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Abstract

comparable to the performance of human experts.

The analysis of retinal blood vessels plays an important role in detecting and treating retinal diseases. In this review,
we present an automated method to segment blood vessels of fundus retinal image. The proposed method could be
used to support a non-intrusive diagnosis in modern ophthalmology for early detection of retinal diseases, treatment
evaluation or clinical study. This study combines the bias correction and an adaptive histogram equalisation to
enhance the appearance of the blood vessels. Then the blood vessels are extracted using probabilistic modelling that
is optimised by the expectation maximisation algorithm. The method is evaluated on fundus retinal images of STARE
and DRIVE datasets. The experimental results are compared with some recently published methods of retinal blood
vessels segmentation. The experimental results show that our method achieved the best overall performance and it is
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Introduction
Automated segmentation of retinal structures allows
ophthalmologist and eye care specialists to perform
large population vision screening exams for early detec-
tion of retinal diseases and treatment evaluation. This
non-intrusive diagnosis in modern ophthalmology could
prevent and reduce blindness and many cardiovascular
diseases around the world. An accurate segmentation of
retinal blood vessels (vessel diameter, colour and tortu-
osity) plays an important role in detecting and treating
symptoms of both the retinal abnormalities and diseases
that affect the blood circulation and the brain such as
haemorrhages, vein occlusion, neo-vascularisation. How-
ever, the intensity inhomogeneity and the poor contrast
of the retinal images cause a significant degradation to
the performance of automated blood vessels segmentation
techniques. The intensity inhomogeneity of the fundus
retinal image is generally attributed to the acquisition of
the image under different conditions of illumination.
Previous methods of blood vessels segmentation can be
classified into two categories: (1) pixels processing based
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methods, and (2) tracking-based or vectorial tracking or
tracing methods [1].

Pixel processing based methods use filtering and mor-
phological pre-processing techniques to enhance the
appearance of the blood vessels in the image. The
enhanced image is then processed using techniques such
as thinning or branching to classify pixel as either belong-
ing to vessels or background. Hoover et al. [2] proposed
a framework to extract blood vessel from retinal images
using a set of twelve directional kernels to enhance the
vessels before applying threshold-probing technique for
segmentation. Mendoca et al. [3] presented a method to
extract a vessel centreline then filled it using the global
intensity characteristics of the image and the local ves-
sel width information. Maritiner-perez et al. proposed a
new segmentation method of blood vessels from red-free
and fluorescein retinal images. This method is based on
multiscale feature extraction, which used the first and
second spatial derivatives of the image intensity that pro-
vides information about vessel topology. A multiple pass
region growing procedure is applied to segment the ves-
sels using both vessels feature information and spatial
information. Zhang et al. [4] extracted the blood ves-
sel tree by matched filter with first-order derivative of
Gaussian. The method detects the blood vessels by thresh-
olding the retinal image’s response to the matched filter,
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while the threshold is adjusted by the response of the
image to the first-order derivative of Gaussian. Cinsdikici
et al. proposed a method of retinal blood vessel detection
using a combination of a hybrid model of matched filter
and ant colony algorithm.

The drawback of these techniques is that some propri-
eties of blood vessels can only be applied in the segmen-
tation process after a low level preprocessing and they
generally output poor segmentation results on unhealthy
retinal images that have the presence of lesions. They
also need more computational power when the size of an
image increases, thus a special hardware is required for
real time processing.

The tracking based approaches or vectorial tracking or
tracing included semi automated tracing and automated
tracing. In the semi automated tracing methods, the user
manually selects the initial vessel seed point. The methods
are generally used in quantitative coronary angiography
analysis. In fully automated tracing, the algorithms select
automatically the initial vessel points and most of them
use Gaussian functions to characterise a vessel profile
model, which locates a vessel points for the vessel trac-
ing. The tracking based methods are seen as single pass
operations, which perform the vessels’ structure detection
and recognition simultaneously. The advances of using
these techniques are that, they are computational efficient
and much faster than pixels processing methods because
the algorithms avoid the processing of every pixels in the
image and use only the pixels in the neighbourhood of the
vessels structure.

