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Testing the Neutral Theory 
of Biodiversity with Human 
Microbiome Datasets
Lianwei Li & Zhanshan (Sam) Ma

The human microbiome project (HMP) has made it possible to test important ecological theories for 
arguably the most important ecosystem to human health—the human microbiome. Existing limited 
number of studies have reported conflicting evidence in the case of the neutral theory; the present 
study aims to comprehensively test the neutral theory with extensive HMP datasets covering all five 
major body sites inhabited by the human microbiome. Utilizing 7437 datasets of bacterial community 
samples, we discovered that only 49 communities (less than 1%) satisfied the neutral theory, and 
concluded that human microbial communities are not neutral in general. The 49 positive cases, 
although only a tiny minority, do demonstrate the existence of neutral processes. We realize that the 
traditional doctrine of microbial biogeography “Everything is everywhere, but the environment selects” 
first proposed by Baas-Becking resolves the apparent contradiction. The first part of Baas-Becking 
doctrine states that microbes are not dispersal-limited and therefore are neutral prone, and the second 
part reiterates that the freely dispersed microbes must endure selection by the environment. Therefore, 
in most cases, it is the host environment that ultimately shapes the community assembly and tip the 
human microbiome to niche regime.

Hubbell’s1 neutral theory presented a null model for testing the mechanisms of species coexistence and biodi-
versity maintenance in ecological communities. It also offered a simple mechanistic explanation of the species 
abundance distributions (SAD), which has been extensively studied in community ecology since the 1940s, but 
still lacks a theoretical consensus for their interpretations2–8. Neutral theory contrasts with the traditional niche 
theory9–14 by assuming that the properties of individuals in a community are independent of their species identity. 
The traditional niche theory would assume that individuals of different species occupy different niches due to 
their species-specific properties and the niches are of limited similarities. According to neutral theory, local com-
munities are built by random draws from regions pools driven by stochastic colonization, and the deterministic 
competitive interactions are insignificant in shaping the local community compositions because species are sup-
posed to be competitively equivalent1,15,16. The neutral theory also assumes that abundant regional species possess 
a higher colonization probability and consequently the relative abundance of each species in a local community 
should mirror its abundance in the regional community at any given time1,16. Consequently, neutral processes 
driven community should be less influenced by the differences in environmental factors, and demonstrate less of 
a direct link between the environment and assembly processes17. The significance of Stephen Hubbell’s neutral 
theory of biodiversity2 is multifaceted, whether or not the null model fits to a specific community. For example, 
as demonstrated in this article, the traditional view that “everything is everywhere, but the environment selects” 
originally proposed by Baas-Becking18 is a well-known doctrine but receiving occasional challenges especially in 
recent years, indeed make great sense from the neutral theory perspective.

During the past decade, there has been extensive testing of the neutral theory, mostly with macro community 
ecology data19–23. McGill21 reviewed empirical tests of neutral theory; many of the tests used the neutral theory 
model as a null model and used another model (often lognormal distribution model) as the alternative model. 
However, in many cases, the alternative model was loosely defined, and hence the rejection of neutral theory 
could not automatically prove that a particular alternative niche-based model holds. In fact, the approach of using 
simplified assumptions, which are not required to be strictly accurate, about complex systems to improve under-
standing and to see what can be explained with the simplified models is a well-accepted practice in many fields 
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of sciences24. Therefore, the primary value of the neutral theory is not whether or not it can adequately describe 
a particular dataset because the failure itself can inform us that processes other than the neutral processes prevail 
in shaping the structure of the community under investigation.

The neutral theory was developed and tested primarily in the context of ecological communities of plants and 
animals. In contrast to the many macro-ecological studies, there are relatively few applications of neutral theory 
in microbial ecology17,18,25–38. The scarcity is primarily due to the reality that majority of microbes are not culti-
vable, and their detections were extremely difficult until the invention of the metagenomic technology nearly a 
decade ago, which revolutionized the techniques for studying microbial community ecology39–43. When majority 
of the microbes could not be counted, or even detected, it would be very difficult if not impossible to collect suffi-
cient data for testing ecological theory, including the neutral theory. Today the wide availability of metagenomic 
technology and the on-going Human Microbiome Project (HMP) offer us an unprecedented opportunity to apply 
and test major ecological theories for the studies of microbial communities43.

