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Abstract

Background: Autoregressive regression coefficients for Anopheles arabiensis aquatic habitat
models are usually assessed using global error techniques and are reported as error covariance
matrices. A global statistic, however, will summarize error estimates from multiple habitat
locations. This makes it difficult to identify where there are clusters of An. arabiensis aquatic habitats
of acceptable prediction. It is therefore useful to conduct some form of spatial error analysis to
detect clusters of An. arabiensis aquatic habitats based on uncertainty residuals from individual
sampled habitats. In this research, a method of error estimation for spatial simulation models was
demonstrated using autocorrelation indices and eigenfunction spatial filters to distinguish among
the effects of parameter uncertainty on a stochastic simulation of ecological sampled Anopheles
aquatic habitat covariates. A test for diagnostic checking error residuals in an An. arabiensis aquatic
habitat model may enable intervention efforts targeting productive habitats clusters, based on
larval/pupal productivity, by using the asymptotic distribution of parameter estimates from a
residual autocovariance matrix. The models considered in this research extends a normal
regression analysis previously considered in the literature.

Methods: Field and remote-sampled data were collected during July 2006 to December 2007 in
Karima rice-village complex in Mwea, Kenya. SAS 9.1.4® was used to explore univariate statistics,
correlations, distributions, and to generate global autocorrelation statistics from the ecological
sampled datasets. A local autocorrelation index was also generated using spatial covariance
parameters (i.e., Moran's Indices) in a SAS/GIS® database. The Moran's statistic was decomposed
into orthogonal and uncorrelated synthetic map pattern components using a Poisson model with a
gamma-distributed mean (i.e. negative binomial regression). The eigenfunction values from the
spatial configuration matrices were then used to define expectations for prior distributions using a
Markov chain Monte Carlo (MCMC) algorithm. A set of posterior means were defined in
WinBUGS 1.4.3®. After the model had converged, samples from the conditional distributions were
used to summarize the posterior distribution of the parameters. Thereafter, a spatial residual trend
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analyses was used to evaluate variance uncertainty propagation in the model using an
autocovariance error matrix.

Results: By specifying coefficient estimates in a Bayesian framework, the covariate number of
tillers was found to be a significant predictor, positively associated with An. arabiensis aquatic
habitats. The spatial filter models accounted for approximately 19% redundant locational
information in the ecological sampled An. arabiensis aquatic habitat data. In the residual error
estimation model there was significant positive autocorrelation (i.e., clustering of habitats in
geographic space) based on log-transformed larval/pupal data and the sampled covariate depth of
habitat.

Conclusion: An autocorrelation error covariance matrix and a spatial filter analyses can prioritize
mosquito control strategies by providing a computationally attractive and feasible description of
variance uncertainty estimates for correctly identifying clusters of prolific An. arabiensis aquatic

http://www.malariajournal.com/content/8/1/216

habitats based on larval/pupal productivity.

Background

The autoregressive conditional variance (i.e., nuisance
parameter) is important in mapping Anopheles arabiensis
Patton, as it is used in habitat prediction and confidence
intervals, tests of hypotheses, spectral estimates, and for
estimating prediction error in the model [1]. Nuisance
parameters are often variances, but there are exceptions:
for example, in an errors-in-variables model, generated
from An. arabiensis aquatic habitat parameter estimates,
the unknown true habitat location of each observation is
a nuisance parameter [2]. Stochastic models have been
generated with non-linear nuisance parameters for exam-
ining the interrelationship between mosquito productiv-
ity and oviposition of gravid mosquitoes |3]. By designing
a model that explicitly features non-stationary behavior of
An. arabiensis aquatic habitat data, a hierarchy of condi-
tional variance components can be linked by applying
Bayes theorem [4-6]. Commonly, having obtained the
joint conditional distribution of all of the unknown ran-
dom variables, given the known sampled habitat covari-
ates, by applying Bayes theorem, nuisance variables are
marginalized to obtain the conditional distribution for
determining ecological parameters associated with georef-
erenced anopheline aquatic habitat data. However, even
though this generalized treatment of the conditional vari-
ance can generate an autoregressive error model, the resid-
ual estimates will not be able to spatially target prolific An.
arabiensis aquatic habitats based on larval/pupal produc-
tivity. Treatments of anopheline aquatic habitat perturba-
tions should be based on surveillance of larvae in the
most productive areas of an ecosystem [1,2]. Additionally,
residual-based diagnostics for multivariate heteroscedas-
ticity from previously constructed An. arabiensis aquatic
habitat models has revealed that errors in variance uncer-
tainty estimation can substantially alter numerical predic-
tions of a model by inflating the value of test statistic
thereby, increasing the chance of a Type I error - incorrect
rejection of the null hypothesis, H,: no spatial autocorrela-

tion [1,2]. Autocorrelation is a characteristic of data
derived from a process that is articulated in one or more
spatial dimensions which can describe the error structure
of ecological sampled data [2]. Thus, autoregression fore-
casts of An. arabiensis aquatic habitat locations requires an
absolute relative prediction error estimator to identify
prolific habitats for developing habitat-based interven-
tion models for implementing Integrated Vector Manage-
ment (IVM).

Traditionally, the random error terms in Gaussian autore-
gressive models have been posited as a proper conditional
autoregressive (PCAR) or as an improper conditional
autoregressive (ICAR) specification for identifying spatial
trends in residual parameter estimates [10]. The normal
distribution in these models furnishes a feasible prior dis-
tribution for coefficients while the error variance prior dis-
tribution often is represented in the gamma distribution.
Statistical criteria in autoregressive coefficients are cru-
cially dependent on such assumptions as normality and
homogeneity [11]. However, the CAR prior is usually
improper, making it imperative to constantly check the
propriety of the joint posterior [12]. Even though this
problem can be remedied by introducing a constrained
autoregressive parameter to ensure a proper joint distribu-
tion for a resulting multivariate model, input errors and
structural data errors still can give rise to complex error
structures, including heteroscedasticity and nonstationar-
ity. Maximum likelihood estimation which ignores heter-
oskedasticity yields inconsistent estimates of the variance-
covariance matrix and renders likelihood ratio tests with
restrictions which make assumptions of the Gauss-
Markov theorem of independence among sampled habi-
tat covariates inappropriate [13]. These prediction errors
can lead to overconfidence in the estimates of parameter
values, or to errors in an An. arabiensis aquatic habitat
model being compensated by large residual variances.
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For determining spatial errors in an An. arabiensis aquatic
habitat model, Bayesian geostatistical kriging models of
the form described in Diggle et al. [5] has on occasion
been used as opposed to the CAR model. The Bayesian
kriging model assumes that autoregressive errors are mod-
eled using a multivariate Gaussian distribution with an
uncertainty covariance matrix expressed as a parametric
function of the distance between pairs of georeferenced
data points. Another uncertainty estimator, for spatial
simulation models generated from field and remote-sam-
pled An. arabiensis aquatic habitat parameters, is a relative
error norm technique which normalizes the difference
between model predictions and sampled predictor varia-
bles and computes residual estimates for discrete and con-
tinuous domain problems [14]. Using this technique,
multiplicative errors can be treated in the same way as in
an autoregressive model using log-transformed habitat
data (i.e., larval/pupal counts). The error model is then
evaluated using predictions based on some optimal
parameter set. Another metric involves measuring uncer-
tainty estimates through statistical distributions and clas-
sical hypothesis testing [15]. Examples of the metric
includes the Bayesian Model Averaging (BMA) [16],
which for ecological sampled An. arabiensis aquatic habi-
tat covariates can be applied by directly likelihood weight-
ing the outputs of multivariate analyses either by using
deterministic or stochastic techniques. Subsequently, the
predictive error distributions obtained with these models
can be combined using BMA techniques to obtain a multi-
model prediction of An. arabiensis aquatic habitat loca-
tions.