Xu et al. [5] combined the adaptive local thresholding
method and the tracking growth technique to segment
retinal blood vessels. Staal et al. [6] proposed a retinal
blood vessel segmentation in two dimensional colour reti-
nal images. The method extracts the images ridges, which
are used to compose primitives in the form of line ele-
ments. The line elements are used to partition an image
into patches, then a feature vectors are computed for every
pixel and classified a kappa NN-classifier and sequential
forward feature selection. Chaudhuri et al. [7] presented
a framework to segment the blood vessels in the retina.
The method is based on the optical and spatial proper-
ties of the vessels, where the gray-level profile of the cross
section of a blood vessel is approximated by a Gaussian-
shaped curve and a matched filter is used to define the
piecewise linear segments of blood vessels. Finally twelve
different templates are designed to search for vessel seg-
ments along all possible directions. Salazar et al. [8] used
an adaptive histogram equalisation and the distance trans-
form algorithm to enhance the vessels appearance, then
applied the graph cut technique to segment vessels. In [9]
Yin et al. proposed an automated tracking approach to
segment blood vessels in retinal images. The technique
detects vessel edge points iteratively using a Bayesian
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model based on statistical sampling approach and the
intensity profile of the vessel are approximated by a Gaussian
model. New vessel edge points are defined based on local
grey level statistics and expected vessel features.

The limitations of the tracking based approaches are
that the multiple branches models are not always appli-
cable and they do not perform well on disease retinal.
The semi automated tracking methods also require man-
ual input, which required more times. Thus they are not
suitable for real time retinal image analysis.

Methods

In this paper, we present a new automated method to
extract blood vessels in retinal fundus images. The pro-
posed method is divided into two main stages: the pre-
processing and the probabilistic modelling. Our approach
takes as first step the correction of the intensity inho-
mogeneity of the retinal image using a bias correction
algorithm[10] , then the appearance of blood vessels are
enhanced with an adaptive histogram equalisation. A
probabilistic model optimised by an expectation max-
imisation (EM) algorithm is used to extract the vascular
tree from the processed images. Finally, a length filter is
applied on the output of the EM algorithm to eliminate all
the non-vessels pixels.

The experimental results are performed on two pub-
licly available datasets. The STARE (STructured Analysis
of the Retina) [2] images were provided by the Shiley Eye
Center at the University of California, San Diego, and by
the Veterans Administration Medical Centre in San Diego.
The images of the DRIVE [6] were obtained from a dia-
betic retinopathy-screening program in The Netherlands
and the screening population consisted of 400 diabetic
subjects between 25-90 years of age.

Bias correction

One of the major issues associated with fundus retinal
images is the intensity inhomogeneity across the images,
which causes a significant degradation to the performance
of automated blood vessels segmentation techniques. The
intensity inhomogeneity of the fundus retinal image is
generally attributed to the acquisition of the image under
different conditions of illumination. In order to overcome
such a problem, we use the N4 algorithm of bias cor-
rection presented in [10] which is a modified version of
the original bias correction proposed N3 algorithm [11]
that includes a modified iterative update within a multi-
resolution framework. If we consider a noise free retinal
fundus image v(x), defined as

D) = V(%) +F ) (1)

where V/(x) is the uncorrupted image, f(x) is the bias field
and P(x) = log v(x), V' (x) = logV/'(x) and f(x) = log f(x).
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The following iteration solution derived in [11] is used to
define the uncorrupted image at the n*" iteration as

V(@) = v — f @)
Feoh =SV @ —E[V @) | ¥ @" 1) 2)

V(@) =) — S M) — E[V (%) | ¥ @)1} ()

where f (x)" is the estimated residual bias field at the nth
iteration and E[V/(x) | ¥/(x)""!] is the expected value
of the true image given the current estimate of the cor-
rected image and it is defined in [11]. $*{.} is referred as
the B-spline approximator or the smoothing operator. The
iterative solution used to perform the bias correction is
given by (3 ), where ¥ (x) = ¥/ (x)° and the initial bias field
estimate f (x)? is equal to zero. The first iteration yields

V()" = D(x) — S*{P(x) — E[V (%) | ¥(x)]}

f@!