Limited tests of the neutral theory with microbial communities have produced mixed results in the exist-
ing literature. Earlier studies in environmental microbiology were mostly positive, supporting the neutral the-
ory (e.g. refs 26–28), but more recent studies, especially those studies on the human and animal microbiomes 
seem to be mixed with more negative cases17,30,32,36,44 than positive cases35,37. Sloan et al.26 and Woodcock38 were 
among the first who explored the roles of immigration and chance in shaping prokaryote community struc-
ture. Woodcock28 performed the first comprehensive testing of the neutral theory in microbial ecology, and pre-
sented strong evidence that neutral community models fitted to the microbial communities in tree holes filled 
by rain water28,45 conjectured that the scale of regional communities in microbes might be different from that of 
macro-communities since the dispersal distance of microbes can be more extensive. In practice it is most likely 
that both niche and neutral mechanisms are in effect in microbial communities46–50, but niche effect is often more 
prevalent than neutral effect46,47. Of course, there were also the opposite cases, i.e., neutral effect is more signifi-
cant (e.g. ref. 48).

The potential importance of neutral process in shaping the human microbiota has been conjectured in some 
perspective reviews43,51, but a handful of existing tests of the neutral theory with the human microbiome (includ-
ing animal microbiome) only offer conflicting evidence. Jeraldo47 tested the role of neutral process in structuring 
the gut microbiome of three domesticated vertebrates, and they concluded that, although the species abundance 
patterns were seemingly well fit by the neutral theory, the theory couldn’t explain the evolutionary patterns in 
the genomic data (i.e., phylogenetic diversity). Furthermore, their analyses strongly supported the non-neutral 
(niche) role in shaping the animal microbiomes. Avershina et al.31, through a study of the faecal microbiota 
with 16S rRNA sequencing technology from a healthy cohort of 86 mothers and their children, observed a clear 
age-related colonization pattern shift in children and suggested that neutral processes are involved in shaping the 
gut microbiota. In contrast, there was not a similar shift in microbial composition during mother’s pregnancy. 
This finding is not consistent with previously mentioned finding from Jeraldo47 study on the gut microbiome 
of three domesticated vertebrates. Avershina et al.31 suggested that the inconsistence could be reconciled by the 
fact that niche selection should limit the phylotypes allowed in a given environment (the gut), whereas among 
the allowed phylotypes, neutral process could be in effect. Levy & Borenstein32 demonstrated the non-neutral 
assembly processes and complex co-occurrence patterns in the human gut microbiome. Guan & Ma44 tested the 
neutrality of human milk microbiome, and the test results were negative. Schmidt et al.17 found that deterministic 
processes appear to govern the assembly of fish microbiome, and stochastic colonization does not occur in their 
system. In the above four case studies17,32,44,47, the human or animal microbiome datasets failed to support the 
neutral theory.

Besides above mentioned gut microbiome study by Avershina et al.31, the following two case studies also pre-
sented supporting evidence to the neutral theory. Morris et al.35 applied the neutral theory to test whether disper-
sal from the mouth (source community) can adequately describe the observed microbial distribution in the lung. 
They also tried to identify microbial groups that significantly deviate from neutral community pattern, and they 
conjectured that these microbes might be advantageous in the lung habitat. They discovered that lung bacterial 
populations were similar to those in the oropharynx, but the lung does have some distinctive bacterial popula-
tions, not from contamination or dispersal from the mouth. Nevertheless, the functions of these lung habitat spe-
cific bacteria as well as the nature of the immune response to them are open for further research. Venkataraman 
et al.37 further utilized the neutral theory model to distinguish the microbes dispersing to the lungs from other 
body sites and atmosphere from the microbes indigenous to the lungs, assuming that the former (“neutrally dis-
tributed” species, i.e., consistent with dispersal and ecological drift) can be predicted with a neutral model and 
consequently the latter can be predicted from the difference between the actual presence and the former. They 
also suggest that the non-native microbial species should have a competitive advantage to the indigenous lung 
microbes. Their study reveals that the bacterial community composition of the healthy lung can be satisfactorily 
predicted with the neutral model, reflecting the overriding role of dispersal of microbes from the oral cavity in 
shaping the microbial community in healthy lungs. In contrast, it is not the case with the microbiome of diseased 
lungs where active selection is underway. Therefore, the bacterial neutral distribution is a distinguishing charac-
teristic of the microbiome in healthy lungs. But, bacterial populations in diseased lungs appear to be under active 
selection. The ability to measure the relative importance of selection and neutral processes including dispersal in 
shaping and maintaining the healthy lung microbial community is a critical advance for understanding its influ-
ence on host health37. Ding & Schloss50 demonstrated that it is possible to distinguish different community types 
despite considerable intra-subject and inter-subject variation in the human microbiome, which has important 
implications for assessing disease risks associated with certain community types. If neutral theory can be utilized 
to distinguish healthy and diseased microbial communities, such as demonstrated by Venkataraman et al.37, its 
practical biomedical significance is self-evident.
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More recently, advances have also been made in the theoretical exploration of the neutral process in microbial 
communities. Holmes et al.30 and Harris et al.36 reformulated Hubbell2 neutral theory model as a hierarchical 
Dirichlet multinomial mixture process to simulate the human gut microbiome. They concluded that functional 
niches mainly determine the human gut microbiome, and neutral assembly may only play a partial role in shap-
ing the fine-scale gut microbial diversity—operating within the species occupying a specific function niche (i.e., 
those species playing a same metabolic role). They termed those cases “borderline” neutral patterns. They also 
discovered a negative correlation between body mass index (BMI) and immigration rates within the family 
Ruminococcaceae36, which offers a freshly new interpretation of the relationship between obesity and gut micro-
biome. Harris et al.36 not only revealed these important insights on gut microbiome but also developed a general 
computational procedure to efficiently fit multisite neutral theory models. We will further discuss this significant 
methodological advance in the discussion section.

