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the female vascular system
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Abstract

Sex hormones and their respective receptors affect vascular function differently in men and women, so it is
reasonable to assume they play a role in the sex differences in cardiovascular disease states. This review focuses on
how the effects of testosterone on arterial vessels impact the female vasculature. In women with androgen-excess
polycystic ovary syndrome, and in transgender men, testosterone exposure is associated with high blood pressure,
endothelial dysfunction, and dyslipidemia. These relationships suggest that androgens may exert pathophysiological
effects on the female vasculature, and these effects on the female vasculature appear to be independent from
other co-morbidities of cardiovascular disease. There is evidence that the engagement of androgens with androgen
receptor induces detrimental outcomes in the female cardiovascular system, thereby representing a potential
causative link with sex differences and cardiovascular regulation. Gender affirming hormone therapy is the primary
medical intervention sought by transgender people to reduce the characteristics of their natal sex and induce those
of their desired sex. Transgender men, and women with androgen-excess polycystic ovary syndrome both
represent patient groups that experience chronic hyperandrogenism and thus lifelong exposure to significant
medical risk. The study of testosterone effects on the female vasculature is relatively new, and a complex picture
has begun to emerge. Long-term research in this area is needed for the development of more consistent models
and controlled experimental designs that will provide insights into the impact of endogenous androgen
concentrations, testosterone doses for hormone therapy, and specific hormone types on function of the female
cardiovascular system.
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Introduction
Most studies on vascular dysfunction have been con-
ducted on male subjects, in part due to a general as-
sumption (in the early part of the twentieth century)
that women were at low risk for generalized cardiovas-
cular diseases. Further, it was generally assumed that
physiological responses in women would be similar to
those of men. Excluding women from research studies
resulted in an overall failure to recognize the important
and differential effects of reproductive hormones on the

female cardiovascular system. In 1993, the US Congress
passed the NIH Revitalization Act (https://grants.nih.
gov/grants/funding/women_min/guidelines.htm) direct-
ing the National Institutes of Health to ensure the inclu-
sion of women in clinical research unless “a clear and
compelling rationale and justification establishes to the
satisfaction of the relevant Institute/Center Director that
inclusion is inappropriate with respect to the health of
the subjects or the purpose of the research.” Cardiovas-
cular disease is recognized as the leading cause of mor-
tality in both men and women in the USA [1].
Moreover, the influence of sex hormones in cardiovascu-
lar health is complex and related to age, environment,
sex differences in the tissues exposed, and, in the case of
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exogenous hormones, the route of administration. The
current review highlights the impact on the female vas-
cular system when exposed to high levels of androgens.

Androgens
In men, testosterone is synthesized in testicular Leydig
cells and secreted by the testes. Approximately 10% of
testosterone is converted via 5-alpha reductase to the
potent dihydrotestosterone (DHT). This conversion to
DHT primarily occurs in target tissues such as prostate,
seminal vesicles, and hair follicles, and then binds to the
androgen receptor (AR) specific to that tissue. The adre-
nals in both men and women secrete small amounts of
testosterone that is quickly converted to estrogen via
aromatase. In women, the ovaries also produce small
amounts of testosterone, most of which are quickly aro-
matized to estrogen. In both men and women, the
aromatization of testosterone to estrogen is mainly a
peripheral effect taking place in a number of tissues
throughout the body, including blood vessels, brain, fat,
skin, and bone. Androgens regulate gene transcription
when ligand-activated and also may induce rapid activa-
tion via kinase signaling cascades and mechanisms inde-
pendent of transcription [2–5], such as activation of

intracellular Ca2+ [5], MAPK [3], Akt [2], and PKA/PKC
[6] (Fig. 1). Androgen receptors are expressed in cells
throughout the vascular system, including endothelial
cells [8] and vascular smooth muscle cells [9]. The AR
primarily mediates androgenic effects on the endothe-
lium, and some androgen effects on the vascular system
are mediated indirectly through estrogen [10] after tes-
tosterone conversion by aromatase [8]. Androgen actions
on the endothelium are often mediated by NO [11–13].
These actions vary significantly in men because both es-
tradiol exposure and aromatase levels fluctuate widely.