V@)=V - S @ — EV ) | V')

f?

V() =V () = SV (x)? — E[V (%) | ¥ (0)*])

f@?

V()" =V (@) = SV )" = E[2() | V(0" )

feor
(4)
For the second iteration, the iteration scheme uses the
corrected log ¥ (x)! to re-estimate the expected value of
the true image E[ ¥/ (x) | ¥/ (x)!], and the bias field estimate
fx)” is calculated by inspecting (4 ). The iteration solu-

tion is designed to converge such that the value of f x) —
0. Using (4) the total bias field estimate is obtained as

V)l =) —f@)!
V(@)% = () —f@)l) —f(x)?
N e
¥ (x)!
7 @)% = (h@) —f@)h) — fF@)?2) —f (%)

17/(96)2
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n
V@) =9 - > f@)l ()
i=1
Thus, the total bias field estimate at the n'k iteration is
derived as

Jf@r=3"f@; (©)
i=1

Figure 1 presents sample results of the bias corrected
images.

Adaptive histogram equalisation and distance transform
We apply an adaptive histogram equalisation [8] to the
bias corrected image to enhance the contrast between
vessel pixels and the background images. The histogram
equalisation is performed using the flowing equation:

1 r
X(enhtmce) = Z *S(Xq’ _Xq) A (7)
q'€R(q) (hz bv_d)
s(4)
where
|1 i d>0
S(d)_{o if d<o0

The notation g represents the pixels in the image and ¢’
is the neighbourhood pixels of g, defined by a square win-
dow of width /1.The value of r indicates the level of contrast
between the vessels and the background, by increasing the
value of r, the contrast between vessel pixels and the back-
ground increases. Figure 2 shows the output images of the
adaptive histogram equalisation with different values of r
and /.

To reduce the noise in the adaptive histogram equalisa-
tion image, a binary morphological open process is used
to prune the image by eliminating all the non-vessels pix-
els. The pruned image is used to create a distance map
image using a distance transform model. Finally, a prob-
abilistic modelling is applied to the distance map image
to extract the vessel tree. Figure 3 shows different fundus
retinal image datasets with their corresponding distance
map images.

Probabilistic modelling

The extraction of the blood vessels is modelled with prob-
abilistic unobserved variable model. An unobserved vari-
able is introduced to model the process that determines
the component from which the pixels observation origi-
nates. We introduce a binary vector Uy = {(Uyo, L[kl)}f=1
having a 1 — of — K representation in which only one of
the two elements in U can be equal to 1 and all other
elements are equal to 0. Uy, = 1 if the i pixels in the reti-
nal image (X,')fw (where M is the number of pixels) can be
accurately assigned to K clusters as vessel’s pixel otherwise
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(d)

intensity inhomogeneity. (e) Bias field. (f) Bias corrected image.

(b)

(e)

Figure 1 Bias correction results. (a) STARE image with intensity inhomogeneity. (b) Bias field. (c) Bias corrected image. (d) DRIVE image with

(f)

Uxo = 1. A marginal distribution or a prior probability

over Uy is defined such that P(Ly = 1) = m; where
k=1,...K thus:
K
P (U = [ |Gt 6)
k=1

where the probability values {rx} must satisfy 0 < 7 <1
and Zi(:l 7 = 1. The aim in this process is to estimate
the unknown parameters representing the mixing value

between the Gaussians and the means (uy) and covari-
ances (Xj) of each component 6y = (ux, Xx). Thus,
the conditional distribution or posterior probability of X;
given a particular value for Uy is defined as a mixture of
two Gaussian distribution.