O’Dwyer et al.33,34 tested the neutral theory from phylogenetic diversity perspective, rather than traditional 
species diversity perspective, with human microbiome data. Interestingly, they found a clear impact of meta-
community size (scale) on the phylogenetic diversity of body habitats relative to the null hypothesis. They also 
found that whole microbiome diversity for a given subject is typically much lower than a random sample from 
the metacommunity, which is complicated by a wide range of different behaviors for the distinct habitats within 
that subject. Overall, they concluded that there are significant variations in diversity across habitats relative to the 
prediction from the neutral theory. Zeng et al.38 developed an agent-based architecture that encapsulated the neu-
tral model of community diversity with added dimensions of an evolutionary timescale and a genealogy of hosts. 
This is essentially a simulation system that can be utilized to test various assumptions on community assembly 
including neutral theory assumptions and its advantages include the consideration of the parental contribution 
effects on community assembly process as well as how the process operates over evolutionary time.

The objective of this study is two-fold: First, we conduct a comprehensive testing, with extensive HMP datasets 
covering all five major body sites (gut, oral, skin, vaginal, and nasal) of the human microbiome, including 7437 
communities from 18 locations of 242 individuals, and with rigorous statistical simulation tests to answer the 
question—is the community assembly in the human microbiome neutral? Second, we discuss the implications of 
the neutral theory to understanding the human microbiome diversity and explore the underlying mechanisms if 
the data fail to support the neutral theory.

Materials and Methods
The 16s rRNA sequence datasets of human microbiome. The datasets we use to test the neutral the-
ory were obtained from HMP data center (www.hmpdacc.org). Specifically, we selected the 16s rRNA sequence 
datasets of 18 sites of 5 locations sampled from 242 subjects42 (termed 240-healthy-subjects HMP datasets, here-
after). Those body sites and locations are: airways (anterior nares), gut (stool), oral (attached keratinized gingival, 
buccal mucosa, hard palate, Palatine tonsils, saliva, subgingival plaque, supragingival plaque, throat, tongue dor-
sum), skin (left antecubital fossa, left retroauricular crease, right antecubital fossa, right retroauricular crease), 
and urogenital (mid vagina, posterior fornix, vaginal introitus). We used the datasets of both V1-V3 region and 
V3-V5 region in our analyses, and totally 7437 community samples (V1-V3, 2855 samples; V3-V5, 4582 samples, 
respectively) were sequenced, and two collections of OTU tables (corresponding to V1-V3, and V3-V5 regions, 
respectively) were obtained from the 16s-rRNA mothur software pipeline. Each sample corresponds to one row 
in the OTU tables, and is used to fit the neutral theory model. The OTU tables were computed with a cutoff 3% 
dissimilarity based on RDP database and they are available for download at www.hmpdacc.org. Those OTU tables 
contain species abundances (OTU reads) within each community sample.

The computational procedures. The essential aspects of the neutral theory can be summarized as: (i) it 
assumes that interacting species are equivalent on an individual ‘per capita’ basis, (ii) it is an individual-based 
stochastic dynamic theory, (iii) it is a sampling theory, and finally (iv) it is a dispersal-assembly theory53. The 
theory reveals the significance of dispersal limitation, speciation and ecological drift in community assembly and 
maintenance. As a null model, it offers us an apparatus to evaluate the role of adaptation and natural selection in 
the context of evolutionary community ecology54. The classic neutral theory model describes a local community 
containing J individuals. One of these individuals, chosen at random, dies and is replaced at every time step. 
The replacement can be either an offspring of another randomly chosen individual from the local community, 
occurring with probability 1-m, or an offspring of a randomly chosen individual from the metacommunity, with 
probability m. The parameter m is considered as a measure of dispersal limitation. A problem with m is that it does 
not translate into dispersal limitation in the most logical way; for example, a small local community may involve 
a much smaller flux of immigrants for the same value of m. For this reason, an alternative parameter I is often 
used instead of m55.

