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with clinically undetected cardiac abnormalities and an 
increased risk of mortality.9,10 Post-myocardial infarction 
patients with prolonged QRS duration have a significantly 
increased risk of mortality, although data associating 
QRS prolongation specifically with sudden death are less 
supportive. In non-ischemic cardiomyopathy, there is no 
evidence that QRS duration carries prognostic significance 
for predicting mortality or sudden death because of limited 
observations.11 In patients with heart failure and low 
ejection fraction, however, a significantly prolonged QRS 
duration, especially with the presence of left bundle branch 
block, predicts a benefit from cardiac resynchronization 
therapy.

The heart’s electrical conduction system is vital for 
maintaining normal heart rhythm and cardiac function. 
Electrical impulses are generated at the sinoatrial node, 
and they propagate sequentially to the atrioventricular 
(AV) node for subsequent transmission to the ventricles 
via specialized conduction pathways. The electrical signals 
are conveyed from cell to cell through gap junctions, which 
are non-selective membrane pores that allow molecules 
<1,000 Da to transit and thus provide electrical continuity 
between two cells.12,13 At the molecular level, gap junction 
hemichannels, which are called “connexons”, are integral 
membrane channels that are composed of six connexin 
molecules. The connexons converge at intercalated discs in 
clusters of hundreds to thousands and bind end to end with 
connexon hemichannels of apposing cells to form dense 
arrays of gap junction plaques. The plaques function as 
continuous conduits, allowing intracellular ions and other 
small molecules to pass freely between ventricular cardio-
myocytes.

H eart failure is a chronic disease and accounts for 
substantial morbidity and mortality worldwide.1 
Its prevalence is increasing because of population 

aging and improved treatment for acute cardiovascular 
events that lead to sudden death.2 The prevalence of heart 
failure is estimated to be 1–3% in the adult population at 
large, and 5–9% selectively in those aged ≥65 years;3,4 the 
prevalence in the USA is projected to increase by 25% in 
the general population in the next 20 years.5

Heart failure with preserved ejection fraction (HFpEF) is 
a heterogeneous disorder that lacks complete understanding, 
despite the increasing prevalence and attendant clinical 
and economic burdens. Clinical experience suggests that 
heart failure death in HFpEF is not classic pump failure, 
which is the case in heart failure with reduced ejection 
fraction (HFrEF). Rather, in many cases, it involves 
progressive pulmonary hypertension, right ventricular failure, 
and/or renal venous congestion and worsening renal 
function with ensuing multi-organ dysfunction. Increasing 
attention has recently been directed toward the role of the 
right ventricle because its dysfunction is common in HFpEF 
and is associated with mortality in heart failure patients.6,7

Regarding the cause of death, worsening heart failure 
accounts for an approximately similar proportion, namely 
20–30%, of total cardiovascular deaths both in HFpEF 
and in HFrEF. Sudden death accounts for up to 25–30% 
of deaths in the HFpEF population, whereas it constitutes 
35–40% of all mortality events in the HFrEF population.8