PX; | U =1,60) =N (X | pex» g)

K
PXi | U =1,00) = [N X | o )™ 9)
k=1

Figure 2 Adaptive histogram equalisation results. (@) r =3, h =45.(b) r =6,45.(c)r=3,h=81.(d) r = 6,h = 81.
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(c)

(d)

Figure 3 Distance map images. (a) STARE image. (b) STARE distance map. (¢) DRIVE image. (d) DRIVE distance map.

The joint probability is derived as the product of
equations (8) and (9) to give

K
P (X, Uy | 6 = [ | (e (G | g S e (10)

k=1

where the joint probability P (X;, Uy | 6x) defines a mix-
ture of Gaussian mixture, and this model structure has
been used in many problems of classification such as
[12]. Assuming that {X; }fw are independent and identically
distributed and {L[k}f is an unobserved variable, the like-
lihood is derived by marginalising P (X;, Uy | 6x) over the
unobserved variable. In other word, the marginalise distri-
bution of {Xi}?’[ is derived by adding the joint distribution
over all possible states of {Uk}f . Our aim is to maximise
the likelihood function that is given by

K

PO =) PXiy Ui | 6) =) [ N (X | o Zen ™
Uy U k=1

(11)

where P(X) is also a Gaussian mixture as the joint prob-
ability P (X;, Uy | 0x). As in vector Uy only one element
can be equal to 1, the multiplication and summation over
k in equation (11) can be the exhaustive summation of all
possible values of (N (X; | i, Zx)) over k. Thus

K
PO =) (N (Xi | i Ti))
k=1

(12)

Expectation maximisation
To calculate the maximum likelihood estimate of the
equation (11), we use the expectation maximisation (EM)
algorithm as it is the most powerful method for find-
ing maximum likelihood solutions for models with latent
variables [13]. The EM performs the segmentation by clas-
sifying vessel’s pixels in one class (foreground) and non-
vessel’s pixels in the other (background). The EM output is
obtained by iteratively performing two steps: the expecta-
tion E- step computes the expected value of the likelihood
function (pixel class membership function) with respect
to the unobserved variables, under the parameters of a
Gaussian mixture model and the maximisation M-step,
maximises the likelihood function defined in the E-step
until convergence [14].
In the E-step, the posterior probability P = (U | X, 0x) of
the unobserved variable Uy is derived using using Bayes’
theorem as:
P (X, Ur | 6)
P(Xp)
[Ty Ga (X | g, B ™
Sier (mN (X |, 55)
(13)

P (U | Xi,0p) =

I (Ui) = P (U | Xi,6) =
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Therefore the expectation of the unobserved variable Uy
is derived with respect to the distribution of the posterior
probability or the responsibility I" (Ly) that component k
takes for assigning pixel X; in the E-step. Then follow by
the M-step, which calculates parameters maximising the
expected log likelihood computed in the E-step. Suppose
that the number of pixels in a retinal image is represented
by a data set {x;, . . . xpr} and we aim to model this set using
a mixture of Gaussians. An M x D matrix X is used to rep-
resent the pixel data set in which the i row is defined by
xf‘[ . The corresponding latent variables is represented by a
matrix Z of size M x K in which the i row is defined by
uf\’ . Assuming that the pixel data points are drawn inde-
pendently from the Gaussian distribution, we can define
the log of the likelihood function using equation (12)

M K
In{P (X [ )} =Y In 3> (N i | ix Ti))
i k=1
(14)

The derivative of In {P (X | )} with respect to the means
i of the Gaussian components is set to 0 to give.

