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ABSTRACT: Specific interactions of lipids with membrane proteins
contribute to protein stability and function. Multiple lipid interactions
surrounding a membrane protein are often identified in molecular
dynamics (MD) simulations and are, increasingly, resolved in cryo-
electron microscopy (cryo-EM) densities. Determining the relative
importance of specific interaction sites is aided by determination of
lipid binding affinities using experimental or simulation methods.
Here, we develop a method for determining protein−lipid binding
affinities from equilibrium coarse-grained MD simulations using
binding saturation curves, designed to mimic experimental protocols.
We apply this method to directly obtain affinities for cholesterol
binding to multiple sites on a range of membrane proteins and
compare our results with free energies obtained from density-based
equilibrium methods and with potential of mean force calculations, getting good agreement with respect to the ranking of affinities
for different sites. Thus, our binding saturation method provides a robust, high-throughput alternative for determining the relative
consequence of individual sites seen in, e.g., cryo-EM derived membrane protein structures surrounded by an array of ancillary lipid
densities.

■ INTRODUCTION

Eukaryotic integral membrane proteins participate in a range of
essential cellular functions including signaling, adhesion, solute
transport, and ion homeostasis. Membrane proteins are inserted
in a lipid bilayer, the composition of which varies between
cellular compartments, metabolic state, and intramembrane
localization.1,2 Specific interactions of lipids with proteins have
been observed both experimentally and in molecular dynamics
(MD) simulations3−5 and can alter protein functionality by, e.g.,
allosteric modulation6−8 or bridging protein−protein oligome-
rization.9,10

Structural elucidation of specific protein−lipid interactions
has been aided by advances in cryo-electron microscopy (cryo-
EM).11,12 However, distinguishing the molecular identity of
lipid-like densities can be challenging, and it is limited to higher
resolution examples.13,14 Differentiating between phospholipid
and sterol densities is somewhat easier due to their distinct
shapes. In mammalian cell membranes the most abundant sterol
is cholesterol, whereas in yeast and plant cell membranes it is
ergosterol and phytosterol, respectively.15 Cholesterol is
typically present at concentrations of 30−40%,16,17 although
this may vary across different regions of the membrane, and is
higher in sphingolipid enriched areas.18 Cholesterol has been
shown to bind and modulate a broad range of membrane
proteins including G-protein coupled receptors (GPCRs), ion

channels, and solute transporters.6,19−23 Recent cryo-EM
structures have revealed several sterol-like densities surrounding
protein transmembrane domains (TMDs). In these instances,
the bound density is cholesterol, copurified from the native
bilayer,24−26 or it may correspond to cholesterol derivatives,
such as cholesterol hemisuccinate (CHS), which are added
during purification.27,28 Often multiple cholesterol binding sites
are observed within the same structure.25 For example, a recent
structure of the serotonin receptor, 5-HT1A (Protein Data Bank
(PDB) ID 7E2X), revealed 10 cholesterol molecules surround-
ing the TMD, including one partially buried cholesterol adjacent
to the orthosteric ligand pocket.29 There is therefore a clear need
to understand and characterize the relative affinities of multiple
cholesterol binding sites on the same protein. However, this
remains experimentally challenging, and there is a paucity of
quantitative experimental biophysical data for cholesterol
binding to, e.g., GPCRs30,31 and other membrane proteins.
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Equilibrium MD simulations have been used extensively to
expand on the information provided from structural analyses, to
study protein−lipid interaction patterns, and to obtain detailed
insights into specific binding sites.4,32,33 In addition, biased-
sampling simulations, such as potential of mean force (PMF)
calculations, free energy perturbation, and metadynamics
simulations, have been used to obtain lipid binding free energies,
supplementing available experimental data on lipid binding
affinities.34 These biased simulations are often performed after
initial equilibrium MD simulations, therefore requiring addi-
tional computing resources and an iterative process to select
suitable reaction coordinates. This limits the applicability of
such approaches to high-throughput, automated pipelines, for
example, MemProtMD.35,36 To circumvent these limitations,
efforts have been made to derive protein−lipid binding affinities
directly from equilibrium MD simulations. These have the
advantage that multiple lipid sites can be simultaneously
examined, such as in studies using 2D density distributions of
cholesterol surrounding the A2A and/or β2 adrenergic receptors,
taken from either atomistic37 or coarse-grained (CG) MD
simulations.38 Additionally, complex lipid interaction profiles32

can be more readily determined, such as applied in a “density-
threshold” approach with the nicotinic acetylcholine receptor in
a mixed lipid environment.39 This can also be achieved with
biased simulations, but it requires additional simulations for
each lipid species studied.40 However, it remains unclear how
accurate equilibriummethods are for obtaining binding affinities
and whether full convergence is feasible within the limits of
current MD simulations.
Here, we present a method for obtaining apparent