Androgens in females
Estrogens may play a cardioprotective role at certain
stages of life in females [14–16], meaning that women
with high estrogen exposure have a lower incidence of
cardiovascular disease or coronary artery disease (CAD)
compared to age-matched men [15]. Androgens appear
to induce unfavorable responses in the female vascular
system [17, 18]. Engagement of androgens and the AR
leads to impaired agonist-triggered endothelial NO re-
lease in women [19]. For example, high circulating an-
drogen levels in women, such as in androgen-excess
PCOS (AE-PCOS), is associated with high circulating

Fig. 1 Sex differences in the signal transduction pathways of eNOS activation in endothelial cells by testosterone and the subsequent vascular
response. Testosterone is generally thought to increase nitric oxide (NO) availability through genomic and non-genomic pathways in men.
Testosterone works through a separate pathway in women resulting in reduced NO availability and impaired vasodilation. Androgen receptor
(AR), endothelial NO synthase (eNOS), extracellular signal-regulated kinase (ERK), phosphatidylinositol 3-kinase (PI3K), Akt (protein kinase B), G
protein-coupled estrogen receptor 1 (GPR30 agonist, G-1). From Stanewicz et al. [7], with permission
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inflammatory cytokines, oxidative stress, and NF-κB acti-
vation [20], all of which impair NO release and lead to
endothelial dysfunction [21] and mild hypertension [22].
Androgen exposure is associated with endothelial dys-
function in women, including elevated ET-1 levels, inde-
pendent of insulin resistance, obesity, or fertility status
[19]. Some [23–25], but not all [26, 27] studies suggest
that as women age and enter perimenopause, when both
androgens and estrogens are fluctuating [28], androgens
are more pronounced and are associated with coronary
artery calcification and carotid intima-media thickness.
The sex differences in vascular function are well recog-

nized and impact clinical presentation, pathophysiology,
treatment, and response to treatment [29]. Sex hormones
affect vascular function differently in men and women
and, therefore, likely contribute to these differences in vas-
cular function [7, 30, 31]. There is evidence that the en-
gagement of androgens and the AR represent a causative
link between sex differences and vascular function and in-
duce detrimental outcomes on the female vascular system
[31–36]. These effects are in contrast to men, in whom
androgen effects can be positive or negative depending on
the physiological environment and factors that disrupt it
[5]. Androgens can increase reactive oxygen species and
decrease NO bioavailability in females, so likely contribute
to increases in blood pressure [37].

Androgen-excess polycystic ovary syndrome
Polycystic ovary syndrome (PCOS), the most common
reproductive endocrinopathy affecting ~ 1 in 10 women,
is the most common cause of infertility in women. Ap-
proximately, 75% of women with PCOS have the more
severe endocrine and metabolic PCOS phenotype, AE-
PCOS, that is dominated by clinical and biochemical
manifestations of hyperandrogenism. The pathophysi-
ology involves dysregulation of a number of endocrine
signals, including altered pulsatility of hypothalamic
gonadotropin-releasing hormone (GnRH) from the arcu-
ate nucleus, resulting in altered secretion of the pituitary
gonadotropins luteinizing hormone (LH) and follicle-
stimulating hormone (FSH). This disordered hypothal-
amic function is associated with excess production of
androgens under the influence of both elevated LH and
excess insulin as well as disordered insulin action in tar-
get tissues and failure of ovarian folliculogenesis due to
the altered gonadotropin signaling and hyperandrogene-
mic milieu. Ovaries of AE-PCOS women are replete with
oocytes containing immature follicles, but mechanisms
that underlie the dynamics of normal follicular growth
and egg maturation are disordered. Thus the “cysts” of
AE-PCOS ovaries represent arrested follicles that con-
tain immature eggs. Finally, in addition to androgen ex-
cess, AE-PCOS is a state of progesterone deficiency
resulting from chronic failure to achieve ovulation.