Although relative norm and BMA can explicitly model the
covariance structure of the error terms in an An. arabiensis
aquatic habitat model, the output will be in the form of
global parameter estimates. These global estimates can
indicate how reliable results from an An. arabiensis aquatic
habitat model are but, like any global statistic these accu-
racy assessments will summarize the standard error from
many sampled habitat locations. Standard heuristic
approach to anopheline aquatic habitat model selection is
to measure when global residual error variance begins to
stabilize [7]. However, global statistics will summarize
standard error from many sampled habitat locations, thus
making it difficult for spatial assessment of predictive
error at a single sampled habitat. Moreover, if global
parameter estimates are used for evaluating autoregressive
residual coefficients, then the assumption is that parasito-
logical indicators of An. arabiensis aquatic habitats are
homogenous in their quantitative predictions. For exam-
ple, the assumption must be made that contacts between
hosts and blood feeding mosquitoes are uniformly dis-
tributed in the focal area, whereas studies has shown
blood feedings of mosquitoes tend to aggregate in geo-
graphic space [1,2].

http://www.malariajournal.com/content/8/1/216

Local spatial autocorrelation indices [17,18] may provide
a method for assessing variance uncertainty estimates in
models generated from field and remote-sampled of An.
arabiensis aquatic habitats covariates. By far, the most pop-
ular test for spatial autocorrelation is based on the Moran
I test statistic. In essence, this test statistic is formulated as
a properly normalized quadratic in terms of the variables
that are being tested for spatial correlation. Moran's origi-
nal specification standardizes the variables by subtracting
the sample mean, and then deflating by an appropriate
factor. The error variance-covariance matrix appearing in
the quadratic form, based on the non-independence of
the sampled observations, is a spatially weighted matrix.
The eigendecomposition of this matrix may have interest-
ing properties in various contexts for mapping variance
uncertainty in Bayesian probabilistic models using distri-
bution properties of Moran's I and generalized linear
models. Algorithms that assume independently-distrib-
uted errors of An. arabiensis aquatic habitats may formally
establish an asymptotic distribution of the Moran test sta-
tistic for determining spatial correlation in models for
quantifying variance uncertainty estimates.

In this research, error propagation in Bayesian regression
coefficients was spatially quantified using Monte Carlo
Markov Chain (MCMC) methods, and ecological param-
eters of individual sampled riceland An. arabiensis aquatic
habitats. The MCMC methods are a class of powerful sto-
chastic algorithms, which provides a means for taking spa-
tially dependentsamples from probability distributions,
by generating a set of random samples from an arbitrary
probability density function (pdf), which in Bayesian
analysis is the posterior distribution [8]. Essentially all
inference about uncertainty in Bayesian regression mod-
els, generated from ecological sampled covariates of
anopheline aquatic habitats have revealed high reliability
in their prediction estimates [3]. Spatial filtering tech-
niques were then used, which included the eigendecom-
position of a spatial weighted matrix, using the non-linear
regression estimates generated from the Bayesian frame-
work. Spatial eigendecomposition models can focus on
an error specification, at the habitat level, using a mean
response that forces the auto-model spatial dependency
parameter value to zero [1,2]. In this research, the eigen-
vector filtering approach promoted by Griffith et al [17]
and Getis and Griffith [18] was used, which is a non-par-
ametric technique that removes the inherent spatial auto-
correlation from generalized linear regression models by
treating it as a missing variables (i.e., first order) effect.
The aim of non-parametric spatial filtering is to control
for residual latent autocorrelation at the individual habi-
tat level, with a set of proxy variables rather than to iden-
tify a global autocorrelation parameter for a spatial
process [19]. An autoregressive variance uncertainty anal-
yses for heteroskedastic error modeling was then per-
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formed wusing autocorrelation indices in which
conditional means and residual variances were specified.
Given valid assumptions about the nature of variance
uncertainty estimates in Bayesian applications, autocorre-
lating error residuals in a spatial weights matrix may pro-
vide a method for predicting clusters of An. arabiensis
aquatic habitats.

Additionally, testing variance uncertainty estimates from
a spatial autocorrelation error matrix may reveal pertinent
statistics (e.g., y-intercept, slope coefficients, standard
errors, t-values, residuals, and diagnostic test results) for
determining the relative plausibility of a model for cor-
rectly statistically prioritizing sampled covariates of An.
arabiensis aquatic habitats based on larval/pupal produc-
tivity. These statistical approaches may also infer corre-
lates of species abundance data (Poisson or normally
distributed response), for other mosquito species and
insect research, while accounting for spatial autocorrela-
tion in model error residuals using autocovariate regres-
sion, spatial eigenvector mapping, generalized least
squares (conditional and simultaneous) autoregressive
models and generalized estimating equations. Therefore,
our objectives in this research were to: (1) generate global
autocorrelation statistics for decomposing sampled An.
arabiensis aquatic habitat parameters into spatial eigenvec-
tors using a Poisson model with a gamma-distributed
mean; (2) perform a Bayesian regression analyses incor-
porating a MCMC algorithm using field and remote sam-
pled predictor variables; and, (3) autocorrelate all
uncertainty coefficients in a spatially weighted matrix to
determine variance uncertainty in an An. arabiensis
aquatic habitat model.

