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Abstract: Chemoresistance is a daunting obstacle to the effective treatment of breast cancer patients
receiving chemotherapy. Although the mechanism of chemotherapy drug resistance has been ex-
plored broadly, the precise mechanism at the proteome level remains unclear. Especially, comparative
studies between widely used anticancer drugs in breast cancer are very limited. In this study, we
employed proteomics and bioinformatics approaches on chemoresistant breast cancer cell lines to
understand the underlying resistance mechanisms that resulted from doxorubicin (DR), paclitaxel
(PR), and tamoxifen (TAR). In total, 10,385 proteins were identified and quantified from three TMT
6-plex and one TMT 10-plex experiments. Bioinformatics analysis showed that Notch signaling,
immune response, and protein re-localization processes were uniquely associated with DR, PR,
and TAR resistance, respectively. In addition, proteomic signatures related to drug resistance were
identified as potential targets of many FDA-approved drugs. Furthermore, we identified potential
prognostic proteins with significant effects on overall survival. Representatively, PLXNB2 expres-
sion was associated with a highly significant increase in risk, and downregulation of ACOX3 was
correlated with a worse overall survival rate. Consequently, our study provides new insights into the
proteomic aspects of the distinct mechanisms underlying chemoresistance in breast cancer.

Keywords: proteomics; chemoresistance; breast cancer; prognosis marker; druggable targets

1. Introduction

Breast cancer accounts for roughly 30% of all cancers in women worldwide and has a
15% death rate; further, incidence rates are increasing at a rate of about 0.5% per year [1].
Breast cancer comprises a heterogeneous group of tumor subtypes, whether defined by
the histopathology of the primary tumor, the expression pattern of hormone receptors
(estrogen and/or progesterone receptors; ER/PR) and epidermal growth factor receptor 2
(HER2), genetic alterations of transcriptomic traits. These patient-to-patient differences,
known as ‘intertumoral heterogeneity’, largely affect patient prognosis and treatment
options [2–4]. Alongside intertumoral heterogeneity, many studies reported that breast
cancers are heterogeneous, with a patient’s primary tumor and individual metastases
consisting of many different cells or subclones with different gene expression profiles [2–4].
These differences within the tumor are referred to as intratumor heterogeneity, which
is caused by a combination of extrinsic factors from the tumor microenvironment and
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intrinsic parameters including genetic, epigenetic, and transcriptomic traits, the ability of
proliferation, migration, and invasion, cell plasticity, and the extent of stemness [2–4]. These
heterogeneities endow tumors with multiple capabilities and biological characteristics,
making them more prone to metastasis, recurrence, and drug resistance [5].

Surgery to remove the tumor and either stage the axillary tumor burden or excise
the afflicted axillary lymph nodes are common treatment methods in breast cancer, inde-
pendent of tumor subtype. Tumor downsizing with systemic therapy before surgery is
also recommended for large tumors, and the same systemic therapy is encouraged after
surgery. Chemotherapy has generally been regarded as a standard treatment even if the
disease is operable [6]. The most commonly used anti-cancer drugs for breast cancer are
tamoxifen (Nolvadex), doxorubicin (Adriamycin), and paclitaxel (Taxol) [7–10]. However,
as previously mentioned, chemoresistance that occurs through alteration to drug targets by
either innate or acquired abilities has emerged as a major issue that limits the chemotherapy
for cancer patients [11].

Chemoresistance of these drugs remains a major cause of therapy failure in breast
cancer patients. If we take a more intimate look at them, notably, paclitaxel, a first-line
chemotherapy drug for breast cancer, has been reported to develop drug resistance in
90% of patients with breast cancer, particularly metastatic breast cancer [12]. In addition,
tamoxifen is an estrogen receptor (ER) antagonist that is commonly used in the treatment
of ER-positive breast cancer patients [10]. This resulted in the reduction of the mortality
rate by 30% [13]. However, resistance against tamoxifen is still one of the major hurdles in
the effective management of breast cancer [14]. Indeed, doxorubicin is an anthracycline
antibiotic that is also commonly used to treat cancer. however, its efficiency is hampered
by side effects and the development of resistance [15–17]. In recent years, it is known that
drug resistance in breast cancer is caused by several factors, including host and tumor
genetic mutations, epigenetic modifications, and tumor environment [18–20]. However, the
chemoresistance mechanisms of breast cancer are complicated owing to its heterogeneous
nature and have not been fully elucidated.

To overcome these challenges, understanding the proteome mechanisms behind tran-
scriptome profiling from the aspect of treatment can help to improve resistance to cancer
therapy. Recent proteomics technologies based on mass spectrometry enable an unbiased
investigation of drug-induced changes in protein abundance and post-translational modifi-
cations. Several studies on resistance to chemotherapy have recently published data on
mass-spectrometry-based chemotherapeutic proteome profiling, which has the potential to
discover molecular subtypes and related pathway features that may have been missed in
prior transcriptome analyses [21–23].