dissociation constants (Kd
app’s) directly from equilibrium MD

simulations. We apply this method to rank the strength of
binding sites for cholesterol on three representative membrane
proteins: an ATP-dependent pump (P-glycoprotein; P-gp; see
below for further details), a sterol receptor/transporter protein
(Patched1; PTCH1), and a member of the TRP family of ion
channels (polycystin-2; PC2) (Figure 1). We investigate
whether the site rankings derived from this approach are
comparable with existing equilibrium and nonequilibrium
methods. We also study whether these differences are
maintained in the presence of higher (i.e., physiological)
membrane concentrations of cholesterol. We illustrate the
utility of our robustmethod for determining the relative affinities
of multiple cholesterol sites on a membrane protein via its
application to the serotonin receptor (5-HT1A), a GPCR
structure recently determined by cryo-EM with 10 cholesterol
molecules bound.29

■ METHODS

Equilibrium Coarse-Grained MD Simulations. Struc-
tures of human PC2 (PDB ID 6T9N, subunits A−D),41 PTCH1
(PDB ID 6RVD, subunit A),42 P-gp (PDB ID 7A65, subunit
A),43 and 5-HT1A (PDB ID 7E2X, subunit R) were obtained
from the Protein Data Bank (PDB). Nonprotein components
were removed and loops were modeled using MODELER
9.20,44 for Q296−N305 of PC2 (for each subunit) and L608−
L732 PTCH1 (using a nine residue linker as previously
described42). Proteins were converted to CG resolution using
martinize.py45 with an ElNeDyn 2.246 elastic network applied
(spring force constant = 500 kJ mol−1 nm−2, cutoff = 0.9 nm).
For PC2 the elastic network was applied to each subunit
separately.

The MARTINI2.247 force field was used to describe all
components. Proteins were embedded in a symmetric 1-
palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)/cho-
lesterol bilayer using insane.py48 (Figure 1). The following
cholesterol concentrations were used with the remaining bilayer
composed of POPC: 1, 2.5, 5, 10, 15, 30, and 40% cholesterol.
Cholesterol was modeled using the virtual site parameters.49

insane.py was also used to solvate the system with MARTINI
water45 before neutralization and addition of ions to ∼0.15 M
NaCl. Each replica was independently energy minimized using
the steepest-decent method and equilibrated in 2 × 100 ns steps
with restraints applied to the backbone beads.
Each protein was simulated for 5 × 5 μs in each bilayer

composition (7 bilayer compositions × 5 replicates = 175 μs per
system) using the GROMACS 2018 and 2019 simulation
packages (www.gromacs.org). A 20 fs time step was used, and
periodic boundary conditions were applied. The temperature
was maintained at 310 K with a V-rescale thermostat50 and a τT
coupling constant of 1.0 ps. A Parrinello−Rahman barostat51

was used tomaintain the pressure at 1 bar with a τP value of 12 ps
and a compressibility of 3× 10−4 bar−1. Electrostatic interactions
were cut off at 1.1 nm by using the reaction-field method, and
Lennard-Jones interactions were cut off at 1.1. nm by using the
potential-shift Verlet method. Bonds were constrained to their
equilibrium values by using the LINCS algorithm.52

Figure 1. Membrane proteins which bind cholesterol. Coarse-grained
(CG) representations of the structures of a transporter (P-glycoprotein;
P-gp; PDB ID 7A65, subunit A), a receptor (Patched1; PTCH1; PDB
ID 6RVD, subunit A), an ion channel (human polycystin-2; PC2; PDB
ID 6T9N, subunits A−D), and a GPCR (5-hydroxytrptamine/
serotonin receptor; 5-HT1A; PDB ID 7E2X, subunit R), embedded in
a phosphatidylcholine (PC; 60%) and cholesterol (40%) lipid bilayer.
PC phosphate beads are shown as gray spheres, cholesterol is shown in
QuickSurf representation in cyan, and proteins are in yellow.
Extracellular (EC) and intracellular (IC) leaflets are labeled. The
inset shows corresponding atomistic (AT) and CG representations of
cholesterol with the β3-hydroxyl group (equivalent to the ROH bead at
CG resolution) in red.
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Binding Site Identification. Interactions of cholesterol
with each protein were calculated using PyLipID (github.com/
wlsong/PyLipID).53 Cholesterol interaction occupancy is
defined as the fraction of simulation time where any bead of
cholesterol is in contact with any bead of a protein residue, with a
0.55 nm/1.0 nm double cutoff used to define lipid contacts.
PyLipID was also used to identify cholesterol binding sites by
using a community analysis approach to group residues which
simultaneously interact with a bound cholesterol over the course
of the trajectories. This method is described in detail
elsewhere54,55 and has been applied to a number of recent
examples to characterize lipid binding sites and kinetics.56−58