Methods

Field sampling strategy

The sampling strategy used for the collection of immature
An. arabiensis aquatic habitat data was developed for ear-
lier research projects and has been described in detail else-
where [[1,20,21], and [22]]. Base maps were prepared for
the study site in ArcGIS (Figure 1). We expected the larval/
pupal count in An. arabiensis aquatic habitats in the study
site to follow a Poisson distribution, as was the case in
previous research in other Kenyan areas [[1,2], and [3]].
Therefore, the mean count and standard deviations was
used, on the log-number of mosquito larval/pupal counts
collected in the study site, to determine sample size
requirements. A sampling intensity formula was applied
for determining the number of An. arabiensis aquatic hab-
itats to collect when randomly sampling from an infinite
population n = (ts/E)"2, where t = t value (t = 2), s = the
standard deviation of log-larval/pupal count values
observed, (s = 0.889), and E was the desired half-width of
the confidence interval around the mean expressed in
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same units as standard deviation (E = In(1.25) [1,2].
Applying this formula, it was determined that 152 sam-
ples were required. The vector image of the sampling
scheme (grid cell) was overlaid with the land cover raster
images to identify areas of interest within each polygon
(grid cell) of the sampling scheme. All potential aquatic
habitat sites were identified, and data relative to species
composition and abundance, predators, water quality and
other environmental variables were assessed.

Poisson Regression

A Poisson regression, with statistical significance, was
determined by a 95% confidence level which was used to
ascertain whether the proportions of riceland aquatic hab-
itats, positive for An. arabiensis larvae/pupae, differed by
sampled grid cell. Poisson regression can be used for pre-
diction (including forecasting of time-series data), infer-
ence, hypothesis testing, and modeling of causal
relationships among riceland An. arabiensis aquatic habi-
tat covariates [1,2,20-22]. The regression analyses
assumed independent counts (i.e., n;), taken at habitat
locations i = 1 2... n, where each of the sampled An. arabi-
ensis aquatic larval/pupal count values, was from a Pois-
son distribution. These larval/pupal counts were
described by a set of explanatory variables denoted by
matrix X;, a 1xp vector of covariate estimates for a sampled
habitat location i. The expected value of these data was
given by:

Mi(X;) = Ni(X;) exp(X;B), (2:3)
where 3 was the vector of non-redundant parameters and
the Poisson rates parameter was given by:

Ai(X;) = pi(X;) [ Ni(X;). (12.4)
The rates parameter /4, (X;) was both the mean and the var-
iance of the Poisson distribution for an An. arabiensis
aquatic habitat i. The dependent variable was the total lar-
val/pupal count in an An. arabiensis aquatic habitat. The
regression analyses were performed in SAS PROCREG.
The sampled habitat data were log-transformed before
analyses to normalize the distribution and minimize
standard error. All of the covariate estimates for the mod-
els were tested for multicollinearity, using partial F test in
SAS, and no problematic correlations were found.

Bayesian estimation procedures

In this research Bayesian estimation and MCMC methods
were used to model the sampled covariates of An. arabien-
sis aquatic habitats in the study site. In the Bayesian para-
digm, hierarchical models can be used to model
heterogeneity of variances on the log- scale [8]. In this
research, the natural logarithms of variances were mod-
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Base map of the Karima study site.

eled using a linear model to account for heterogeneity of
the variances (on a logarithmic scale), in terms of the pre-
dictor variables sampled. In an anopheline aquatic habi-
tat model, an environment-specific variance parameter is
considered to be an independent draw from a random
sampling distribution [3].

The MCMC sampling began with conditional (marginal)
probability distributions, and the parameter estimates
that were obtained using pseudo-likelihood estimation
(i.e., an autoregressive term estimated with a conven-
tional regression procedure). This involved estimating
covariate coefficients (B) and p as though the field and
remote-sampled observations were independent. MCMC

outputs can sample values for an anopheline aquatic hab-
itat parameter drawn from the joint posterior probability
distribution [3]. In the first stage of the Bayesian analyses,
a likelihood model was specified for the vector of the An.
arabiensis aquatic habitats larval/pupal counts. At the sec-
ond stage, predictor variables of the sampled An. arabien-
sis aquatic habitats were analyzed for specifying a prior
model.

WinBUGS® was used to recognize conjugate specifications
(e.g. Poisson-gamma), from the field and remote-sam-
pled mosquito data. Our model assumed that the number
of larval/pupal counts in the study site, i, Y;, had a condi-
tional independent Poisson distribution with mean E; exp
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(#4)- The variable E; was used as the expected number of
sampling events, which was proportional to the corre-
sponding known An. arabiensis aquatic habitat larval/
pupal population, n,. The expression exp (z;) was the rel-
ative risk based on the sampled larval/pupal count values:
regions with exp () > 1 having greater numbers of
observed An. arabiensis aquatic habitat larval/pupal count
values than expected, and vice versa for regions with exp
(1) < 1, at the study site. The log-relative term was ;
which modeled all the predictor variables of An. arabiensis
aquatic habitat data, linearly as:

=xiB+0;+9;,i=1,.,1I (2.1)
In this research, x'; was the sampled An. arabiensis aquatic
habitat covariates, and 3 was a vector of fixed effects in the
models. Additionally, the terms & and ¢; were used for
capturing site-specific random effects and spatial depend-
ence, respectively, in the ecologically sampled datasets. In
previous research, Jacob et al [3] employed an MCMC
algorithm and an autocovariate matrix to spatially quan-
tify stochastic error propagation in Bayesian parametric
variables estimated from Anopheles gambiae s.l. aquatic
habitat covariates sampled in Malinda and Kisumu,
Kenya. Their models revealed that a 10 cm increase in
habitat depth was associated with a 0.391 c¢m increase in
larval/pupal count on average, but after adjusting for hab-
itat depth in both urban sites, using the spatial regression
models, no significant autocorrelation or clustering of An.
gambiae s.1. aquatic habitats appeared present in the resid-
ual error estimates. In this research all site specific An. ara-
biensis aquatic habitat characteristics were imposed using
the equations:

2 jjpij .
_J# 2 _
U, = ando, =——— (2.2)
?i 2 wl] Pi l z wl]
j#i j#i

Three chains were estimated for the variables in each
potential model. Samples were discarded to allow the
model to stabilize and the next 10,000 samples, after burn
in, were used to derive parameter estimates. Discarding
the first set of "burn-in" iterations can ensure that the
chain has reached steady state, when estimating Monte
Carlo parameters, such as posterior means from sampled
anopheline habitat covariates [3]. After the model had
converged, samples from the conditional distributions
were used to summarize the posterior distribution of the
model.

The Monte Carlo method of error propagation assumed
that the distribution of error variables for each of the
input data layers, generated in WinBUGS® from the eco-
logical sampled An. arabiensis aquatic habitats parameters,
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were known. For each of the data layers an error surface
was simulated by drawing, at random, from an error pool
defined by the geographic distribution of the sampled
habitat data. Error surfaces were added to the input data
layers and the model was run using the resulting data
error layers as input. The process was repeated so that, for
each run, a new realization of an error surface was gener-
ated for each input data layer. The results of each run were
accumulated and a running mean and standard deviation
surface for the output was calculated. This process contin-
ued until the running mean stabilized. Since the random
error visualizations were both positive and negative, the
stable running mean were taken as the true model output
surface, and the standard deviation surface was used as a
measure of relative error. A simple summary was gener-
ated, showing posterior mean, median and standard devi-
ation, with a 95% posterior credible interval.