The overexposure to androgens is considered the key
disruption influencing the clinical features of AE-PCOS.
The mechanisms responsible for vascular dysfunction in
AE-PCOS are currently unknown, but research also points
to the chronic excess androgen milieu [38–41]. The an-
drogenic effects on cardiovascular risk are already appar-
ent in young women with AE-PCOS [20, 21, 42–44] and
characterized by endothelial dysfunction [45–48]. Endo-
thelial dysfunction is an early sign of atherosclerosis,
hypertension, and diabetes and usually driven by impaired
agonist-triggered endothelial NO release [49]. Impair-
ments in agonist-triggered endothelial NO release are evi-
dent in women with AE-PCOS and exacerbated by
increased circulating inflammatory cytokines, oxidative
stress, and NF-κB activation [20] that contribute to the
endothelial dysfunction [21] and result in mild hyperten-
sion [22]. Thus, chronic hypertension and endothelial dys-
function [21] are prevalent in young women with AE-
PCOS [50]. The altered vascular function is concomitant
with a spectrum of other covert risk markers of CAD, in-
cluding obesity, insulin resistance, an atherogenic lipid
profile, and proinflammatory milieu [50]. Endothelin-1 is
one of several circulating indicators of endothelial injury
[51, 52] and poor endothelial function [53]. In our studies
in women with AE-PCOS, we demonstrated elevated ET-
1 compared to control obese, insulin-resistant women.
We also demonstrated that short-term (4–7 days) of an-
drogen suppression with a GnRH antagonist reduced ET-
1 (Fig. 2) [21, 54]. Finally, administering methyltestoster-
one while continuing the GnRH antagonist had little im-
pact on ET-1 levels in either group (Fig. 2) [40]. From our
results in women with AE-PCOS, we concluded that an-
drogens drove dysfunction in the ET-1 system and the as-
sociated poor endothelial dysfunction. From these same
studies, we also showed an increase in ET-1 during GnRH
antagonist administration in our control obese, insulin-
resistant group without AE-PCOS, likely due to estrogen
suppression (Fig. 2) [40].
Although the prominent phenotype of young women

with AE-PCOS manifests a spectrum of covert CAD risk
markers (including obesity, insulin resistance, hyperten-
sion, an atherogenic lipid profile, and a proinflammatory
milieu), we hypothesized that their poor endothelial me-
diated vascular function is driven by elevated androgen
exposure. Recent data from our laboratory supported
this hypothesis when we demonstrated poor vascular
function in lean women with AE-PCOS (Fig. 3) [38]. In
these studies, endothelial function was compromised in
lean, insulin-sensitive women with AE-PCOS indicating
the relation of AE-PCOS to vascular dysfunction is inde-
pendent of insulin resistance, obesity, and fertility status
[19], and supporting our hypothesis that endothelial dys-
function in AE-PCOS was a consequence of elevated an-
drogen exposure. These data provided strong evidence
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that elevated androgen levels have a negative impact on
endothelial function and overall vascular function in
women with AE-PCOS.
We have also studied the impact of testosterone effects

on the autonomic control of blood pressure in women
with AE-PCOS. The arterial baroreflex is a key homeo-
static mechanism that regulates fluctuations in blood
pressure that occur with each heartbeat. Women with
AE-PCOS show poor baroreflex function [55]. Further,
AE-PCOS is also associated with impaired cardiac (car-
diovagal) baroreflex [56], which contributes to sympa-
thovagal dysfunction during standing [57] and impaired
autonomic control [58]. In general, plasma testosterone
levels and peripheral, i.e., muscle sympathetic neural ac-
tivity (MSNA), are positively correlated [59]. Women
with AE-PCOS also demonstrate increased spontaneous
MSNA [60] and resting blood pressure versus healthy
controls, as well as decreased sympathetic baroreflex
gain—i.e., the slope of the relationship between MSNA
and blood pressure, further demonstrating impaired
autonomic control of blood pressure in women with
AE-PCOS [55]. It follows that elevated testosterone in

women may impair sympathetic baroreflex control of ar-
terial blood pressure. In support of this hypothesis, the
testosterone-MSNA relationship is more powerful in
lean compared to obese women with AE-PCOS [60, 61].
These findings also indicate that testosterone is an inde-
pendent predictor of MSNA in AE-PCOS [60, 61].