Since the residue composition of sites A and B varied slightly
with the percent cholesterol present in the bilayer, we selected
six residues from each site, contacts to which were maintained
across all cholesterol concentrations, and used these six residues
in our subsequent analysis (Supplementary Figure 1). The
positions of sites A and B in relation to all identified cholesterol
binding sites are shown in Supplementary Figure 2 for the 40%
cholesterol simulations. For 5-HT1A, sites were defined as six
residues in proximity to each of the 10 modeled cholesterol
densities in the structure (Supplementary Table 1).
Binding Saturation Curves. To define specific interactions

of cholesterol with a membrane protein, we calculated the mean
occupancy (eq 1) of the six selected site residues, as reported by

PyLipID,53 across all cholesterol concentrations. Fx indicates the
number of frames cholesterol is bound to a given residue, Ft is
the total number of frames, and n indicates the total number of
residues; e.g., n = 6 for interactions with a site. Nonspecific
interactions were obtained by calculating themean occupancy of
residues which, in the 40% cholesterol system, had interactions
within the 30−50% range. Further details regarding definitions
of specific/nonspecific interactions are included in the
Supporting Information and Supplementary Figure 3.
Binding saturation curves were plotted with GraphPad Prism

9.0.2 for MacOS (www.graphpad.com). The apparent dissoci-
ation constant for cholesterol binding (Kd

app) was calculated by
fitting the data to eq 2, assuming site occupancies are a result of

specific interactions at one site on the protein. No constraints
were used in calculation of the Kd

app values. Errors are reported
as the standard error of the mean among five independent
repeats.
The concentration of free cholesterol ([CHOL]free) was

derived from the mean number of cholesterol molecules >0.8
nm from the protein surface (unbound cholesterol) as a fraction
of the total number of unbound lipids (POPC and cholesterol)
across simulations. Thus, our computational saturation curves
circumvent approximations of free and total ligand pools often
used experimentally. Note that the Bmax

app values are not
reported here (see the Supporting Information).
Convergence analyses were performed by re-running the

fitting protocol with fewer simulations (Supplementary Figure
4) or reducing the length of the trajectory (Supplementary
Figure 5).

Density Analysis. We adapted a previously described
method used to obtain free energy values for protein−
cholesterol interactions from 2D lipid density profiles observed
in simulations.37,38 The free energy (ΔG) can be then obtained
by comparing the density of cholesterol bound at a specific site
(ρsite) to the mean lipid density in bulk (ρbulk) (eq 3). R denotes
the gas constant in kJ mol−1 K−1 (8.314 × 10−3) and T is the
temperature in kelvin.

Our method utilizes the same underlying approach but
extends the analysis to three dimensions (density in xyz) as
opposed to averaging across the bilayer normal (density in xy).
Full details of processing of the density data are provided in the
Supporting Information, summarized below. Density analysis
was performed with the DensityAnalysis tool implemented in
MDAnalysis59,60 (www.mdanalysis.org) using an in-house
script. Grid dimensions were fixed, and the grid center was
defined as the center of mass of the protein transmembrane
domain. The bin size was 0.1 nm. Three-dimensional ρsite and
ρbulk values were obtained by masking specific regions of the
density array (Supplementary Figure 6). These values were then
converted directly to free energy values by using eq 3.

Potential of Mean Force Calculations. The setup and
analysis of PMF calculations was assisted by the pmf.py tool
(DOI: https://doi.org/10.5281/zenodo.3592318).34 CG PMF
calculations were performed as described previously34 in bilayers
containing 30% cholesterol. Briefly, a 1D reaction coordinate
was generated by pulling between the cholesterol center of mass
and the backbone bead of a site residue. Windows at 0.05 nm
spacing along the reaction coordinate were simulated for 1 μs
each with a 1000 kJ mol−1 nm−2 umbrella potential used to limit
cholesterol movement along this coordinate. Free energy
profiles were obtained by using the weighted-histogram analysis
method (WHAM)61 implemented in GROMACS with 2000
rounds of Bayesian bootstrapping, discarding the first 200 ns of
each window. Further details are provided in the Supporting
Information, and convergence of free energy values is shown in
Supplementary Figure 7.

Site Membrane Exposure. The membrane exposure
fraction was defined as the number of lipid contacts within 0.6
nm of a bound cholesterol divided by the number of total
contacts (protein and lipid) to the site cholesterol, as calculated
by using MDAnalysis59,60 across the simulations.