We use two sampling formulae for testing the neutral theory: one was proposed by Ewens56, and another 
by Etienne57 that was also inspired by Ewens formula. Both are accurate likelihoods for different scenarios, and 
Etienne’s one is for the best-known model of Hubbell’s2 neutral theory. Etienne’ s formula adds dispersal limita-
tion to Ewens formula, and we can infer that dispersal limitation plays a significant role in neutral community 
assembly if Etienne’s formula performs better than Ewens formula. In literature, the comparisons between Ewens 
and Etienne and sampling formulae showed that the latter outperformed the former when the dispersal limitation 
plays a significant role in community assembly57.

We will first compare the log-likelihoods computed with Ewens formula and Etienne formula to determine 
which of them is better suited for the human microbiome datasets. We then compare the log-likelihoods of the 
observed community (sample) and neutral-theoretic community to test whether or not the neutral theory 
model fits to the observed community, based on either Ewens56 or Etienne57, whichever performed better in the 
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previously described first step. In addition, we also hope that the possible difference between Ewens56 or Etienne57 
and log-likelihoods will shed light on the effect of dispersal limitation.

Ewens sampling formula was proposed to describe the probability distribution of alleles in genes in the con-
text of molecular neutral evolution56,58–60. Hubbell2 applied it to compute the likelihood of a given ecological 
community to satisfy the prediction of the neutral theory:
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where, J is the total number of individuals in the community, S is the total number of species, θ is the biodiversity 
parameter of the sampling formula, ni is the abundance of species i, ϕa is the number of species with abundance a. 
Hubbell2 had realized the important role of dispersal limitation but the sampling formula he originally used, i.e., 
Ewens formula, did not consider the effect of dispersal limitation (i.e., immigration rate m =  1).
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Etienne57 compared the two sampling formulae using Barro Colorado (BCI) tree dataset61 and Caño Maraca 
(CM) fish dataset62, and the results showed that Etienne sampling formula led to a significantly better fit to the 
datasets than Ewens sampling formula did. Here we compare the two formulae with HMP datasets to detect the 
potential effect of dispersal limitation. The following log-likelihood ratio test is used to compare the results from 
both the formulae:
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where, L0 is the null model and L1 is the alternative model, D is the deviation that is twice the difference between 
the log-likelihoods of the two formulae. The p-value computed follows a X2-distribution with the degree of free-
dom being one.

The method we use to test the community neutrality is Etienne’s63 “Exact neutrality test.” The exact neutrality 
test is based on the sequential construction approach, and an obvious advantage of this method is that no alter-
native model is needed in the approach. The test is conducted as follows: Firstly, maximum likelihood estimation 
(MLE) is used to estimate the model parameters from the observed data. Secondly, the set of model parameters 
[θ, I] estimated with MLE and parameter (J, the total number of individuals in the community) can be used to 
generate any number of artificial datasets (D). In our case of HMP data, 100 artificial datasets for each commu-
nity sample are generated. Thirdly, we use Etienne’s formula to calculate the likelihood of artificial datasets, and 
compare the average likelihood of artificial data with that of the observed data.

The sampling formula [(1) or (3)] gives the probability (PS) of any dataset in D (|D| =  100 in our case) satisfy-
ing the neutral model. The sampling formula also gives the probability P0 of real observed dataset satisfying the 
neutral model. If the probability computed from the real dataset is significantly smaller than the average com-
puted from the artificial datasets, it is unlikely that the observed community pattern was structured by the neutral 
process. If the probability from observed community is close to the values computed from the artificial datasets, 
then the observed species abundance distribution (SAD) is consistent with neutrality, and we conclude that the 
neutrality of the community under testing cannot be rejected.

Results and Discussion
In the following, we report our results in two parts, corresponding to (i) the comparison of Ewens and Etienne 
sampling formulae, which determines which formula will be used to test the community neutrality in the next 
step; (ii) the comparison of the log-likelihoods of theoretical and observed communities to determine whether or 
not an observed community is neutral.

Comparison of Ewens and Etienne sampling formulae. For each human microbial community sam-
ple, we compute the fundamental biodiversity parameter (θ), the immigration probability (m), and the likelihood 
of seeing the dataset given these parameter values, with Ewens and Etienne sampling formulae respectively. For 
each community sample, the 16s rRNA sequence data of both V1-V3 and V3-V5 variable regions were separately 
utilized to test the neutral theory respectively. Tables 1 and 2 are the summary results of the comparisons between 
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Ewens and Etienne sampling formulae for region V1-V3 and V3-V5, respectively. Detailed comparative results of 
the two formulae are provided as supplementary Tables S1 and S2, in which parameters and statistics such as the 
biodiversity parameter (θ), the immigration probability (m), log-likelihood, and likelihood ratio are provided to 
demonstrate the suitability of the both formulae.