M
(N (% | i Zie)
- (Xx (% — i) =0
= 2 (N (x| %))

M
— Y T () (S (i — i) =0 (15)

i=1

By multiplying (15) by (Ek_l), we define the means as

(16)

1 (M
= — {ZF (uﬂaxi}
kit
where n; = Zf\il I (u;) is the total number of pix-
els assigned to cluster k. We can observed from equation
(16) that the mean for the kX Gaussian component s is
defined by using a weighted mean of all of the pixels in
the data set, where the weighting factor for the image pixel
point x; is derived using the posterior probability I" (2% ).
Therefore a Gaussian component {k} is responsible for
generating the image pixel points x;.
Similarly, we maximise In {P (X | 6)} with respect to the
covariances X; and we obtain

M
Bi= DT ) o= ) G5 = ) (17)
i=1

Like the mean puy, the denominator of (17) is defined
by the total number of pixel points assigned to cluster
k and each pixel point is weighted by the corresponding
posterior probability.

Finally, setting the derivative of In{P (X |0)} with

respect to (mg) the mixing coefficients and by using a
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Lagrange multiplier to satisfy the constraint lele =1,
we obtain

K
In{P(X|0)} + A {an— 1}
k=1

M

Z (N (i | ks Zk))
= 2 (N (x| iy %))

By multiplying both sides of equation (18) and summing

over k, we obtain the mixing coefficient as
YT (ui)
T = o (19)

From (19), we can see that the expression of the mixing
coefficient for a component k is defined by the aver-
age responsibility that component k for assigning image
pixels.

In all, to perform the EM algorithm, we first choose
initial values for Gaussians parameters (means, covari-
ance and mixing coefficients), then the algorithm iterates
between the E-step and the M-step [14]. The EM algo-
rithm process is summarised in Figure 4. In the E-step,
the currents values of the parameters are used to calcu-
late the values of the I' («;;) the posterior probabilities
(responsibilities) given by equation (15). These probabil-
ities values are used in the M-step to re-calculate the
values of the Gaussians parameters means, covariance and
mixing coefficients derived in (16), (17), (19) respectively.
However each update to the Gaussians parameters from
the E-step and the M-step is guaranteed to increase the
log likelihood. Figure 5 shows the experimental results of
the EM algorithm and the Length filter, where (a) is the
input retinal image, (b) is the output of the EM algorithm
and (c) the Length filter result.

+1=0 (18)

Length filter

In Figure 5(b), the result of the EM algorithm shows
some misclassified pixels which increases the false posi-
tive. To address this problem, the length-filtering model
is designed to eliminate all the non-vessels pixels in the
EM algorithm result image. We adapt the length filtering
used in [15], which discard all the groups of pixel with
pixel number less than a certain number of pixels. The
approach uses connected pixels labelling model, in which
each individual object in the image is defined as connect
regions. The approach starts by identifying all the con-
nected regions, then discard all the connected objects less
than a certain number of pixels using an eight-connected
neighbourhood of all surrounding pixels. Finally label
propagation is used and all connected components larger
than a certain number of pixels are labeled as blood ves-
sels. This approach reduces significantly the false positive,
the output of the length filtering is shown in Figure 5(c).
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Number of classes:

Initialisation of Gaussian Parameters:

Vector of class means:
Vector of class variance:
Vector of class mixing coefficients: 7, =0.500,77, =0.500
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1 =85, =170
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is calculate using (13)

I'(U,) intheE-step.
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1

new ew
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) .8

M-step: Re-estimation of Gaussians parameters using

#] :;12 using equation (16)
2 using equation (17)
using equation(19)

Updatethe current parameters with the new parametervalues.

v

No convergence

Evaluate the likelihood in (14) and

the convergence of the parameters.

Figure 4 The EM algorithm summary. The steps of EM algorithm.