■ RESULTS
We set out to determine if equilibrium MD simulations are able
to not only identify specific interactions of protein with lipids but
also to rank the affinities of different sites, and to evaluate how
well these estimates compare to biased simulations. We also
wanted to assess whether values obtained from simulations were
affected by the lipid concentration in the membrane.
Using equilibrium CG MD simulations, we constructed

binding saturation curves, where the total cholesterol concen-
tration was varied, and the mean occupancy of six residues in
each specified binding site was determined across the
concentrations of free cholesterol. The idea of this method
was to mimic ligand binding assays used experimentally to
produce binding saturation curves.62,63
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To help with the convergence of these calculations, we chose
to study the lipid cholesterol, which has been demonstrated to
have relatively fast binding and/or dissociation kinetics
compared to other lipids (e.g., anionic lipids such as cardiolipin
and phosphatidylinositols) and hence is more amenable to
sampling of multiple sites within a given simulation.33 In
addition, the thermodynamics of protein−cholesterol inter-
actions have been extensively studied in both atomistic and CG
simulations, with the use of both biased and unbiased
methods.64 These free energy estimates therefore provide a
good benchmark against which to compare our results.
Three human integral membrane proteins were selected to

evaluate our analysis of cholesterol interactions: the ATP-
dependent efflux pump P-glycoprotein (P-gp), the proposed
sterol receptor/transporter protein Patched1 (PTCH1), and the
transient receptor potential (TRP) ion channel polycystin-2
(PC2) (Figure 1). In each case, cholesterol has been suggested
to play a role in protein function by either allosteric modulation
or direct involvement in the protein’s biological process.
Comparative Methods for Determining Cholesterol

Binding Affinities with P-gp. Cholesterol has been shown to
alter both the drug binding properties65 and ATP-mediated
export rates65,66 of P-gp. In addition, P-gp localizes in
sphingomyelin/cholesterol enriched regions in the cell,67,68

further supporting a role for cholesterol in modulating P-gp
function.
Previously reported CG simulations of cholesterol binding to

a human P-gp homology model observed cholesterol binding to

multiple sites including between TM10/TM12 and TM7/TM8,
which were suggested to have different free energy values (as
reported by PMF calculations).69 The TM7/TM8 site was also
observed in atomistic simulations of mouse P-gp.70 We used
PyLipID53 (see Methods for details) to identify two cholesterol
binding sites from equilibrium simulations. Our simulations,
initiated from the recently solved human P-gp structure,43

replicated the two aforementioned cholesterol binding sites
from the homology model simulations. Thus, site A corresponds
to cholesterol bound between TM10/TM12 and site B
corresponds to cholesterol bound between TM7/TM8 (Figure
2A, Supplementary Figure 1).
Occupancies for both site A and site B increased nonlinearly

with cholesterol concentration, as would be anticipated for well-
defined, saturable binding sites (Figure 2B). We observe a rapid
increase in site A occupancy compared to site B as cholesterol
concentration is increased. The Kd

app of P-gp site A (Kd
app = 0.8

± 0.2%) is substantially lower (i.e., has a higher affinity) than
that for site B (Kd

app = 16.0 ± 0.8%). This suggests the
cholesterol binding affinities of the two sites on P-gp are not
equal, as is also exemplified by the variability in cholesterol
affinities reported in other studies.64

We next performed PMF calculations to validate our observed
differences in site affinities from our binding saturation method.
For both sites we observe defined energetic wells at low reaction
coordinate values, consistent with PMF profiles of other
cholesterol binding sites.64 We obtain free energy well depths
of−13± 2 kJ mol−1 for cholesterol binding to site A and of−6±

Figure 2.Cholesterol binding to P-gp. (A) Cholesterol interaction sites A (blue) and B (red), identified using equilibrium simulations (5× 5 μs at each
cholesterol concentration) in PC:Chol 60:40 followed by analysis using PyLipID (github.com/wlsong/PyLipID).53 The sites are shownmapped onto
the structure of the P-gp (7A65, subunit A) TMD. Residues involved in cholesterol interactions in the 40% cholesterol simulations are shown as
spheres scaled according to cholesterol residence times. The six residues selected (which were conserved across all cholesterol concentrations) are
labeled (opaque), whereas the remaining residues constituting the site (in 40% cholesterol) are transparent. (B) Binding saturation curves for
cholesterol binding to sites A and B across a range of cholesterol concentrations. Site occupancy was defined as the mean occupancy of the six site
residues in (A). Error bars correspond to standard deviations. Nonspecific interactions were calculated from mean occupancies of specified residues
with 30−50% occupancy in the 40% cholesterol simulations. (C) Free energy landscapes from potential of mean force (PMF) calculations for sites A
and B from simulations in bilayers containing 30% cholesterol. Bootstrapping errors are shown in gray. (D) Free energies of binding derived from
probabilities of cholesterol bound at site A (blue) or B (red) relative to the bulk probability calculated from 3D density plots of cholesterol localized
surrounding P-gp.
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2 kJ mol−1 for site B (Figure 2C). Our PMF values are in