Models were compared using the Deviance Information
Criterion (DIC) in WinBUGS®, where DIC = D + p,, was
the sum of the posterior mean of the deviance, (D), a

measure of goodness-of-fit, and the effective number of
parameters (pp), a measure of model complexity. A meas-

ure of goodness-of-fit based on the DIC values was
applied and an R2DIC, calculated in line with the standard
R2 measure for the regression models. This was defined as:

Rlz)IC =1 _((DICk _[_)best )/(chmax _Bbest ))
DIC, was the DIC value for model k under evaluation,
DIC

where

max Was the DIC value for one-fixed parameter model

and D,,, was the posterior deviance from the model [3].

Checking the statistical efficiency of the MCMC Sequence
Model checking of all data input and compilation was
also conducted in WinBUGS®. The number of chains had
to be specified before compilation. In this research, three
parallel chains were run. Syntax checking was used, which
involved highlighting the entire model code and then
choosing the sequence model specification. The uncer-
tainty in estimates of quantities derived from an MCMC
sequence of random samples was represented by N, and
habitat samples v, represented a pdf of a scalar quantity v.
The estimated value of v was given by the sample mean,

Nk K=1
In this research, the expected variance in v was the expec-
tation for the ensemble of the sequences generated from
the ecological sampled An. arabiensis aquatic habitats cov-
ariates which was expressed as:

Page 6 of 16

(page number not for citation purposes)



Malaria Journal 2009, 8:216

o} = var(v) = E{ (v - E{i})*}
1 1 _
[\]}ezj“(vj _v)f\flzzk“(vk - )

=3 ;- D - )
Nk e

where 7 =E{v}=E{0}. The autocovariance of the

sequence was defined as: E{(v), —7)(v4—v)}. The

normalized autocovariance was

-1
P(l)z(az) E{ (v
variance of v and p (I) did not depend on k. The length of
the nonzero normalized autocovariance values were:

—7)(vp -7 )}, where 6 was the

Nk

222E{(vk 9) (Vi — )}
o’ Zp()

k==

':»

The normalized autocovariance was a symmetric func-
tion, i.e. p (-I) = p (I). The sequence sufficiently converged
to the target pdf. The variance of the distribution of the
sampled habitat parameters was generated using:

and the normalized autocovariance was estimated from
the sequence using:

N, -1

z Vk+1 ] )

k=1

lz
p(1) Nkll

forlagil> 0.

The MCMC sequence was defined as the reciprocal of the
ratio of the number of MCMC trials needed to achieve the
same variance in an estimated quantity as are required for
independent draws from the target probability distribu-
tion [3]. The estimation of the mean and the variance for
independent sampled An. arabiensis aquatic habitat
parameters were generated by:

:[ip<z>]_l=[1+zip<z)r-

J=—co
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After compilation, the files contained some initial values
for the parameters selected in the model. After careful
inspection of the data, no aberrant values, leading to
numerical overflow were found.

Spatial autocorrelation error matrix

All residual estimates from the Bayesian model were then
evaluated in a spatial error (SE) model. An autoregressive
model was employed that used a sampled habitat varia-
ble, Y, as a function of nearby sampled habitat Y values
[i.e., an autoregressive response (AR) or spatial linear (SL)
specification] and/or the residuals of Y as a function of
nearby Y residuals [i.e., an AR or SE specification]. Dis-
tance between sampled habitats was defined in terms of
an n-by-n geographic weights matrix, C, whose ¢;; values
were 1 if the sampled An. arabiensis aquatic habitat loca-
tions i and j were deemed nearby, and 0 otherwise. Adjust-
ing this matrix by dividing each row entry by its row sum,
with the row sums given by C1, converted this matrix to
matrix W [19].

The n-by-1 vector x = [x; ... x,|]T contained measurements
of a quantitative variable for n spatial units and n-by-n
spatial weighting matrix W. The formulation for the
Moran's index of spatial autocorrelation used in this
research was:

n¥(2)wij(xi—x)(xj—x)
S(2)wiSiy (xi-%)?

I(x) =

where 2(2)22 with i #j

i=1 j=1

The values w;; were spatial weights stored in the symmetri-
cal matrix W [i.e., (w;; = w;;)] that had a null diagonal (w;
= 0). In this research the matrix was initially generalized
to an asymmetrical matrix W. Matrix W can be generalized
by a non-symmetric matrix W* by using W = (W* + W*T)/
2 [19]. Moran's I was rewritten using matrix notation:

n  x! HHWHHx
1'w1  xTHHx

n  x! HWHx

1Tw1 xTHx

where H = (I - 117/n) was an orthogonal projector verify-
ing that H = H?, (i.e, H was independent). Features of
matrix W for analyzing sampled covariates of An. arabien-
sis aquatic habitats include that it: is a stochastic matrix,
expresses each observed value y; as a function of the aver-
age of habitat location i's nearby habitat larval/pupal
counts, and allows a single spatial autoregressive parame-
ter, p, to have a maximum value of 1 [1].

I(x)=
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Simultaneous autoregressive model (SAR) specifications
A SAR model specification was used to describe the
autoregressive variance uncertainty estimates. A spatial fil-
ter (SF) model specification was also used to describe
both Gaussian and Poisson random variables. The result-
ing SAR model specification took on the following form:
Y=u(l-p)1+ pWY +¢, (2.1a)
where z was the scalar conditional mean of Y, and € was
an n-by-1 error vector whose elements were statistically
independent and identically distributed (iid) normally
random variates. The spatial covariance matrix for equa-
tion (2.1), using the sampled anopheline aquatic habitat
covariates was E [(Y - ) (Y- )] =2 =[(IT- pW)([I - p
W)]102, where E (@) denoted the calculus of expecta-
tions, I was the n-by-n identity matrix denoting the matrix
transpose operation, and ¢® was the error variance.