Experimental results

The method presented in this paper was evaluated on
two publicly available retinal image datasets: STARE pre-
sented by Hoover et al. [2] and the DRIVE by Staal et al.
[6]. The STARE dataset contains 20 fundus colour reti-
nal images, including 10 healthy and 10 unhealthy ocular

fundus images. The images are captured by a Topcon
TRV-50 fundus camera at 35° field of view (FOV) and the
size of the image is 700 x 605 pixels. The dataset pro-
vides two sets of hand labelled images segmented by two
human experts as ground truth for retinal vessel segmen-
tation methods. We calculated the mask of the image for

(a)

image.

Figure 5 The EM algorithm and length filter results. (a) Fundus retinal image. (b) The EM algorithm output image. (c) the Length filter output
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this dataset using a simple threshold technique for each
colour channel. We adapt the first expert hand labelled as
the ground truth to evaluate our segmentation technique.

The DRIVE dataset provided 40 fundus colour ocular
images, including 20 training images and 20 test images.
These images are acquired using The Canon CR5 camera
at 45° FOV, digitised at 24 bit with resolution of 565 x 584
pixels. The dataset also provides two sets of hand labelled
images segmented by two human experts as ground truth.
The first expert hand labelled was adapted as ground truth
in the evaluation on both the STARE and the DRIVE
datasets.

To facilitate the performance comparison between our
method and other retinal blood vessels segmentation
methods, the parameters measuring the performance
(true positive rate, false positive rate and the accuracy
rate) of [6], [2], [3] were used to measure the perfor-
mance of the segmentation. The true positive rate (TPR) is
defined as the ratio of the total number of pixels correctly
classified as vessel pixels to the total number of vessel pix-
els in the image ground truth. The false positive rate (FPR)
is the ratio of the total number of non vessel pixels in the
FOV classified as vessel pixels to the total number of non
vessel pixels inside the FOV of the the ground truth image.
Finally the accuracy (ACC) is computed as the sum of true
positives and true negatives over the total number of pix-
els in an given image. It is worth mentioning that a perfect
segmentation would have a FPR of 0 and a TPR of 1. All
the methods used the first expert hand labelled images as
performance reference.

STARE dataset

The experiment results of different retinal blood vessels
segmentation methods on the STARE dataset are shown
in Tables 1 and 2. The performance results of Staal
et al. [6], Mendonca et al. [3], Martinez-Perez et al. [16],
Chaudhuri et al. [7], Zhang et al. [4] , and Hoover et al. [2]
were generate from their original manuscripts. The per-
formance of the different methods was generated using all
the 20 fundus images except the method presented Staal

Table 1 The performance comparisons on STARE dataset
(Healthy and unhealthy retinal images)

Method TPR FPR Accuracy
2% human observer [3] 0.8949 00610 09354
Mendonca [3] 0.6996 0.0270 0.9440
Staal [6] 0.6970 0.0190 09516
Chaudhuri [7] 0.6134 0.0245 0.9384
Maritiner-Perez [16] 0.7506 0.0431 0.9410
Hoover [2] 0.6751 0.0433 0.9267
Zhang [4] 0.7177 0.027 0.9484
Our segmentation method 0.7619 0.0328 0.9456
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Table 2 The performance comparisons on STARE dataset
(Healthy vs Unhealthy retinal images)

Method TPR FPR Accuracy
Unhealthy ocular images
29 hurnan observer [3] 0.8252 0.0456 0.9425
Mendonca (3] 0.6733 0.0331 0.9388
Hoover [2] 0.6736 0.0528 09211
Chaudhuri [7] 0.5881 0.0384 0.9276
Zhang [4] 0.7166 0.0327 0.9439
Our segmentation method 0.7068 0.0324 0.9417
Healthy ocular images
27 human observer [3] 0.9646 0.0764 0.9283
Mendonca [3] 0.7258 0.0209 0.9492
Hoover [2] 0.6766 0.0338 0.9324
Chaudhuri [7] 0.7335 0.0218 0.9486
Zhang [4] 0.7526 0.0221 0.9510
Our segmentation method 0.8506 0.0300 0.9554

[6], that used 19 out of the 20 images including 10 healthy
and 9 unhealthy images. Our method has the highest TPR
and with an average accuracy of 0.9456, it performs better
than the methods presented by Mendoca et al. [3], Hoover
et al. [2], Chaudhuri et al. [7] and Maritiner-Perez et al.
[16] and its only marginally inferior to the method pre-
sented by Staal et al. [6] and hang et al. [4]. However as
mentioned above the method presented by Staal et al. uses
only 19 images for performance evaluation.