agreement with the relative affinities of sites obtained from

previous calculations on the P-gp homology model.69 Thus,

both binding saturation and PMF calculations rank the sites in

the same order.
We then assessed whether density-based equilibrium free

energy methods could also be used to observe quantitative

Figure 3. Cholesterol binding to PTCH1. As in Figure 2 for PTCH1 (6RVD, subunit A). (A) Residues comprising cholesterol interaction sites A
(blue) and B (red) on PTCH1. (B) Binding saturation curves for cholesterol binding to sites A and B as the concentration of cholesterol is varied. (C)
Free energy profiles from PMF calculations for cholesterol binding to sites A and B on PTCH1. (D) Free energies derived from the probability of
cholesterol binding to sites relative to in bulk, obtained using a density-based approach. For full methodological details see Figure 2.

Figure 4.Cholesterol binding to PC2. As in Figure 2 for PC2 (6T9N, subunits A−D). For clarity, only subunit A of the PC2 homotetramer is shown in
A, with the pore-lining helices of PC2 in darker gray compared to the voltage-sensing-like domain (VSLD). (A) Residues comprising cholesterol
interaction sites A (blue) and B (red) on PC2. (B) Binding saturation curves for cholesterol binding to sites A and B as the concentration of cholesterol
is varied. (C) Free energy profiles from PMF calculations for cholesterol binding to sites A and B on PC2. (D) Free energies derived from the
probability of cholesterol binding to sites relative to in bulk, obtained using a density-based approach. For full methodological details see Figure 2.
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differences in site binding affinities. Interestingly, for our density
analysis, despite a strong difference at very low cholesterol, our
free energy values for site A and site B converge at approximately
−10 kJ mol−1 in 40% cholesterol. This suggests some sensitivity
of the method to the lipid concentration chosen for the
simulation (Figure 2D).
Extending Analysis of Cholesterol Affinities to Other

Protein Examples: PTCH1 and PC2. To test the applicability
of our methods to other membrane proteins, we applied the
same protocol described above in detail for P-gp to two other
proteins: the receptor/transporter PTCH1 and the ion channel
PC2. These are described in succession in the following sections.
PTCH1. Recent structural studies of PTCH1 have identified

multiple sterol binding sites on the TMD and bound within the
extracellular domain (ECD).71−75 In addition, novel biochem-
ical and CRISPR-based assays suggest PTCH1 alters the
abundance of accessible cholesterol,74,76 which collectively has
led to the growing consensus that PTCH1 may function as a
cholesterol transporter.77

For PTCH1, cholesterol binding sites were selected because
sterol-like densities have been observed in proximity to both
sites in cryo-EM structures72,75 (Figure 3A, Supplementary
Figure 1). Site A is localized within a structurally conserved
domain formed by TM2-6 called the sterol-binding domain
(SSD). Site B is situated between TM7/TM12 of PTCH1. In
addition to the observed structural densities, both sites are
situated at the exit points of tunnels extending through the ECD,
characterized in previous atomistic simulations, and are
therefore suggested to form local cholesterol binding sites for
coordination of transport between the ECD and membrane.42

We again see a strong difference in the binding saturation
curves for site A (Kd

app = 6.8 ± 0.3%) and site B (Kd
app = 46 ±

2%) (Figure 3B), suggesting that site A has a far higher apparent
affinity than site B, although the difference between sites was
somewhat less than seen in P-gp.
This difference is also reflected in our PMF calculations, from

which we obtain free energy well depths of−18± 3 kJ mol−1 for
cholesterol binding to site A and −6 ± 1 kJ mol−1 for site B
(Figure 3C). This suggests that we can obtain qualitative
agreement between the ranking of site affinities using binding
saturation curves and density analysis compared to PMFs and

that the magnitudes can be compared between proteins and
appear to reflect genuine differences in site affinities.
These differences are reflected in our 3D density analysis,

albeit with a muted difference between the sites, which at >15%
cholesterol gives values of about −10 kJ mol−1 for site A and −8
kJ mol−1 (40% cholesterol) for site B (Figure 3D).

PC2. A combined cryo-EM and MD study of PC2 identified
cholesterol-like density located between the voltage-sensing-like
domain (VSLD) and the pore helices, which coincided with a
cholesterol binding site seen in CG simulations.41 In addition,
both PC2 and PTCH1 localize within the primary cilia of cells
where levels of accessible cholesterol are regulated and where
cholesterol has been shown to play roles in initiating intracellular
signaling pathways.78

As before, we identified cholesterol binding sites on PC2 and
constructed binding saturation curves. Site A on TM3/TM4
(Figure 4A, Supplementary Figure 1) has previously been
identified from a combined structural and simulation study.41

Site B is on the interface of TM1/TM4.We again see differences
in site affinity between site A (Kd

app =11± 1%) and site B (Kd
app

= 49 ± 9%) from our saturation curves (Figure 4B). The Kd
app

for site A is higher than that observed for P-gp or PTCH1.
From PMF calculations we obtain a free energy well depth of

−13± 3 kJ mol−1 for cholesterol binding to site A, in agreement
with a previously reported value of −12 ± 3 kJ mol−1 for
cholesterol binding to this site obtained by a similar method41

(Figure 4C). For site Bwe obtain a free energy value of−7± 1 kJ
mol−1, consistent with differences in site affinities from the
saturation curves.
Finally, from the density analysis we observe stabilization of

the free energy values at >15% cholesterol, corresponding to
approximately −10 and −9 kJ mol−1 for sites A and B,
respectively (Figure 4D).