In Tables 1 and 1, the first column lists the five sampling location, and the second column lists the 18 sites 
that are distributed over the five sampling locations. Column 3 is the total number of communities for each 
site. Column 4 is the number of communities for which both Ewens and Etienne formulae made no significant 
difference (NSD). The results from Tables 1 and 1 show that in both V1-V3 and V3-V5 regions, there are little 

Location Site Num. of Communities Num. of NSD Communities % of NSD Communities

Airways Anterior nares 158 156 98.7

Gut Stool 186 185 99.4

Oral

Attached Keratinized gingiva 180 179 99.4

Buccal mucosa 181 180 99.4

Hard palate 176 173 98.2

Palatine Tonsils 184 182 98.9

Saliva 159 158 99.4

Subgingival plaque 183 183 100

Supragingival plaque 188 187 99.5

Throat 170 170 100

Tongue dorsum 190 188 98.9

Average 179 177.8 99.3

Skin

Left Antecubital fossa 138 134 97.1

Left Retroauricular crease 183 172 93.9

Right Antecubital fossa 134 133 99.2

Right Retroauricular crease 185 178 96.2

Average 160 154.3 96.6

Urogenital

Mid vagina 88 88 100

Posterior fornix 86 86 100

Vaginal introitus 86 86 100

Average 86.7 86.7 100

Table 1.  The comparison of Ewens and Etienne sampling formulae with V1-V3 region data.

Location Site Num. of Communities Num. of NSD Communities % of NSD Communities

Airways Anterior nares 259 256 98.8

Gut Stool 318 318 100

Oral

Attached Keratinized gingiva 312 311 99.7

Buccal mucosa 309 291 94.2

Hard palate 301 288 95.7

Palatine Tonsils 311 300 96.5

Saliva 289 274 94.8

Subgingival plaque 307 305 99.3

Supragingival plaque 313 309 98.7

Throat 304 291 95.7

Tongue dorsum 315 311 98.7

Average 306.8 297.8 97.03

Skin

Left Antecubital fossa 147 147 100

Left Retroauricular crease 271 270 99.6

Right Antecubital fossa 154 152 98.7

Right Retroauricular crease 283 280 98.9

Average 213.8 212.2 99.3

Urogenital

Mid vagina 133 133 100

Posterior fornix 133 132 99.2

Vaginal introitus 123 123 100

Average 129.7 129.3 99.7

Table 2.  The comparison of Ewens and Etienne sampling formulae with V3-V5 region data.
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differences between Ewens and Etienne sampling formulae in terms of the log-likelihood (p >  0.05). The percent-
ages of NSD communities in both Tables 1 and 1 are close to 100%, i.e., both formulae made no differences in 
almost all human microbial communities we tested.

Etienne’s neutrality exact test. One hundred (100) artificial communities were generated to simulate 
the theoretical neutral community corresponding to each observed human microbial community. As mentioned 
previously, we have 2855 communities represented by V1-V3 data, and 4582 communities represented by V3-V5 
data. The parameters (m, θ, J, S) of the neutral theory models for those human microbial community that have 
passed the likelihood ratio test are listed in Tables 3 and 3, for V1-V3 and V3-V5, respectively. It is noted that 
Etienne formula63 was utilized for computing the results in both Tables 3 and 3. In fact, Ewens formula could be 
used either since both the formulae made no difference.

Table 3 lists the parameters of 26 human microbial communities, based on V1-V3 region data, which have 
passed the neutrality exact test, and the results of the other 2828 communities that failed to pass the neutrality 
exact tests, were omitted in Table 3 (but provided in the Supplementary Table S3). It also shows that 99.1% human 
microbial communities based on the 16s rRNA sequence data of V3-V5 region do not satisfy the neutral com-
munity model.

Similarly, Table 4 contains the parameters of 23 human microbial communities, based on V3-V5 region data, 
which have passed the neutrality exact test, and the results of the other 4557 communities that failed to pass the 
neutrality exact tests, were omitted in Table 4 (but provided in the Supplementary Table S4). It also shows that 
99.5% human microbial communities based on the 16s rRNA sequence data of V3-V5 region do not satisfy the 
neutral community model.