We also compared the performance of our method on
both healthy and unhealthy ocular images. The results
of the experiments show that the unhealthy ocular

Table 3 The performance comparisons on DRIVE dataset

Method TPR FPR Accuracy
279 hurnan observer [4] 0.7761 0.0275 0.9473
Mendonca [3] 0.7344 0.0236 0.9452
Staal [6] 0.7194 0.0227 0.9442
Chaudhuri [7] 0.6168 0.0259 0.9284
Maritiner-Perez [16] 0.7246 0.0345 0.9344
Jiang [23] - - 09112
Perfetti [17] - - 0.9261
Zana [22] - - 0.9377
Garq [18] - - 0.9361
Marin [21] - - 0.9452
Al-Rawi [19] - - 0.9510
Cinsdikici [20] - - 0.9293
Zhang [4] 0.7120 0.0276 0.9382
Our segmentation method 0.7466 0.0317 0.9410
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(d)

Figure 6 The sample results of our method. (a) STRARE fundus image. (b) Our method result. (€) Ground truth. (d) DRIVE fundus image.

(e) Our method result. (f) Ground truth.

images cause a significant degradation to the perfor-
mance of automated blood vessels segmentation tech-
niques. Table 2 shows that on both images, our method
outperforms the methods proposed by Mendoca et al.
[3], Chaudhuri et al. [7] and Hoover et al. [2] and it is
comparable to the performance of human experts.

DRIVE dataset
Similarly to STARE dataset, The performance results of
Staal [6], Mendonga [3], Martinez-Perez [16], Chaudhuri
[7], Perfetti [17], Garq [18], Al-Rawi [19], Cinsdikici [20],
Marin [21] and Zhang [4] were generated from their orig-
inal manuscripts. But the performance results of Zana
[22] and Jiang [23] techniques were provided by Staal [6]
as their manuscripts were published before the DRIVE
dataset was available. The performance of all the meth-
ods was measure on the 20 test images and the results
are shown in Table 3. An overview of the testing results
show that our method outperforms all other methods in
term of TFR and with the accuracy, its marginally infe-
rior to the method presented by Staal et al. [6], Marin
et al. [21], Mendonca et al. [3] and the performance
of human experts. Nevertheless it is important to note
that the methods presented Staal et al. and Marin et al.
used supervised techniques that generally depend on the
training datasets, hence good segmentation results are
achieved by classifier retraining before experimentations
on new datasets.

Figure 6 shows our experimental results where (a and d)
are the input fundus retinal images, (b and e) the result of

our method and (c and f) the ground truth. The images
are from STARE and DRIVE respectively.

Conclusions and discussion

We have presented in this paper a new approach to blood
vessels segmentation by integrating the pre-processing
techniques such bias correction and distance transform
with a probabilistic modelling EM segmentation method.
We have evaluated our method against other retinal blood
vessels segmentation methods on STARE and DRIVE
datasets. The overview of the experimental results pre-
sented in Tables 1, 2 and 3 show that the proposed
approach achieved the best overall performance.

Our method has an advantage over tracking-based
methods because it applies bias correction and distance
transform on retinal images to enhance vessel appearance
and allows multiple branches models. Also our method
achieves better results over pixel processing based meth-
ods as it corrects the intensity inhomogeneities across
retinal images to improve the segmentation of the blood
vessels. This technique also minimises the segmentation
of the optic disc boundary and the lesions in the unhealthy
retinal images.
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