Affinities ofMultiple Cholesterol Sites onOne Protein.
We sought to assess whether the binding saturation method
could be applied to a membrane protein with several bound
cholesterol molecules, exploiting the method’s ability to obtain
multiple Kd

app’s from the same simulation data set. For this we
chose a recent structure of the 5-HT1A GPCR, determined in
complex with 10 cholesterol molecules.29 Here, we used the
structurally observed cholesterol densities to define the position
of the binding sites (site IDs as numbered in ref 29,

Figure 5. Binding saturation method as applied to 10 cholesterol sites on 5-HT1A. (A) Binding saturation curves for 10 cholesterol binding sites on 5-
HT1A (7E2X, subunit R). Site occupancies were obtained from the mean occupancy of six residues in proximity to the modeled cholesterols
(Supplementary Table 1), as obtained using PyLipID.53 Sites are colored according to the relative strength as given by the obtained Kd

app values
(“strong”, blue; “moderate”, lime; “medium”, orange). (B) Structure of apo 5-HT1A used to obtain the binding saturation curves in (A). Cholesterol
molecules are shown as sticks colored according to the relative site affinity (see (A)) andKd

app values for each site indicated. Site IDs (S1−5, S7−9, S11−12)
correspond to those in Figure 2f of Xu et al.29 The modeled phosphatidylinositol is shown in gray stick representation for reference.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.1c00547
J. Chem. Theory Comput. 2021, 17, 6548−6558

6553

https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.1c00547/suppl_file/ct1c00547_si_002.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.1c00547/suppl_file/ct1c00547_si_002.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.1c00547/suppl_file/ct1c00547_si_002.pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00547?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00547?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00547?fig=fig5&ref=pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.1c00547/suppl_file/ct1c00547_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00547?fig=fig5&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.1c00547?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Supplementary Table 1) and constructed binding saturation
curves for each site.
We observe saturable binding curves for all 10 sites, validating

the position of modeled cholesterol densities in the 5-HT1A
structure29 (Figure 5A). All except one site (S3) had Kd

app’s
ranging between 4 and 9%, similar to site A Kd

app’s for P-gp,
PTCH1, and PC2. These binding sites could be further
separated into two subcategories: “strong” sites with Kd

app’s of
4−5% (S2, S4, S7, S8, S11) (Figure 5B, blue; Supplementary Table
1) and “moderate” sites with Kd

app’s of 8−9% (S1, S5, S9, S12)
(Figure 5B, lime) which had distinct binding saturation profiles
(Figure 5A). The remaining site (S3) (Figure 5B, orange) had an
intermediate affinity (Kd

app = 20%) relative to sites A and B of P-
gp, PTCH1, and PC2, suggestive of a “medium” affinity site.
Thus, using a single set of simulations, we are able to rank the
respective affinities of the 10 cholesterol molecules bound to 5-
HT1A.

■ DISCUSSION
Increasingly, structures and simulations reveal a range of lipids
bound to sites on the TMDs of membrane proteins.25,29,32

Nevertheless, challenges with structural interpretation prevail
when attempting to assign meaning to bound lipids in a
biological context and/or for protein function. Ranking the
affinity of lipid sites can aid this interpretation by establishing
which sites may be more relevant/prevalent in a biological
context.
We compared the affinities of two cholesterol sites on each of

P-gp, PTCH1, and PC2 using equilibrium and biased MD
simulations. Calculating the difference in apparent site free
energies (ΔΔGapp) between sites A and B (eq 4) reveals good

agreement between the ranking of site affinities derived from
PMF calculations and from our binding saturation method
(Figure 6), i.e.,ΔΔGapp < 0 for both methods. Furthermore, the
magnitude ofΔΔGapp betweenmethods agrees well for P-gp and
PC2, which yield ΔΔGapp values of −4 to −8 kJ mol−1. ΔΔGapp

values for PTCH1 differ somewhat between methods, which we
attribute to a site A free energy much greater than observed for

cholesterol binding to other proteins by PMF calculations.64

Thus, this suggests our binding saturation method can
accurately rank the order and magnitude of site affinities when
compared to robust free energy methods.
It is worth noting is that we do not see strict agreement

