.4394   |
| Wave# Education, base primary/none        |        |                   |          |
| Secondary                                 | 0.9654 | [0.8942][1.0422]  | 0.3674   |
| Third/higher                              | 0.9853 | [0.9099][1.0670]  | 0.7151   |
| Wave# No. CVD conditions, (base 0)        |        |                   |          |

| 1                                        | 0.9864 | [0.8926][1.0899] | 0.7876 |
|------------------------------------------|--------|------------------|--------|
| ≥2                                       | 1.0269 | [0.8931][1.1807] | 0.7093 |
| Wave# heart failure                      | 0.6762 | [0.4567][1.0011] | 0.0506 |
| Wave# Diabetes                           | 0.9596 | [0.7558][1.2185] | 0.7353 |
| Wave# CAGE score, base 0                 |        |                  |        |
| 1                                        | 0.9481 | [0.8605][1.0447] | 0.282  |
| 2                                        | 0.9936 | [0.8878][1.1121] | 0.9116 |
| 3                                        | 0.9601 | [0.8237][1.1190] | 0.6023 |
| 4                                        | 0.7155 | [0.4286][1.1945] | 0.2004 |
| Wave# Smoking status, base never         |        |                  |        |
| Past                                     | 1.0245 | [0.9637][1.0892] | 0.4378 |
| Current                                  | 0.9889 | [0.8941][1.0936] | 0.8274 |
| Wave# Anticholinesterase/Anticholinergic |        |                  |        |
| medication                               | 0.9648 | [0.8174][1.1388] | 0.6717 |
| Wave# Antihypertensive medication        | 0.9757 | [0.8791][1.0829] | 0.6435 |
| Wave# Anti-psychotic medication          | 1.218  | [0.9191][1.6140] | 0.1699 |
| Wave# Anti-depressant                    | 1.1496 | [1.0111][1.3070] | 0.0333 |
| Wave# Diabetic medication                | 1.0404 | [0.7989][1.3549] | 0.7689 |
| Wave# Depression                         | 1.0127 | [0.8941][1.1472] | 0.8421 |
| Wave# Pulse Pressure                     | 0.9976 | [0.9931][1.0022] | 0.3121 |
| Wave# Mean SBP                           | 1.0002 | [0.9969][1.0035] | 0.9256 |
| Frailty, base not frail                  |        |                  |        |
| Pre-frail                                | 1.0769 | [1.0244][1.1321] | 0.0037 |
| Frail                                    | 1.1068 | [0.8491][1.4425] | 0.453  |
| Height, sm                               | 0.9956 | [0.9921][0.9991] | 0.013  |
| Baseline HR, bpm                         | 1.0002 | [0.9980][1.0024] | 0.8345 |

IRR – Incidence rate ratio; OH110 – Orthostatic hypotension sustained to 110 seconds post stand; HTN – Supine hypertension; CAGE – Alcohol screening questionnaire; HTN - Hypertension; BP – Blood pressure; HR – Heart rate.