However, when a mixture of positive and negative spatial
autocorrelation is present in an An. arabiensis aquatic hab-
itat model, a more explicit representation of both effects
leads to a more accurate interpretation of empirical results
[1]. Alternately, the excluded values may be set to zero,
although if this is done then the mean and variance must
be adjusted [19]. In this research, two different spatial
autoregressive parameters appeared in the spatial covari-
ance matrix An. arabiensis aquatic habitat model specifica-
tion, which for an SAR model specification became:

= [(I_ <p >diag W,)(I_ <p >diag W)]_]GZ’
(2.2a)

where the diagonal matrix of autoregressive parameters,
<P >giag Contained two sampled parameters: p, for those
An. arabiensis. aquatic habitat pairs displaying positive
spatial dependency, and p. for those habitat pairs display-
ing negative spatial dependency. For example, by letting
o2 =1 and employing a 2-by-2 regular square tessellation,

1 1
o 5 5o
1000 (p 0 0 0, )
s_||0o 100 0 p, 0 0f5 00 5
“{lo o010 0 0 p. 0 f1 o5 o L
000 1 0o 0o o0 p |2 2
o L 1o
L 2 2 )
Y1
for the vector yz,
Y3
Ya

http://www.malariajournal.com/content/8/1/216

enabled positing a positive relationship between the sam-
pled An. arabiensis aquatic habitats by covariates, y; and
y,, a negative relationship between covariates, y; and y,,
and, no relationship between covariates y; and y; and
between y, and y,. This covariance specification yielded:

Y= .u(I_ py <Ly > diag ~P- < L >diag)1’
+Hpy <1y >diag TP- < L >diag)WY te

(2.3a)

where I, was a binary 0-1 indicator variable which
denoted those An. arabiensis aquatic habitat covariates dis-
playing positive spatial dependency, and I was a binary 0-
1 indicator variable denoting those sampled habitats dis-
playing negative spatial dependency, using I, + I = 1.
Expressing the preceding 2-by-2 example in terms of equa-
tion (2.3) yielded:

v, 1000 1000 000 0)](1
v, 0100 0100 000 0f|][1
=u -ps -p +
s 0010 0000 0010 1
Vs 0001 0000 0001 1
o1 1o
1000 0000 lzzly1 £
0100 0000 2 00 5|y, £,
Py +p_ + .
0000 001o0l{L o o L||ys £
0000 0001 2 2y, £,
o1 19
2 2

If either p, = 0 (and hence I, =0 and I.=1) or p. = 0 (and
hence I = 0 and I, = I), then equation (2.3) reduces to
equation (2.1) [19]. This indicator variables classification
was made in accordance with the quadrants of the corre-
sponding Moran scatterplot generated using the sampled
An. arabiensis. aquatic habitat covariates sampled in the
study site.

The SF model specification

If positive and negative spatial autocorrelation processes
counterbalance each other in a mixture, the sum of the
two spatial autocorrelation parameters--(p, + p.) will be
close to 0 [19]. In this research, Jacobian estimation was
implemented by utilizing the differenced indicator An.
arabiensis aquatic habitat variables (I, - y I), estimating p,

and y with maximum likelihood techniques, and setting
p_ =—yp, . The Jacobian generalizes the gradient of a sca-

lar valued function of multiple variables which itself gen-
eralizes the derivative of a scalar-valued function of a
scalar [17]. A more complex An. arabiensis. aquatic habitat
specification was then posited by generalizing these
binary indicator variables. We used F: R — R™ as a func-
tion from Euclidean n-space to Euclidean m-space which
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was generated using the distance between sampled An.
arabiensis aquatic habitat covariates. Such a function was
given by m habitat covariate (i.e., component functions),
y1(xy, xn), y,,(x;, xn). The partial derivatives of all these
functions were organized in an m-by-n matrix, the Jaco-
bian matrix J of F, which was as follows:

ox1 oxy
J=| ¢ :
ox1 oxp,
This matrix was denoted by Jg (x x,) and 9r1vm)
Y Ip K X (x1,exy)

The i th row (i = 1,..., m) of this matrix was the gradient of
the i"" component function y;:(V y;). In this analyses p was

a sampled An. arabiensis aquatic habitat covariate in R"
and F (i.e., sampled larval/pupal count) was differentiable
at p; its derivative was given by J(p). The model described

by Ji(p)) was the best linear approximation of F near the

point p, in the sense that:

F(x)=F(p)+Te(p)(x=p)+o(|x—p])
(2.4)

The spatial structuring was achieved by constructing a lin-
ear combination of a subset of the eigenvectors of a mod-
ified geographic weights matrix, using (I - 11'/n) C (I -
11'/n) that appeared in the numerator of the Moran's
Coefficient (MC) Spatial autocorrelation can be indexed
with a MC, a product moment correlation coefficient [19].
A subset of eigenvectors was then selected with a stepwise
regression procedure. Because (I-11'/n) C (I1-11'/n) =E
A E', where E is an n-by-n matrix of eigenvectors and A is
an n-by-n diagonal matrix of the corresponding eigenval-
ues [17], the resulting An. arabiensis aquatic habitat model
specification was given by:

Y=pul+E B+e¢, (2.5)
where g the scalar mean of Y, Ek was an n-by-k matrix con-
taining the subset of k <<n eigenvectors selected with a
stepwise regression technique, and  was a k-by-1 vector
of regression coefficients [18]

A number of the eigenvectors were extracted from (I-11'/
n) C (I-11'/n), which were affiliated with geographic pat-
terns of the sampled An. arabiensis aquatic habitat covari-
ates, in the study site, portraying a negligible degree of
spatial autocorrelation. Consequently, only k of the n
eigenvectors was of interest for generating a candidate set

http://www.malariajournal.com/content/8/1/216

for a stepwise regression procedure. Candidate eigenvec-
tor represents a level of spatial autocorrelation which can
account for the redundant information in orthogonal
anopheline aquatic habitat map patterns [1]

The preceding eigenvector properties resulted in =Yy

and ﬁ =E,Y for equation (2.3). Expressing equation
(2.3) in terms of the preceding 2-by-2 example yielded

Y1 1 0.5 —0.69048  0.15240 P £
¥V, 1 -05 0.15240  0.69048 | ! &,
=u + B, |+ , and
vs 1 -0.5 -0.15240 -0.69048 5 €5
V4 1 05 0.69048 -0.15240 \"3 £,
0.5 —-0.69048  0.15240 Y v,
. . | =05  0.15240  0.69048
[=Y1TY2TY3HYA g p Ya |
4 0.5 —0.15240 —0.69048 | v,
0.5 0.69048 —-0.15240 ||y,

Of note is that because the 2-by-2 square tessellation ren-
dered a repeated eigenvalue.

Surface partitioning

To identify spatial clusters of An. arabiensis aquatic habi-
tats, Thiessen polygon surface partitioning were generated
to construct geographic neighbor matrices, which also
were used in the spatial autocorrelation analysis. Entries
in matrix were 1, if two sampled An. arabiensis aquatic
habitats shared a common Thiessen polygon boundary
and 0, otherwise. Next, the linkage structure for each sur-
face was edited to remove unlikely geographic neighbors
to identify pairs of sampled An. arabiensis aquatic habitats
sharing a common Thiessen polygon boundary. Attention
was restricted to those map patterns associated with at
least a minimum level of spatial autocorrelation, which,
for implementation purposes, was defined by |[MCy/
MC,, x| > 0.25, where MC; denoted the jth value and
MC,,, the maximum value of MC. This threshold value
allowed two candidate sets of eigenvectors to be consid-
ered for substantial positive and substantial negative spa-
tial autocorrelation respectively. These statistics indicated
that the detected negative spatial autocorrelation may be
considered to be statistically significant, based upon a ran-
domization perspective. Of note, is that the ratio of the
PRESS (i.e., predicted error sum of squares) statistic to the
sum of squared errors from the MC scatterplot trend line
was 1.27 which was well within two standard deviations
of the average standard prediction error value (roughly
1.13) for a sampled An. arabiensis aquatic habitat in the
study site. Because larval/pupal counts were being ana-
lyzed, a Poisson spatial filter model specification was
employed in this research [1,2]. Detected overdispersion
(i.e., extra-Poisson variation) results in its mean being
specified as gamma distributed [19].