Nevertheless, few studies have performed comprehensive proteomic analysis to eluci-
date mechanisms of specific drug resistance in breast cancer. In this study, we performed
quantitative proteomic analysis to identify proteome differences among doxorubicin-,
paclitaxel-, and tamoxifen-resistant breast cancer cells using an isobaric tandem mass tag
(TMT) label-based quantitative proteomic approach in combination with comprehensive
bioinformatics analysis. By unraveling the protein signatures across tamoxifen, doxorubicin,
and paclitaxel and their relationship between drug-resistant cell lines and parent breast
cancer cells, our study advances the understanding of the three types of drug resistance
and provides potential diagnostic and prognostic markers, as well as testable targets of
therapy specific to breast cancer resistant cell subtypes.

2. Results
2.1. Comparative Proteomic Analysis of Drug-Resistant Breast Cancer Cell Lines

We designed a tandem mass tag (TMT) based quantitative proteomic analysis to
investigate the global proteome profile of anti-cancer resistance effects of three anticancer
drugs, including doxorubicin (DR), paclitaxel (PR), and tamoxifen (TAR). TMT 6-plex was
used to compare parental MCF-7 and resistant MCF-7 of each of the three anticancer drugs,
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and TMT 10-plex was used for direct comparisons between three drug-resistant MCF-7
cells. The experimental procedures for proteomic analysis are illustrated in Figure 1a.
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Figure 1. Mass spectrometry-based profiling of drug-resistant breast cancer cell lines. (a) Schematic
diagram of the proteome analysis of this study. (b) A bar plot showing the number of proteins
identified and quantitative protein groups per each TMT experiment. (c) A total of 10,385 protein
groups were identified in our study. Of them, 7503 protein groups were identified and quantified
in both TMT 6-plex and TMT 10-plex experiments. The “Not quantified” proteins were identified
via search algorithm, but their reporter ions were not detected and were excluded from subsequent
quantitative analysis.

In total, 7756, 8142, and 8225 proteins were identified from the TMT 6-plex data in each
of the three drug-resistant cells consisting of MCF-7/DR, MCF-7/PR, and MCF-7/TAR,
respectively. A total of 9194 protein groups were observed in at least one of the TMT
6-plex experiments. While the 8633 proteins were identified on the TMT 10-plex data
(Figure 1b), 7503 protein groups were commonly quantified in TMT 6-plex and 10-plex
experiments (Figure 1c). Approximately, 88% and 86% of the total identified proteins were
identified as two or more unique peptides in the TMT 6-plex and TMT 10-plex experiments,
respectively. (Figure S1). Although the quantitative variants among multiple channels
of labeled proteins showed a suitable reproducibility, we used a non-homologous spiked
in the chicken ovalbumin for the internal standard. The coefficient of variation (CV) for
ovalbumin was 1.86%, 5.77%, and 5.98% in three TMT 6-plexes, respectively, and 3.46% in
the 10-plex. The CV plots according to unique peptides showed that our TMT quantification
has good reproducibility and accuracy (Figure S2a,b). All information for identification
and quantification was provided in Table S1.
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2.2. Identification of Protein Expression in Individual Drug-Resistant Cells

To identify significantly different proteins between parental MCF-7 and each of the
three drug-resistant MCF-7s from the TMT 6-plex data, pair-wise comparison analysis was
performed in MCF-7/DR, MCF-7/PR, and MCF-7/TAR resistant cells compared to parental
MCF-7 cells from the TMT 6-plex. First, we performed the principal component analysis
(PCA) to compare the proteome profiles among parental MCF-7 cells and drug-resistant
MCF-7 cells. Figure 2a shows that the drug-resistant and parental cells are clearly separated,
suggesting that there are significant differences in overall proteome expression profiles.
T-test analysis showed that 5498, 5349, and 3833 proteins were significantly differentially
expressed with adjusted p-value < 0.05 between MCF-7/DR, MCF-7/PR, and MCF-7/TAR,
respectively, compared to parental MCF-7 cells (Figure S3 and Table S2).
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Figure 2. Analysis of differential protein expression with parental MCF-7 and drug-resistant MCF-7
breast cancer cell lines. (a) Principal component analysis of proteins quantified in each experimental
set. The red spots represent parental MCF-7, and the blue triangle indicates drug-resistant MCF-7
cell lines of each of the three anti-cancer drugs. (b) Volcano plots of significantly different protein
expression between parental MCF-7 and drug-resistant MCF-7. Volcano plots were drawn using TMT
6-plex data. Significant proteins had an FDR-adjusted p-value less than 0.05 for all comparison sets.
Additionally, overlapped DEPs between TMT 6-plex and 10-plex datasets were plotted as the red
spots (upregulation) and blue spots (downregulation).

Next, we performed direct comparison analysis among three drugs using TMT 10-plex
quantification data. PCA indicated clear separation between three drug resistant breast
cancer cells (Figure S4a). Pair-wise comparisons identified 6833, 6694, and 6232 proteins
as the differentially expressed proteins (DEPs) in three comparison sets (MCF-7/DR ver-
sus MCF-7/PR, MCF-7/DR versus MCF-7/TAR, and MCF-7/PR versus MCF-7/TAR),
respectively (Table S2).