between all obtained Kd
app and PMF values. One notable

example of this is the P-gp site A, which gives the strongest Kd
app

but not the highest PMF value. Interestingly, previous PMFs for
this system have been much higher,69 and more in line with our
Kd

app. This points to a variance in the PMF calculations
depending on the conditions used, something we do not expect
to factor into our Kd

app calculations.
The in silico binding saturation method circumvents two

approximations that are routinely applied in equivalent
experimental procedures. First, our cholesterol binding
occupancies are specific to the site of interest, avoiding
complications created by conflating micro and macro dissoci-
ation constants, and second, the concentration of free
cholesterol can be directly calculated rather than approximating
to the total cholesterol concentration. This allows for differences
in site affinities to be observed over a range of physiologically
relevant free cholesterol concentrations. We note that care
should be taken when determining site affinities from density-
based equilibrium methods as these appeared to show some
sensitivity to the overall lipid concentration in the membrane
(Figures 2D, 3D, and 4D) and/or the degree of site sampling at
low percent cholesterol.
We note that, for PTCH1 and P-gp, the free energy values

obtained from PMFs were broadly similar at different membrane
cholesterol concentrations (Supplementary Figure 8). This
suggests that the site A free energy value was not affected by
whether site B was occupied (as in 30% cholesterol, Figures 2C,
3C, and 4C) or unoccupied (in 0% cholesterol, Supplementary
Figure 8). Conversely, the PC2 site PMF was considerably
higher at 30% cholesterol than at 0% cholesterol. This is
potentially due to allosteric coupling between cholesterol sites.
However, it is unclear how well this could be modeled in CG
simulations with an elastic network model. Alternatively, there
may be direct cooperativity between cholesterol molecules, with
overlapping cholesterol sites. Either way, this makes interpre-
tation of any value taken from free energy calculations difficult,
as the presence or absence of other cholesterol could impact the
finding. The presented binding saturation method, however,
implicitly takes this into consideration.
The computational cost and ease of setup are key

considerations if we wish to investigate affinities using high-
throughput simulation methods applied to a wide range of
membrane proteins. For the PMFs, each site on a given protein
was simulated for approximately 65 × 1 μs umbrella sampling
windows, in addition to the initial steered MD simulations
(∼0.03 μs), from which those windows were derived. Thus,
approximately 130 μs of CG simulation time was used in the
PMF calculations to derive the two site affinities on a protein, at
a single cholesterol concentration.
For the binding saturation method, the total CG simulation

time for both sites was 175 μs (5× 5 μs at 7 lipid concentrations)
across all free cholesterol concentrations. The binding saturation
method was surprisingly robust, with as few as two replicas
required to reach Kd

app convergence and one replica sufficient to
observe qualitative differences in site affinities (Supplementary
Figure 4). In addition, 3 μs per simulation appears to be
sufficient for convergence (Supplementary Figure 5). Therefore,
the total simulation time could be reduced to 21−42 μs and still

G G G

G RT K

;

ln( )

app
site A

app
site B

app

site
app

d
app

ΔΔ = Δ − Δ

Δ = − (4)

Figure 6.Difference in apparent free energies of binding, site A− site B.
For each protein,ΔΔGapp (site A− site B) is shown, estimated from the
difference in PMFwell depth (black; Figures 2C, 3C, and 4C) and from
the difference in ΔGapp = −RT ln Kd

app (light blue; using Kd
app values

obtained from fitting the binding saturation curves in Figures 2B, 3B,
and 4B). PMF errors were calculated in quadrature (total error =

A Berr
2

err
2+ ) since PMFs for sites A and B are independent.
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yield quantitative differences in site affinities. Furthermore, the
number of residues used to define the high affinity site (site A)
could be reduced from six to one, reducing the amount of user
input required in simulation analysis (Supplementary Figure 9).
The lower affinity site (site B) was more sensitive to the number
of site residues, as expected for weaker site binding. Setting up
equilibrium simulations is more amenable to automation
compared to the careful selection of reaction coordinates
required in biased methods, making the former approach
suitable for use in high-throughput pipelines. Crucially,
equilibrium methods allow multiple site affinities to be obtained
from the same simulation data set, meaning that analyses could
be extended to many sites in the same system for the same
computational cost. We exemplify this here, to obtain relative
affinities of 10 cholesterol sites on the 5-HT1A receptor. From
binding saturation curves, we can group these sites into three
categories corresponding to “strong”, “moderate”, and “me-
dium” affinity sites compared toKd

app’s of sites on P-gp, PTCH1,
and PC2 (Figure 5). Performing 10 equivalent PMF calculations
would require ∼650 μs of simulation time, ∼4 times the
equilibrium CG simulation time used here. Thus, the binding
saturation method is a suitable alternative for investigating site
affinities, yielding tractable and accurate results with modest
input required from the user.
What Dictates Differences in Cholesterol Binding