The model specification was written as follows:
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LN(p) =al+EB,

of = w1 -nw;),
where y; was the expected mean larval/pupal count for
habitat location i, p was an n-by-1 vector of expected lar-
val/pupal counts, LN denoted the natural logarithm (i.e.,
the generalized linear model link function), ¢ was an
intercept term, and 7 was the negative binomial disper-
sion parameter. This log-linear equation had no error
term; rather, estimation was executed assuming a negative
binomial random variable.

Eigenfunctions of a spatial weighting matrix

The upper and lower bounds for a spatial matrix gener-
ated using Morans indices (I) can be given by A...(n/
1™W1) and A,,;,(n/1TW1) where 4, and A_;, which are
the extreme eigenvalues of Q = HWH [23]. Hence, in this
research, the eigenvectors of Q were vectors with unit
norm maximizing Moran's I. The eigenvalues of this
matrix were equal to Moran's I coefficients of spatial auto-
correlation post-multiplied by a constant. Eigenvectors
associated with high positive (or negative) eigenvalues
have high positive (or negative) autocorrelation [19]. The
eigenvectors associated with eigenvalues with extremely
small absolute values correspond to low spatial autocorre-
lation and are not suitable for defining spatial structures
[17]

The diagonalization of the spatial weighting matrix gener-
ated from the field and remote-sampled An. arabiensis
aquatic habitat covariate coefficients consisted of finding
the normalized vectors u;, stored as columns in the matrix
Us=lu,--- u,], satisfying:

n
Q=HWH=UAU" = Zziuiuf

i=1
T T, 2 T, _
where A =diag (A,--- 4,), u; u; —||ul|| =1land u;u;=0

for i #j. Note that double centering of Q implied that the
eigenvectors u; generated from the ecological sampled An.
arabiensis aquatic habitat covariates were centered and at
least one eigenvalue was equal to zero. Introducing these
eigenvectors in the original formulation of Moran's index
lead to:

I(x) = n xTHWHx_ n xluauTx
1Twi xTHyx 1Twr  xTHx
n
Z/IixTuiuiTx
- " i=l
1Twr xTHx
(2.6)
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Considering the centered vector z = Hx and using the
properties of idempotence of H, equation (2.6) was equiv-
alent to:

n n 2
> ),izTutuiTz > A uiTz
I(x)= n i=1 — n i=1
1Twr 2Tz 1Twi |z)?

(2.7)

From autocorrelation to correlation coefficient
As the eigenvectors u; and the vector z were centered, equa-
tion (2.7) was rewritten:

L 2
>, Ajcor “(uj,z) var(z)n

nooj—1
I(x) = !
1Twn var(z)n (2.8)
n
n 2
= Aicor = (u;, z)
1Tw1 Z‘ ’ l

In this research, r was the number of null eigenvalues of
(r=1). These eigenvalues and corresponding eigenvectors
were removed from A and U respectively. Equation 2.8
was then strictly equivalent to:

(2.9)

n—r
I(x)= Tn Zlicorz(ui,z)
1Tw1 <

Moreover, it was demonstrated that Moran's index for a
given eigenvector u;was equal to I(u;) = (n/1TW1)A;so the
equation was rewritten:

I(x)zil(ui)corz(ui,z)

The term cor? (u;, z) represented the part of the variance of

z that was explained by u; in the An. arabiensis aquatic
habitat model z = S;u; + &. This quantity was equal to

B /nvar(z). By definition, the eigenvectors u; were
orthogonal, and therefore, regression coefficients of the
linear models z = £, u;+&; were those of the multiple
regression modelz=UpB + & = fuj+ - + f, Uy, + &

The distribution of the error residuals in the
autocovariance matrix

The maximum value of [ was obtained by all of the varia-
tion of z, as explained by the eigenvector u;, which corre-
sponded to the highest eigenvalue A, in the spatial
autocorrelation error matrix. In this research, cor? (u; z) =
1 (and cor? (u;, z) = 0 for i # 1) and the maximum value of
I, was deduced for Equation (2.9), which was equal to I,
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= 1,(n/1TW1). The minimum value of I in the error matrix
was obtained as all the variation of z was explained by the
eigenvector u,,_, corresponding to the lowest eigenvalue 4,
. generated in the An. arabiensis aquatic habitat model.
e (M/1TWT). If
the ecological sampled predictor variable was not spatial-

ized, the part of the variance explained by each eigenvec-
tor was equal, on average, to cor? (u; z) = 1/n-1. Because

This minimum value was equal to I ;, =

the field and remote-sampled An. arabiensis aquatic habi-
tat variables in z were randomly permuted, it was assumed
that we would obtain this result. In this research the set of
n! random permutations, revealed that

Be(l)= 7 1

n
n A = n
Twin-1) & " 1T

trace( Q). It was
1T'wi(n-1)

T
easily demonstrated that trace( Q)= —% and it fol-

lowed that Ep (1)=-_1_.

n-1

Results

Table 1 lists the dependent and independent variables col-
lected in the study site. Table 2 lists the improvements of
fit in the adjusted and unadjusted models. The most par-
simonious model was selected as the "final" model. The
information in Table 3 indicated that aquatic animals
count, canopy cover over habitat, and rice stage status all
significantly improved model fit. Table 4 presents the
results of the Poisson regression performed in SAS® for the
interactions model. These results provided information
for estimates of the prior distribution of main effect coef-
ficients for the Bayesian analysis performed in WinBUGS".

The values for parameter estimates and standard errors in
Table 5 were used as mean values and standard errors to
parameterized prior expected values for the habitat covari-
ates. The prior expected mean value for the error term was

http://www.malariajournal.com/content/8/1/216

assumed to be zero ('0') with a standard deviation of 0.01.
Initial values for the MCMC chains were automatically
generated by WinBUGS®. The first 1,000 samples were
discarded to allow the model to stabilize and the next
10,000 samples were used to derive parameter estimates.
Median parameter values as well as the 95% credibility
intervals (2.5 percentile and 97.5 percentile values).