QRS duration and morphology should be considered 
important prognostic information because it is indicative 
of more advanced cardiac pathology. Abnormal QRS 
duration and its morphology frequently identify subjects 
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Maintaining a coordinated heart rhythm is essential for maintaining the heart’s pumping function and blood circulation. Every heartbeat 
is generated by electrical impulse propagation that is passing through gap junctions, which are composed of connexin proteins. In 
mammalian hearts, Cx43, Cx40, Cx45, and Cx30.2 are expressed and regulated by post-translational modification. Cardiac 
macrophages account for only a small number of total heart cells, but they reside all around the heart. They are primarily established 
prenatally, and they arise from embryonic yolk sac progenitors. Recently, increasing attention has been directed toward novel roles 
for cardiac resident macrophages, especially in the heart’s electrical impulse conduction. Here, we provide an overview of the recent 
findings on connexins, with a focus on the emerging function of cardiac macrophages, and we discuss the future directions of 
treatment for heart disease.
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Figure 1.  Cardiac connexins and their post-transcriptional modification. (A) Schematic diagram of the cardiac conduction system, 
showing the correlation between conduction velocity and connexin (Cx) expression. Note that connexin expression data are based 
on rodent experiments.21,24,33 (B) Schematic diagram of a gap junction plaque joining the cytoplasm of two adjacent cells. The 
opposed phospholipid bilayers are traversed by connexons that cluster and aggregate in the plane of the membrane to form a 
gap junction plaque. (C) Connexin protein subunits are tetra-spanning membrane proteins that share two extracellular loops. The 
subunits vary mainly in their cytoplasmic loop and carboxy-terminal regions. Connexin topology with phosphorylation sites and 
zonula occludens protein 1 (ZO-1) binding region. Green circles, tyrosine; red circles, serine. Pink font, increased gap junctional 
intercellular communication (GJIC); blue font, decreased GJIC. Cdc2, cyclin-dependent kinase 2; CK1, casein kinase 1; MAPK, 
mitogen-activated protein kinase; PKA, protein kinase A; PKC, protein kinase C; PKG, protein kinase G.
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Gap junctional intercellular communication (GJIC) is 
regulated by post-translational regulation of Cx43, either 
through direct control of channel activity or by modulating 
protein-protein interactions and Cx43 localization. Phos-
phorylation is by far the most well-studied modification, 
with several studies demonstrating its instrumental role 
upon regulation of channel gating, trafficking, assembly/
disassembly, and degradation of gap junction channels.35–37 
At the C-terminus of Cx43, 21 phosphorylation sites (19 
serine residues and 2 tyrosine residues) that are regulated 
by the action of more than 10 kinases and phosphatases, 
including protein kinase C (PKC), protein kinase A (PKA), 
mitogen-activated protein kinases, Src kinases, and protein 
phosphatase 2A, have been described.38,39

The lifecycle of Cx43 is regulated in a well-balanced 
manner by specific phosphorylation and dephosphoryla-
tion. For example, phosphorylation at S364 and/or S365 
regulates its trafficking to the plasma membrane, contrib-
uting to increased GJIC, whereas phosphorylation of S368 
results in Cx43 internalization and the downregulation of 
GJIC.40,41 Under pathological conditions, such as myocar-
dial ischemia and wound healing, the phosphorylation of 
the residue S373, followed by simultaneous phosphorylation 
of S279, S282, and Y247, induces an acute increase in gap 
junction size, followed by rapid internalization of Cx43 
and the downregulation of GJIC.34

Notably, myocardial ischemia constitutes a paradigmatic 
example of the dramatic alteration of the dynamics of 
Cx43 phosphorylation, which affects channel conductance 
and localization. During ischemia, the phosphorylation 
of S325, S328, and/or S330, which are restricted to the 
intercalated disk, is lost.42 In addition, dephosphorylation 
of S365, which is called the GJIC gatekeeper, takes place, 
enabling subsequent phosphorylation of S368 by PKC, 
which negatively affects the electrical coupling between 
cardiomyocytes.43,44 Ischemia-induced phosphorylation of 
S373 also creates a so-called mode-1 binding domain for 
14-3-3 proteins, which drives the internalization of Cx43.45

Cx43 lateralization has been implicated in pathological 
cardiac conditions that are associated with a decrease in 
electrical coupling. The mechanisms that underlie Cx43’s 
lateralization remain largely unknown. One possible expla-
nation is that the activation of Src kinase and its interactions 
with Cx43 and ZO-1 may contribute to lateralization.46,47 
Src activation leads to the separation of Cx43 from ZO-1, 
and gap junction plaque moves away from the intercalated 
disks to the lateral membranes. Another possibility is related 
to the acetylation of Cx43.48 Colussi et al found that Cx43 
is lateralized, acetylated, and co-immunoprecipitated with 
the acetylase P300/CBP-associated factor in a model of 
Duchenne cardiomyopathy (spontaneous Dmdmdx mutant 
mice).48

Cx43 dephosphorylation is a characteristic of ischemia, 
arrhythmia, and of a failing/aging myocardium.49 When 
gap junctional coupling decreases, conduction becomes 
highly discontinuous, and a propensity toward reentrant 
arrhythmias increases. In addition, gap junctional uncou-
pling can increase the incidence of arrhythmic triggers and 
their propagation into an adjacent myocardium.50