Affinities? We sought to understand whether key structural
features between site A and site B underpin the observed
differences in site affinities (Figure 7). For P-gp and PTCH1, the
membrane exposure of the bound cholesterol was lower for site
A than for site B (Figure 7A). This suggests that the more buried
the cholesterol site is, the higher the observed affinity. That said,
the degree of site exposure to the surrounding membrane was
not sufficient to fully describe differences in site affinity for PC2,
where both sites were similarly buried but the affinities were
different. For PC2, the presence of a polar residue (Q557) in
proximity to the hydroxyl (ROH) bead of cholesterol appears to
enhance the affinity of cholesterol binding to site A (Figure 7B).
Equivalent polar residues are not present in site B (Figure 4A). A
polar residue was also present in site A of P-gp and that of
PTCH1 adjacent to the cholesterol ROH bead (Figure 7B).
Thus, “strong” cholesterol binding is enhanced by both the
pocket-like nature of a binding cavity and polar residues in direct
contact with the lipid headgroup.

For 5-HT1A, almost all sites contained polar residues in
proximity to the cholesterol hydroxyl, reflected in the low Kd

app

values obtained from the binding saturation curves (Figure 5,
Supplementary Table 1). Higher affinity sites are more likely to
persist during the relatively harsh purification and solubilization
process used to obtain membrane protein structures by cryo-
EM, consistent with the high affinity of sites observed on 5-
HT1A. One site on 5-HT1A (S1) is proposed to stabilize the
orthosteric ligand binding pocket and regulate binding of
aripiprazole to the receptor.29 We obtained a Kd

app value of 8%
for this site which, while possessing a reasonably high affinity,
was not the strongest cholesterol binding site on 5-HT1A.
Reduced affinity at S1 may assist dynamic binding/unbinding of
cholesterol to this site compared to a constitutively occupied,
higher affinity, binding site.
Perhaps a more intriguing question is why, from a functional

perspective, membrane proteins might show differences in
cholesterol affinities across their surfaces. Differential site
affinities on proteins could be utilized, e.g., for cholesterol-
dependent differences in protein regulation. PC2 and PTCH1
localize to the primary cilia, where the abundance of accessible
membrane cholesterol is highly regulated.79 Changes in cilia
cholesterol levels coincide with activation levels of key signaling
pathways and to the subcellular localization of PTCH1.76,80 In
addition, the abundance of membrane cholesterol within
organelles increases between the endoplasmic reticulum and
the plasmamembrane.17 Cholesterol binding/unbinding to sites
could therefore aid in protein trafficking to its native membrane
environment. For example, the dynamic localization of SNARE
proteins within the trans-Golgi network and endosomes is
affected by membrane cholesterol abundance, affecting SNARE
recycling between membranes.81

One factor not considered in the study is the ability of other
specific lipids to influence the affinity of a different lipid to a site.
For example, the presence of PIP2 in a complex membrane
environment enhances the affinity of PS binding to the Kir2.2
channel.54 Additionally, we do not assess the relative affinity of
different lipids binding to the same site as has been investigated
in a recent study of the Kir6.2 channel.40 Future work will seek to
evaluate how changes in cholesterol concentrations influence
site affinities within the context of more realistic membrane
environments and to assess roles lipid synergy might play in
affinity modulation.

Figure 7.Molecular basis of observed differences in site affinities.(A) Fractional membrane exposure of the bound site A and site B cholesterols for P-
gp, PTCH1, and PC2 across simulations. Membrane exposure was defined as the number of lipid contacts within 0.6 nm of the bound cholesterol
divided by the total number of contacts (protein and lipid) within 0.6 nm. Error bars indicate the standard error of the mean across replicates. (B)
Binding pose of cholesterol bound to sites A (blue) and B (red) of P-gp, PTCH1, and PC2, as obtained using PyLipID53 from our CG simulation data.
Site cholesterols are shown bound to the surface (all beads, white) of the proteins, indicating differential burial of the site cholesterols. The locations of
polar residues in proximity to the ROH bead of site A cholesterols are indicated in purple.
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In summary, we have evaluated the binding affinities of
cholesterol to two sites on a range of proteins, drawing
comparisons between well-established PMF and equilibrium
methods. We describe a novel binding saturation curve method
for obtaining affinities from equilibrium simulations, intended to
imitate experimental binding assays. This method was also
applied to simultaneously probe the affinities of 10 cholesterol
binding sites on a protein, demonstrating how the method could
be scaled for automated and/or high-throughput analysis. The
binding saturation method accurately ranks the order and
relative magnitude of site affinities when compared to PMF
calculations and could be readily applied to study affinities of
other lipid/ligand binding events.
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