Note that among the 26 communities that passed the neutrality exact tests based on V1-V3, 21 are urological 
microbiome. In other words, the majority (80%) of the neutral human microbial communities are urological 
microbiome. Among the 23 communities that passed the neutrality exact test based on V3-V5, 14 are skin micro-
biome. In other words, the majority (60%) of the neutral human microbial communities are skin microbiome.

In summary, our results show that less than 1% (49 out of 7437 community samples) satisfied the neutral 
theory model according to the tests with Ewens56 and Etienne57 models. We therefore conclude that the human 
microbiome is not neutral in general. Figure 1 shows the graphs of four samples that successfully fit to the neutral 
theory model of Etienne’s63 neutrality exact test.

Site ID J S θ m Log(L0) Log(L1) q-value p-value

Throat 700110166 506 327 399.09 0.999978 − 16.98 − 15.5 2.962 0.0852

Left Antecubital fossa 700102129 808 47 10.73 0.999980 − 57.89 − 56.6 2.594 0.1072

Left Antecubital fossa 700113117 1462 80 18.05 0.999812 − 79.40 − 79.9 1.078 0.2990

Right Antecubital fossa 700106174 115 81 120.54 0.999998 − 9.24 − 8.2 2.088 0.1485

Right Antecubital fossa 700105936 139 16 4.47 0.995735 − 19.55 − 20.3 1.416 0.2341

Mid vagina 700015239 12512 343 65.04 0.979742 − 249.36 − 251.1 3.547 0.0597

Mid vagina 700016499 25053 498 88.27 0.999139 − 359.68 − 358.0 3.359 0.0668

Mid vagina 700110832 4375 164 33.58 0.999910 − 144.54 − 144.1 0.960 0.3272

Mid vagina 700023176 5815 168 32.25 0.999892 − 163.09 − 163.9 1.598 0.2062

Mid vagina 700033039 4670 160 31.90 0.999952 − 148.08 − 148.3 0.526 0.4683

Posterior fornix 700109404 4090 174 36.77 0.997910 − 140.96 − 139.9 2.089 0.1484

Posterior fornix 700110833 3537 145 30.25 0.999471 − 127.48 − 129.3 3.672 0.0553

Posterior fornix 700024357 8120 181 32.64 0.999853 − 194.34 − 192.9 2.875 0.0900

Posterior fornix 700024242 7460 179 32.85 0.998841 − 186.94 − 185.1 3.603 0.0577

Posterior fornix 700106808 10460 288 54.50 0.999765 − 228.76 − 227.0 3.474 0.0623

Posterior fornix 700023398 3980 153 31.39 0.999889 − 135.71 − 136.9 2.352 0.1251

Posterior fornix 700015577 8946 243 46.00 0.999900 − 209.83 − 208.0 3.618 0.0572

Vaginal introitus 700015455 9337 294 57.53 0.999909 − 213.75 − 215.1 2.673 0.1021

Vaginal introitus 700023640 7943 259 51.11 0.999965 − 198.53 − 197.5 2.011 0.1562

Vaginal introitus 700023453 8425 242 46.41 0.999901 − 202.07 − 202.6 0.973 0.3240

Vaginal introitus 700114121 6847 223 44.18 0.997384 − 181.00 − 182.7 3.437 0.0637

Vaginal introitus 700105207 7311 218 42.08 0.999904 − 188.58 − 188.3 0.475 0.4906

Vaginal introitus 700109402 4418 224 49.60 0.999936 − 146.13 − 145.6 1.095 0.2954

Vaginal introitus 700098286 2679 223 58.57 0.902479 − 109.72 − 108.7 2.020 0.1553

Vaginal introitus 700097310 2277 123 27.66 0.999520 − 103.66 − 102.9 1.446 0.2292