Macrophages are a type of white blood cell that engulfs 
and digests infectious agents, cellular debris, and foreign 
substances. The canonical function of circulating and 
resident macrophages is to provide innate immune surveil-
lance of individual organs. This paradigm, however, was 
questioned regarding the origin of macrophages. A sub-

Connexins are named according to their respective 
molecular weight. The structural differences between them 
lie in the cytoplasmic loop and the carboxyl-terminal region. 
Each connexin subunit contains four hydrophobic trans-
membrane domains, consisting of two extracellular loops, 
one cytoplasmic loop, and one cytoplasmic N-terminal as 
well as a C-terminal region (Figure 1).

More than twenty isoforms of connexin have been recog-
nized,14,15 and four of them contribute to the heart: Cx43, 
Cx40, Cx45, and Cx30.2. Different parts of the heart have 
varying requirements for the degree of electrical coupling 
that is needed. The large Purkinje myocytes are strongly 
coupled because the specialized ventricular conduction 
system needs to spread the activation wave rapidly over 
the ventricles. To create a delay between the atrial and 
ventricular contraction, a very low degree of coupling is 
required in the AV node. Similarly, to allow pacemaker 
function, pacemaker myocytes in the sinoatrial node need 
to be weakly coupled. Otherwise, the pacemaker would be 
silenced by the surrounding working myocardium.16,17

In cardiac myocytes, connexins are preferentially located 
at the intercalated disc. They contribute to the anisotropic 
nature of cardiac impulse conduction.18 Cx43, which is the 
most abundant, has been found in almost all parts of the 
heart, except for the cells of the sinoatrial nodes. In contrast, 
Cx40 seems to be present specifically in the atrium and the 
ventricular conduction system. Cx45 is less abundant and 
is preferentially present in the conduction system.19–21 In 
mice, Cx30.2 is expressed in the cardiac conduction system, 
predominantly in the sinoatrial node and the AV nodes.22 
The human ortholog of Cx30.2, the Cx31.9 protein, 
however, is not detectable and is unlikely to contribute to 
either the impulse generation and conduction system or 
the working myocardium of the human heart.23 In cardio-
myocytes, single-gap junction channel conductance ranges 
from 9 picosiemens (pS) for Cx30.224 to approximately 
20 pS for Cx45 channels to 45–75 pS for Cx43 channels and 
approximately 200 pS for Cx40 channels. These conduc-
tance values depend on pH,25 on extracellular [Ca2+],26–28 
on extracellular fatty acid composition,29,30 and on the 
phosphorylation state of the connexins.31

Cardiac Cx43 has a relatively short half-life, on the 
order of 1–5 h, and <2 h at the plasma membrane.32,33 This 
suggests that both the synthesis and the degradation of a 
gap junction are dynamic processes, and that regulation of 
protein stability may be a major mechanism of gap junction 
remodeling. Cx43 is translated in the rough endoplasmic 
reticulum (ER); it undergoes oligomerization in the post-
ER/Golgi compartment, after which Cx43-containing 
vesicles are thought to be transported to the periphery of 
existing gap junctions at the plasma membrane. Undocked 
connexons aggregate into the gap junction in a zonula 
occuludens-1 (ZO-1)-dependent manner.34 Intracellular 
scaffolding proteins, such as ZO-1, anchor Cx43 via its 
c-terminus and regulate the gap junction’s plaque size. 
Connexon internalization from the plasma membrane is 
also an important regulatory step in determining the level 
of gap junction coupling.