Transgender men
While studies on AE-PCOS have successfully demon-
strated the effects of chronic androgen exposure on
endothelial function and blood pressure regulation in
women exposed to chronically high androgens, there are
many confounding cardiovascular disease risk factors as-
sociated with PCOS. In contrast, young, healthy trans-
gender men receive levels of testosterone (40-100mg/
week) to achieve male physiologic levels (400-1000 ng/
mL testosterone) during gender-affirming hormone ther-
apy (HT) to achieve female-to-male gender transition,
and doses are adjusted to address the patients’ goals and
responses [48, 62]. Increasing testosterone exposure cre-
ates extremely high androgen exposure to the female

Fig. 2 Plasma endothelin-1 (P[ET-1]) concentration increases in control women but decreases in women with androgen excess-polycystic ovary
syndrome (AE-PCOS) during testosterone (T) suppression with a gonadotropin releasing hormone antagonist (GnRH ant). Asterisk indicates
greater baseline P[ET-1] in AE-PCOS compared to control. Dagger indicates changes in P[ET-1] during T suppression and T administration, P < 0.05.
Data from Wenner et al. [40], with permission

Fig. 3 Dose-response curves during cutaneous microdialysis perfusions of low dose endothelin-1 (ET-1) in lean (left) and obese (right) women
with androgen excess polycystic ovary syndrome (AE-PCOS) and control subjects. Percent maximal cutaneous vasodilation (CVC %Max). Asterisk
indicates difference from Control within lean BMI group. Data are presented as means ± SEM. From Usselman et al. [38], with permission
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cardiovascular system. Thus, research on the impact of
these male physiologic doses of androgens on female
cardiovascular and other systems is needed and provides
an opportunity to isolate the impact of testosterone on
vascular function in the female cardiovascular system.
Approximately 1.4 million people in the USA (0.6% of

the population) identify as transgender [63] or having a
current gender identity that differs from the sex assigned
at birth. Cisgender individuals have a gender identity the
same as the sex assigned at birth. Transgender men are
persons assigned female at birth with a male gender
identity. Gender affirming hormone therapy to reduce
characteristics of their natal sex and induce those of
their desired sex is the primary medical intervention
sought by transgender people. While HT is recognized
by the World Professional Association for Transgender
Health as medically necessary [64], there are significant
medical risks associated with HT [65], including poten-
tial cardiovascular risk [66–68]. Reduced ovarian hor-
mones concomitant with increased testosterone during
HT is associated with increased systolic blood pressure
[48], dyslipidemia [48, 66], endothelial dysfunction [48],
and thrombosis risk markers in young trans men [69].
Further, attention to the androgen effects on the CV sys-
tem in trans men is especially important because HT
continues throughout their lifetime into old age.
Many transgender individuals begin HT at an early age

when the overall risk for cardiovascular events is still
low. Therefore, it is important during HT to evaluate
biomarkers and risk factors that predict cardiovascular
disease later in life. Importantly, even in these younger
trans men cohorts, HT is associated with increased sys-
tolic blood pressure in some [70–72] but not all studies
[73, 74], and is also associated with increased triglycer-
ides (TG) [72, 74], LDL-cholesterol and decreased HDL-
cholesterol [66, 71]. A recent meta-analysis revealed that
in a female-to-male transgender population, testosterone
administration increased serum TG and LDL-cholesterol
and decreased HDL-cholesterol at 3, 6, and 24months