The DIC value for the model was 924.3. The DIC values
indicated that the final model, containing number of till-
ers and study site fit better than the alternative model with
only study site. Smaller DIC value indicates a better model
[8]. Similarly, the final model fit better than the full main
effects model containing aquatic animal count, number of
tillers, canopy cover over habitat, rice stage and study site
which had a DIC value of 927.2. As a sampled An. arabi-
ensis aquatic habitat increased in number of tillers in the
study site the median log-count of larvae/pupae increased
0.031. The spatially adjusted model that assumed inde-
pendence among the field and remote predictor variables
of An. arabiensis root mean square error (RMSE) fit better
that the spatially non-unadjusted model than the for cor-
relation within a study site (Figure 2).

Table 6 presents the spatial analysis of residual errors and
number of tillers for the study site. After adjusting for
number of tillers using regression outputs, significant
clustering of An. arabiensis aquatic habitats appeared
present in the residual error estimates. The distribution of
the residual error appeared non-random. The spatial auto-
correlation error covariance matrix identified the sampled
covariate depth of habitat as a significant predictor of An.
arabiensis aquatic habitat larval/pupal count values.

Estimation results from SAS PROC GENMOD for the
model appear in Table 7. Positive and negative spatial
autocorrelation spatial filter component pseudo-R2 values
are reported. These values do not exactly sum for the com-
plete spatial filter; however, the values are very close to

Table I: Information collected in the rice fields of Karima study site for analysis in SAS

Variable Description Units

An count Total larval count (dependent variable) Count

Tillers Density Number/Square meter
Depth Field depth Centimeters

Canopy Canopy cover Percent

Turbidity Turbidity status 0 = not turbid, | = turbid
Disanimal Distance to animal Meters
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Table 2: Comparison of improvement of fit measured by likelihood ratio between unadjusted and adjusted effects models, and full
main effects and interactions and saturated models for the Karima study site

Unadjusted effects

Adjusted effects

Variable Deviance Improvement j?2 df  Deviance Improvement »2 df
Intercept 996.9673

DANIMAL 981.9554 15.0119 | 901.4757 20.0341 |
TILLERS 983.6985 13.2688 | 885.147 3.7054 I
CANOPY 988.6662 8.3011 I 890.101 8.6594 I
TURBIDITY 987.6537 11.5043 | 891.752 9.3862 I
DEPTH 986.8716 10.0957 | 901.9639 20.5223 I
Ist Degree Interactions 844.8677 389132 5

their corresponding totals, suggesting that any induced
multicollinearity was quite small. The spatial autocorrela-
tion components suggested the presence of approximately
19% redundant information in the An. arabiensis larval/
pupal count samples.

Discussion

In the Bayesian analyses, all "high risk" habitats were
identified and ranked based on the sampled ecological
covariates and larval/pupal productivity. Parameter esti-
mates were used to define expectations for prior distribu-
tions in the autoregressive framework, which revealed that
the sampled covariate number of tillers was a significant
predictor variable, positively associated with An. arabiensis
aquatic habitats in the study site. The abundance of An.
arabiensis has been associated with early vegetative stage of
the rice growth [20,21]. At the tillering stage, in Karima
rice fields, there is addition of inorganic nitrogenous ferti-
lizers [24]. The addition of the nitrogenous fertilizers can
act as the attractant for oviposition by gravid An. arabiensis
mosquitoes. Broadcasting nitrogenous fertilizers in rice
fields has been found to enhance mosquito larval popula-
tions [24,25]. For effective control of developmental
stages of mosquito larvae, the application of larvicides

should be done at the vegetative stage and the larvicides
should persist until the beginning of the reproductive
stage of the rice [21].

The summarization of the simulated posterior distribu-
tion correctly accounted for the error of estimation of all
sampled An. arabiensis aquatic habitat parameters; each
simulated posterior distribution represented an "average"
over the joint posterior distributions of all other parame-
ters in the model so that any uncertainty estimation of the
sampled predictor variables was fully accounted for in
both the mean or the mode of simulated posteriors and in
the dispersion of the posterior. Because Bayesian statisti-
cal analysis is involved, prior distributions need to be pos-
ited for each varying quantity: the response variable, each
variable coefficient, the spatial autoregressive parameter,
the error variance, and the random error term [8]. This
"Bayesian averaging" over the uncertainty of estimation is
avery desirable property of Bayesian frameworks for mod-
eling An. arabiensis aquatic habitat covariates as any pre-
dictor variable, depending strongly on poorly estimated

Table 4: Results of SAS regression used to estimate prior
distribution of coefficients for WinBUGS MCMC analysis

Variable df Coefficient SE P
Table 3: Improvement of Fit of the WinBUGS Hierarchical
Bayesian Model (HBM) model Intercept | 1.4020 0.1053 <0.0001
Unadjusted effects Adjusted efferts DANIMAL | 0.0357 0.0057 <0.0001
Variable df Improvement 2 Improvement »2 df TILLERS | 0.0052 0.0066 0.4297
CANOPY | 0.0172 0.0044 <0.0001
DANIMAL | -1.368 -0.353 |
TILLERS | 6.089 3.242 | TURBIDITY | 0.0483 0.0341 <0.0001
CANOPY | 1.187 1.432 | DEPTH | 0.0521 0.1702 0.7596
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Table 5: Coefficient parameters estimates for WinBUGS
Bayesian model

Variable Mean SD MC error 2.5% 50% 97.5%
Intercept  1.427  0.0804 0.0013 1267 1.427 1581
TILLERS 0.018 0.0091 0.0001 0.001 0.017 0.033

parameters, will have relatively flat posteriors i.e., the pos-
terior will be a direct indication that the available preci-
sion on the parameter is very poor. In this research, the
DIC comprised two goodness-of-fit measures and the pos-
terior distribution of the deviance, which was the number

(a)
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of effective parameters for measuring complexity in the
An. arabiensis aquatic habitat model. Aquatic habitats with
high larval/pupal count, were compared with the results
of a Monte Carlo simulation, which established the prob-
abilities and occurrences of highly productive habitats in
the study site based on larval/pupal productivity.

The spatial filter analyses used geographic weights matri-
ces and a stepwise negative binomial regression routine,
to select eigenvectors as regressors. This eigenvector spa-
tial filtering approach added a minimally sufficient set of
eigenvectors as proxy-variables to a set of linear predictors
of An. arabiensis aquatic habitats. The regression residuals
represented spatially independent variable components.
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Figure 2

Spatially adjusted error estimates for ecological sampled An. arabiensis aquatic habitats the Karima study site.
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Table 6: Spatial analysis of residual errors and habitat depths for
the Karima study site

Statistic Study site
Raw Count data (unadjusted for habitat factors) Karima

Moran's | Coefficient (Z) 0.654 (0.341)
Residual Error

Moran's | Coefficient (Z) -0.058 (-1.060)
Depth of habitat

Moran's Coefficient | (Z) 0.048 (1.342)

The eigenvectors yielded distinct An. arabiensis aquatic
habitat map patterns for description of the latent autocor-
relation in the sampled data. There was positive autocor-
relation in the residual spatial pattern: similar log-larval/
pupal counts of An. arabiensis aquatic habitats aggregated
in geographic space based on the sampled covariate depth
of habitat.