Vaginal introitus 700114273 1934 195 53.86 0.999516 − 89.83 − 89.4 0.899 0.3431

Table 3.  The 26 human microbial communities that passed the neutrality exact tests with Etienne 
sampling formula (V1-V3 region)*. * J: the total number of reads in the sample, S: the number of species in the 
sample, θ: fundamental biodiversity, m: immigration probability, Log(L0) is the log-likelihood of the observed 
sample, Log(L1) is the log-likelihood predicted by the neutral model, and q-value and p-value are the values of 
the likelihood ratios.
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Discussion
Bell64 proposed a method termed distance-decay dispersal for testing the dispersal limitation, which analyzes the 
relationship between the distance and community dissimilarity. If there is dispersal limitation effect within the 
community, then community dissimilarity should increase with the increase of distance, and the relationship 
between distance and dissimilarity should be linear64,65. Otherwise, the relationship should be non-linear. By 
simulation studies with two simple theoretical community models, Lotka-Volterra stochastic dynamics model 
and presence-absence model, Fisher & Mehta66 discovered that there is a phase transition in diverse ecological 
communities between a selection-driven regime (the niche phase) and a drift-dominated regime (the neutral 
phase), similar to the phase transitions occurring in H2O (i.e., solid ice, liquid water, and gas steam). Their simu-
lation study suggests that the niche phase is more likely in communities with large populations sizes and relative 
constant environments, and the neutral phase with small population sizes and fluctuating environments. The 
authors admitted that some simplifications, which may be unrealistic for natural ecological communities, were 
introduced in their study: one example is that the community is well mixed with purely competitive interactions. 
In reality, most natural communities are patchy, hierarchical, of complex spatial structures, and the effects of 
dispersal mutation, and mutualism can hardly be ignored, especially in microbial communities. Indeed, if the 
prediction from their simulation is taken literally, the tropical forests, which should have relatively stable envi-
ronment, should be less likely to be neutral. However, it is well known that Hubbell2 neutral theory was strongly 
inspired by his studies of tropical forests. Nevertheless, we concur with Fisher & Mehta66 that the presence of a 
niche–neutral phase transition is likely robust to the additional model modifications with more realistic assump-
tions. We also fully agree with them that more realistic modifications are needed to develop more quantitative 
models for natural communities.

Inspired by Fisher & Mehta66 study, we propose the following hypothesis to explain the failure of neutral the-
ory model in describing the human microbial communities. The famous microbial biogeographical doctrine first 
proposed by Baas-Becking18, “Everything is everywhere, but the environment selects” offers us another piece of key 
supporting evidence, besides Fisher & Mehta’s66 finding. We conjecture that the balance between dispersal and 
selection may tip the shift (phase transition) between the neutral and niche regimes. While dispersal favors neu-
tral processes, selection obviously weighs against the effect of neutral processes and in favor of the niche phase.

Phylogenetic diversity has increasingly become an important tool to quantify community diversity thanks to 
the rapid accumulations of the metagenomic sequencing data67,68. O’Dwyer et al.33,34 introduced a framework that 
uses the phylogenetic diversity for testing the neutral theory. They compared patterns of phylogenetic diversity 

Site ID J S θ m Log(L0) Log(L1) q-value p-value

Anterior nares 700105415 130 93 144.71 0.999995 − 8.40 − 9.67 2.5417 0.1109

Stool 700106979 413 292 2029.70 0.591395 − 12.16 − 10.51 3.3049 0.0691

Saliva 700106858 227 144 168.36 0.999857 − 12.41 − 13.24 1.6687 0.1964

Saliva 700106000 161 101 183.19 0.703965 − 10.93 − 11.94 2.0187 0.1554

Left Antecubital fossa 700021896 377 82 32.01 0.999912 − 34.90 − 36.18 2.5604 0.1096

Left Antecubital fossa 700024590 173 27 8.73 0.999985 − 24.35 − 24.39 0.0667 0.7961

Left Antecubital fossa 700021810 364 81 31.99 0.999979 − 33.97 − 35.23 2.5302 0.1117

Left Retroauricular 
crease 700037027 110 14 4.04 0.999998 − 18.16 − 17.60 1.1143 0.2912

Left Retroauricular 
crease 700024129 199 51 21.84 0.999893 − 24.01 − 23.59 0.8559 0.3549

Left Retroauricular 
crease 700024647 174 31 10.72 0.999990 − 24.40 − 23.35 2.0904 0.1482

Right Antecubital fossa 700110106 165 119 190.08 0.999997 − 9.16 − 10.61 2.9033 0.0884

Right Antecubital fossa 700105617 128 21 14.37 0.166726 − 20.11 − 18.31 3.6134 0.0573

Right Antecubital fossa 700037030 114 38 19.55 0.999967 − 16.44 − 16.00 0.8825 0.3475

Right Antecubital fossa 700035745 329 37 10.44 0.985781 − 35.34 − 34.06 2.5613 0.1095

Right Antecubital fossa 700015672 331 106 53.53 0.999989 − 28.24 − 30.15 3.8298 0.0503

Right Antecubital fossa 700023394 382 62 20.76 0.999987 − 37.39 − 36.55 1.6819 0.1947

Right Antecubital fossa 700023241 922 95 26.36 0.999952 − 62.30 − 62.60 0.6052 0.4366

Right Retroauricular 
crease 700023171 641 111 38.46 0.999779 − 47.49 − 47.16 0.6634 0.4154

Mid vagina 700099742 4365 183 38.45 0.999805 − 144.58 − 146.30 3.4341 0.0639

Posterior fornix 700110242 3419 155 33.31 0.999917 − 127.00 − 125.46 3.0837 0.0791