Normal gap junction communication is required for 
simultaneous initiation of action potentials of cardio-
myocytes and an organized heart contraction. Alterations 
in gap junction coupling occur with many forms of heart 
disease. These coupling alterations lead to defects in elec-
trical excitation that can result in malignant arrhythmias 
and sudden cardiac death.
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the vast majority originate from embryonic yolk sac and 
fetal liver progenitors. They appear spindle-shaped and 
are intercalated between cardiomyocytes, fibroblasts, and 
endothelial cells.56 Replenishment occurs at the rate of 
approximately once per month via proliferation. CCR2+ 
macrophages are replenished by blood monocyte recruit-
ment and local proliferation, whereas CCR2− macrophages 
are repopulated largely by local proliferation.57

Recently, our view of cardiac conduction has been refined 
due to revelations regarding cardiac macrophages (Figure 2). 
Hulsmans et al found that cardiac macrophages facilitate 
electrical conduction through the distal AV node.58 Cx43-
containing gap junctions connect macrophages with 
conducting cardiomyocytes in the distal AV node. This 
coupling leads to cyclical depolarization of macrophages 
and modulates the electrical activity of cardiomyocytes. 

population of macrophages that originates from embryonic 
tissue does not come through the bloodstream; they reside 
and proliferate in virtually all body tissues, including the 
brain, spleen, liver, lung, bone marrow, kidney, pancreas, 
and peritoneum. They are seeded before birth, can maintain 
themselves in adults by self-renewal,51 and can act specifi-
cally on each organ. For example, resident macrophages 
of adipose tissue contribute to the regulation of thermo-
genesis,52 of the spleen and liver for iron recycling,53 and of 
the brain to participate in the process of synaptic matura-
tion.54 Such non-canonical roles emphasize the complex 
physiology of macrophages and their ability to perform 
specific tasks, depending on their microenvironment, in 
addition to their host defense ability.55

Resident cardiac macrophages in mice account for 
approximately 5–10% of non-myocytes in the heart, and 

Figure 2.  Contributions of cardiac macrophage to 
cardiac pulse conduction. (A) Macrophages were 
first described as phagocytic cells, which fight 
against viral or bacterial infections. (B) Emerging 
evidence, however, indicates that macrophages 
can influence the homeostasis of the heart. Macro-
phages that are present in the atrioventricular node 
actively participate in the establishment of cardiac 
rhythm, acting via connexin-43-containing gap 
junctions. In addition, macrophages play crucial 
roles in both aging and disease, such as diabetes 
and hypertension. Diabetes induces a sterile inflam-
mation that activates toll-like receptor 2 (TLR2) and 
the NOD-like receptor protein 3 (NLRP3) inflam-
masome in macrophages to produce interleukin 
(IL)-1β, which causes arrhythmia propensity. IL-10 
that is produced by macrophages promotes diastolic 
dysfunction in both advanced age and hypertension.
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Enhanced macrophage-cardiomyocyte interaction improves 
normal AV nodal conduction, whereas reduced interaction 
leads to aberrant AV node conduction.

Monnerat et al demonstrated that, in diabetic mice, 
toll-like receptor 2 (TLR2) and NOD-like receptor protein 
3 (NLRP3) inflammasome are activated in cardiac macro-
phages, resulting in the secretion of interleukin (IL)-1β.59 
IL-1β-caused prolongation of the action potential duration 
induces a decrease in potassium current and an increase 
in calcium sparks in cardiomyocytes, which will cause 
arrhythmia propensity. Treatment with either an IL-1 
receptor antagonist or inhibition of the NLRP3 inflam-
masome rescued the phenotype.

Cardiac macrophages also offer clues regarding the 
development of HFpEF. Hulsmans et al found that both 
in aged mice and hypertensive mice, cardiac macrophages 
produced IL-10, activated fibroblasts, and stimulated 
collagen deposition, leading to impaired myocardial relax-
ation and increased myocardial stiffness. Deletion of IL-10 
in macrophages improved diastolic function.60

Conclusions
Elucidation of the novel roles of cardiac macrophages has 
opened new avenues for possible therapeutic interventions. 
Targeting macrophage function would be a more effective 
means by which to tackle arrhythmias and diastolic 
dysfunction than would targeting cardiomyocytes or fibro-
blasts. Therefore, as a next step, we need to know whether 
macrophage dysfunction leads to AV block, arrhythmia 
propensity in diabetes patients, and diastolic dysfunction 
in humans. If macrophage function is linked to cardiac 
function in humans, reprogramming macrophages in situ 
with antibodies, such as CSF-1R, CD68, or scavenger 
receptors, could be a viable form of immunotherapy.
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