Table 7: Poisson spatial filtering model results for Anopheles
arabiensis larval mosquito counts by study site

Spatial statistics Karima
SF: # of eigenvectors 8

SF: MC 0.03
SF: GR 0.71
SFpseudo-R? 0.30
Positive SA SF: # of eigenvectors |
Positive SASF: MC 922
Positive SA SF: GR 0.08
Positive SA SF pseudo-R? 0.08
Negative SA SF: # of eigenvectors 7
Negative SA SF: MC -0.52
Negative SA SF: GR 0.60
Negative SA SF pseudo-R? 0.22
Deviance statistic 1.08
Dispersion parameter 0.16

MC: Moran's Coefficient
GR: Geary's Ratio

SF: spatial filter

SA: spatial autocorrelation

http://www.malariajournal.com/content/8/1/216

Positive autocorrelation pattern in An. arabiensis aquatic
habitat covariates is often driven by multiple causes that
may be exogenous (e.g. autocorrelated environment dis-
turbance) and/or endogenous (conspecific attraction, dis-
persal limitations, demography) [1,2]. For example,
positive autocorrelation patterns of anopheline aquatic
habitats can be influenced by environmental landscape
[26], vector control activities [27], host density [28], prox-
imity to larval habitats and blood-meal hosts [20], quality
of the larval habitats [21], availability of domestic animals
[22] and inter-human variation in mosquito preferences,
based on host odors and other cues [24]. Positive autocor-
relation may be also due to common local weather pat-
terns that cause habitats to spatially cluster and partially
govern anopheline larval/pupal population dynamics
[1,2]. Climatic factors particularly temperature, precipita-
tion and relative humidity, predicts to a large degree the
natural distribution of An. arabiensis aquatic habitats [1],
as well as ecological factors, such as predation, parasitism,
cannibalism, availability of blood meal hosts and quality
of larval habitats [2]. Additionally, mosquito species dif-
fer in their habitat preference and disproportionately uti-
lize available aquatic habitats. For example, some species,
such as An. funestus, thrive in permanent and marshy
water bodies [20] and others, including An. gambiae and
An. arabiensis, prefer small pools of water that are sun-lit
and devoid of vegetation [28]. Mosquitoes also differ in
their foraging behavior, as well as host choice and resting
behavior [21], which can effect clustering of An. arabiensis
aquatic habitats based on larval/pupal productivity. Fur-
thermore, socio-economic/demographic dimensions in
riceland environments may tend to impact upon conta-
gion diffusion, inducing An. arabiensis aquatic habitats to
cluster together in geographic space [1]. For example, the
number of sleepers, the house roof materials (grass
thatch, iron, or tile roof) have significant effects on the
number of mosquitoes caught [2].

A graduated, systematic MCMC sampling methodology
that uses a spatial autocorrelation error matrix for Gaus-
sian variance estimation, can adjust for sampled ecologi-
cal covariates, which can identify more clustering of An.
arabiensis aquatic habitats within riceland areas than tech-
niques that use a random sampling strategy. A major
advantage of using autocorrelation indices is that the sam-
pling error distributions are well-defined. Thus, if the epi-
demiological data about the hotspots (clusters of An.
arabiensis) is correct, based on targeted MCMC surveil-
lance, then using autocorrelation indices for variance
uncertainty estimation can yield model outputs with
higher sensitivity for detection of highly productive An.
arabiensis aquatic habitats, than random surveillance for
riceland larval control operations. The statistical signifi-
cance of spatio-temporal autocorrelation patterns found
in the model can be directly assessed using standard nor-
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mal deviates (z scores). Since it is more feasible to expand
intensified surveys to targeted An. arabiensis aquatic habi-
tats, based on spatially selected potential foci [1], a sys-
tematic MCMC surveillance sampling frame, using a
spatial autocorrelation error matrix for estimating vari-
ance uncertainty, can focus on specific habitats, which
would allow for intensified entomologic surveillance at
prolific habitats, while not increasing overall sampling
efforts. Random interventions are excessive and wasteful
because the vectors are not themselves randomly distrib-
uted [3].

A spatial autocorrelation error matrix can also locally cal-
culate total, omission and commission errors using one
assessment and report each conditional-variance term in
the model using the original sampled data units. These
error residuals will be reported as one value for each sam-
pled habitat location rather than being a combination of
habitat values. The ability to adequately reflect the spatial
dependence in individual sampled habitat covariates
comprehensively in an important advantage of using
autocorrelation indices for variance uncertainty estima-
tion in an An. arabiensis aquatic habitat model. The strat-
egy of targeted interventions is to recognize the
importance of the variation in mosquito production
among individual habitat breeding sites throughout the
rice cycle [1]. Autocorrelation indices should not be inter-
preted, however, as a direct estimate of the correlation
parameter: a spatial stochastic model, such as a first-order
conditional autoregressive (spatial Markov) model, must
first be specified to enable parameter estimation.
Although in this research the discussion was centered on
malaria vectors, specifically of the An. gambiae complex,
the framework and derived guidelines described are appli-
cable to integrated control programs for other mosquito
species and insect born diseases.

Conclusion

The Bayesian regression analyses revealed that the sam-
pled covariate number of tillers was positively associated
with prolific An. arabiensis aquatic habitats based on lar-
val/pupal productivity in the study site. A spatial filter
analyses selected eigenvectors as regressors, resulting in
spatial autocorrelation being filtered out of the residuals
of the ecological sampled data. The spatial filtering analy-
ses transformed all variables, containing spatial depend-
ence, into covariates free of spatial dependence by
partitioning the original georeferenced An. arabiensis
aquatic habitat attribute variable, within a generalized lin-
ear model framework, into two synthetic variates: (1) a
spatial filter variate capturing latent spatial dependency,
that otherwise would have remained in the response
residuals, and (2) a nonspatial variate that was free of spa-
tial dependence. The eigenfunction spatial filter derived
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from the MC determined the mean, variance and statisti-
cal distribution characterizations and descriptions of the
sampled covariates at each individual habitat. The spatial
autocorrelation residual error analyses using the estimates
from the Monte Carlo simulation suggested positive auto-
correlation of the An. arabiensis aquatic habitats based on
the covariate depth of habitat. The spatial autocorrelation
error matrix revealed the presence of roughly 19% redun-
dant information in the An. arabiensis aquatic habitat
parameter estimates. The spatially adjusted models iden-
tified the clustering patterns of the sampled An. arabiensis
aquatic habitat in the ecological datasets while accounting
for all conditional heteroscedastic error terms in the mod-
els. Autocorrelation indices can enable significance testing
of An. arabiensis aquatic habitat models using field and
remote sampled explanatory variables which can be very
useful for model improvement and resource allocation for
implementing mosquito control strategies in riceland
areas.
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