Posterior fornix 700105684 3803 156 32.65 0.999534 − 133.92 − 132.29 3.2624 0.0709

Posterior fornix 700097502 2983 163 36.92 0.999941 − 118.04 − 118.87 1.6699 0.1963

Posterior fornix 700099080 5079 175 34.93 0.999892 − 155.68 − 156.69 2.0075 0.1565

Table 4.  The 23 human microbial communities that passed the neutrality exact tests with Etienne 
sampling formula (V3-V5 region)*. * J: the total number of reads in the sample, S: the number of species in the 
sample, θ: fundamental biodiversity, m: immigration probability, Log(L0) is the log-likelihood of the observed 
sample, Log(L1) is the log-likelihood predicted by the neutral model, and q-value and p-value are the values of 
the likelihood ratios.
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across multiple bacterial community samples from different habitats with the evolutionary trees generated using 
theoretical models of biodiversity. They obtained two major findings: the first finding is that on coarse scales the 
backbone of the empirical trees is simple, robust and consistent across habitats, although they are idiosyncratic 
on finer scales. While their first finding still supports the primary principle of the neutral theory—that selective 
differences are irrelevant for predicting large-scale patterns, and therefore the neutral theory is likely to predict 
the biodiversity patterns over coarse scales, their second finding reject the neutral theory model per se. They 
found that the existing neutral models could not explain observed patterns in microbial phylogenetic diversity, 
and instead, another family of Λ -coalescents models offers a qualitatively better description of both the scaling 
and topology of empirical trees. Their overall conclusion is that while the principle of the neutral theory is useful 
as a backbone for characterizing the microbial phylogenetic diversity, new generation of neutral models such as 
the family of Λ -coalescents models are needed to implement the utilization of the backbone for revealing the 
ecological and evolutionary mechanisms of microbial diversity. While we fully agree with O’Dwyer et al.33,34 that 
testing of the neutral theory with phylogenetic diversity makes great sense, especially with new type of neutral 
models, we suggest that different metrics for diversity may also make difference. Two biodiversity metrics should 
be particularly worthy of pursuing in future testing of the neutral theory. One is the UniFrac by Lozupone & 
Knight67, and another is the Hill numbers. The latter has increasingly been recognized as the most appropriate 
alpha-diversity metrics, and its multiplicative partition for beta-diversity is found to have excellent statistical and 
ecological properties advantageous over other diversity indexes68–70.

Metagenomics technology opens unprecedented opportunities to test ecological theories such as the neutral 
theory of biodiversity by producing gigantic amount of molecular sequencing data often from many community 
samples. This nevertheless also presents significant computational challenges. Some of the challenges can be dealt 
with standard bioinformatics software tools such as QIIME and Mothur71, but a far more significant challenging 
is to maximally take advantage of the big data of metagenomic sequences. One such challenge in the case of neu-
tral theory modeling is the extreme computational complexity involved in multisite neutrality testing, which is 
computationally intractable when the number of sites (local communities) are more than a few36. A recent major 
methodological advance by Harris et al.36 offers a timely approach to the problem. The approach approximates 
a large class of neutral models with the hierarchical Dirichlet process by developing a highly efficient Bayesian 
fitting strategy for the multisite neutrality-testing problem. Besides being able to handle large datasets in a rea-
sonable amount of time for multi-site neutrality test, an additional benefit is to generate full posterior distribution 
over the parameters, rather than obtaining just a maximum likelihood prediction. The approach also reconstructs 
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Figure 1. The rank abundance curves of the four samples, out of the 49 samples that were successfully fitted 
to Etienne’s neutral model . The four samples represent the four different sites from four different individual 
subjects: throat (Subject ID: 700110166), left antecubital fossa (Subject ID: 700102129), right antecubital fossa 
(Subject ID: 700106174), and stool (Subject ID: 700106979). In the figure, the solid red lines are observed data 
and the black dash lines are artificial (simulated) datasets. The X-axis is the species rank order in abundance and 
Y-axis is the abundance of each species in natural logarithm.
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the metacommunity distribution, which makes it possible to divide the problem of neutrality test into two parts. 
First, from the full neutral models with fitted parameters, one can generate samples and compare their likelihood 
with that of the observed samples to test for neutrality. Second, one can generate samples from the observed 
metacommunity and test for the neutrality of local community alone. Therefore, it is possible to test for neutrality 
at both local and metacommunity level with Harris et al.36 hierarchical Bayesian modeling approach. From a 
broader perspective, it is suggested that to use hierarchical Dirichlet process as an ecological null model, possibly 
extended to niche-neutral hybrid model and playing a more significant role in the community ecology36.
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