[66]. Cardiovascular morbidity is not yet apparent in
these young trans men [67], and these studies did not
follow subjects to an age when risks of CAD are known
to accelerate.
In a recent study in our laboratory, systolic and mean

blood pressures were slightly but not statistically higher in
trans men (20–33 years) undergoing HT ([T[Total] 196-
1100 ng/mL) relative to cisgender females (18–36 years)
(Fig. 4, P = 0.07) [48]. It is difficult to tell from these data
whether these increases portend a risk of future organ
damage or are a harbinger for future CAD [75] because
DBP was not increased. Mild hypertension in trans men is
not currently treated. Further study in these areas is cru-
cial because even mild chronic elevations in blood pres-
sure can result in organ damage, leading to frank
hypertension. In this same study, we demonstrated mark-
edly diminished endothelial function in trans men com-
pared to cisgender women (Fig. 5) [48] and endothelial
dysfunction is a key predictor of atherosclerosis. Again, we
see an important sex difference because testosterone ther-
apy decreases atherosclerotic CAD risk in older, hypo-
gonadal cisgender men [77, 78], which has been attributed
to improved or disrupted AR signaling pathways that gov-
ern lipid/lipoprotein metabolism [79].
Androgen administration in trans men is also associ-

ated with dyslipidemia [71, 80–82]. An observational
study (45 months) compared lipid profiles in trans men
receiving testosterone and trans men not taking HT
[71]. Trans men taking HT had significantly less favor-
able lipid profiles, such that HDL-C levels were lower,
total cholesterol was higher, and triglyceride levels were
nearly double compared to controls. Similar results were
reported in a separate observational study [80] and have
also been confirmed in meta-analyses [81, 82].
While similar lipid abnormalities in women with AE-

PCOS have also been demonstrated, these are more diffi-
cult to interpret and likely result from the combined ef-
fects of hyperandrogenism, obesity, and insulin resistance
that are present with AE-PCOS. The interdependence of
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Fig. 4 Trans men exhibit mild hypertension compared to cisgender females. Systolic blood pressure, SBP: 123 ± 3 vs. 114 ± 2mm Hg, and mean
blood pressure, MAP: 93 ± 3 vs. 85 ± 2 mm Hg (mean ± SEM). Blood pressure was taken supine by auscultation, following 15 min of rest. From
Gulanski et al. [48], with permission
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androgen and insulin contributions to lipid metabolism is
recognized [79], but these effects can be independent in
women with androgen excess [83], suggesting an import-
ant role for androgen exposure in the AE-PCOS women
as well. That said, androgen control of lipid metabolism is
not well understood in women and could also rely on es-
trogen action.

Conclusions
Our data and others support an association between
hyperandrogenism and mild elevations in blood pres-
sure, endothelial dysfunction, and dyslipidemia in trans
men and women with AE-PCOS. Despite the evidence
that androgen exposure during gender-affirming hor-
mone therapy is associated with mild hypertension,
endothelial dysfunction, and dyslipidemia in trans men,
the lack of long-term studies and infrequent follow-up
measures for existing studies has led to uncertainty
about the effects of HT on cardiovascular outcomes
[80]. Cardiovascular markers are not always treated in
trans men or AE-PCOS, leaving these cohorts at greater
risk for cardiovascular events and future CAD, and even
mild hypertension can be detrimental to the cardiovas-
cular system when chronic. AE-PCOS is often diagnosed
in the early teenage years, and gender transition often
occurs at a young age. In both cases, androgen exposure
will last for many years. Long-term and follow-up re-
search are needed to develop guidelines for cardiovascu-
lar outcomes during HT and support health and
longevity in trans men.

Perspectives and significance
Despite the work presented in this review, the long-term
health risks of testosterone exposure on the female vas-
cular system and the impact of testosterone in women
with AE-PCOS, and in trans men receiving androgens,
remain underappreciated. In particular, attention to

cardiovascular and metabolic risk factors should be inte-
gral to the care of these cohorts. The high, chronic an-
drogen therapy environment in trans men provides a
unique opportunity to study the impact of long-term an-
drogen exposure on the female vascular system. This is
especially important because the elevated androgens in
trans men remain throughout their lifetime, continuing
into older age when CAD risk develops independent of
hormone exposure.
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