Finally, in order to obtain proteins with drug-specific expression alterations as well as
protein expression changes associated with the acquisition of drug resistance, DEPs from
6-plex and 10-plex were overlapped (Figure S4b). As a result, 3916, 3425, and 2550 proteins
were significantly differentially expressed in each drug resistant cell line compared to
the non-resistant cells and to the other two drug-resistant cells (Figures 2b and S4b and
Table S3). Due to our goal of elucidating the impact of resistance to three anti-cancer drugs
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and establishing protein panels with the potential to predict prognosis, these proteins were
subjected to further analysis.

2.3. Integrative Analysis of Proteome and Transcriptome from Drug-Resistant Cells

Despite the hierarchical organization of gene expression via central dogma, the rela-
tionship between transcript and protein expression levels is highly variable in mammalian
cells. In order to identify trends related to drug-resistance with high consistency between
mRNA and proteins, we compared differential gene expression profiles from publicly
available transcriptome profiles for each drug-resistant MCF-7 to the data produced by
microarray and RNA sequencing (Figure 3a and Table S4).
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Figure 3. Integrative analysis of proteome and transcriptome of drug-resistant cells. (a) Venn
diagram of significantly differentially expressed genes between proteome and each publicly available
transcriptome. (b) Scatter plots of gene-expression correlation between proteome and transcriptome
data from each study. Genes for mRNA and protein with increasing concordance were indicated
with purple, while genes with decreasing concordance were marked with yellow. Genes that showed
discordant changes between proteome and all transcriptome profiles were indicated as dark grey.

We processed the data from two transcriptome profiles of MCF-7/DR that had been
deposited into the public GEO database from independent studies [24,25]. In total, 7721 and
2512 genes were significantly differentially expressed (q-value < 0.05) from independent
transcriptome profiling studies of MCF-7/DR, of which 543 genes were detected in three
datasets (Figure 3a). Among them, we found 207 genes that had the same direction
in both proteome and two sets of transcriptome data (rho = 0.81 and 0.76, respectively)
(Figures 3b, 4a and S5a). Of the genes with the same direction in a brief positive correlation
of gene expression between proteome and transcriptome data, 79 were found to have been
upregulated, while 128 genes were downregulated (Figure 3a,b).
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Figure 4. Functional ontology enrichment analysis of genes with concordant changes in proteome
and transcriptome. (a) Volcano plots of the fold change of protein expression levels. The significantly
expressed genes on resistant cells with a positive expression between proteome and transcriptome
(purple, upregulated; yellow, downregulated); genes with discordant changes between proteome
and transcriptome were labeled as dark grey. (b–d) Gene ontology analysis results showing bio-
logical process enriched by positive expressed genes between proteome and transcriptome (purple,
upregulated; yellow, downregulated).

Next, we collected processed RNA sequencing data of MCF-7/PR that had been
deposited in the public GEO database [26]. A total of 979 genes were significantly dif-
ferentially expressed (q-value < 0.05) from publicly available RNA sequencing data of
MCF-7/PR, of which 128 genes had been detected in our proteome data (Figure 3a). Among
them, we found 54 and 74 genes that had the same direction or differential direction on
both proteome and transcriptome data, respectively (Figures 3b, 4a and S5a). The genes
with the same direction and a positive correlation of gene expression between proteome
and transcriptome data were highly correlated, with rho = 0.7723 (p-value < 2.2 × 10−11,
and consisted of 23 upregulated genes and 31 downregulated genes in MCF-7/PR cells
(Figures 3b, 4a and S5b).

Finally, we processed the publicly available RNA sequencing data of MCF-7/TAR
that had been deposited in the NCBI SRA database from two independent studies [27,28].
A total of 5579 and 4665 differentially expressed genes (q-value < 0.05) were identified
from independent transcriptome profile study of MCF-7/TAR, with 1058 genes found to be
significantly differentially expressed in both proteome and transcriptome data; 415 genes
had concordant changes and 300 genes showed a discordant direction between proteome
and transcriptome profiles (Figure 3a,b). Compared to the control, 196 genes were upreg-
ulated in MCF-7/TAR, whereas 219 genes were downregulated (Figures3b, 4a and S5c).
The genes showed high correlation between proteome and the two transcriptome datasets
(rho = 0.8104 and 0.8306).

2.4. Functional Analysis of Correlated Expression of Genes between Proteome and Transcriptome in
Resistant Cells

We next applied a functional classification analysis to each group of genes defined by
concordant directions between proteome and transcriptome from individual drug-resistant
cells. Based on the biological process of gene ontology with Enrichr, the genes positively up-
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regulated (n = 79) on MCF-7/DR cells and other transcriptome profiles were enriched by the
branch-chain amino acid (BCAA) catabolic process (p-value < 6.44 × 10−5), negative regu-
lation of p38 MAPK cascade (p-value < 3.19 × 10−4), positive regulation of Notch signaling
pathway (p-value < 7.47 × 10−4), and mesenchymal cell differentiation (p-value < 0.001).
The majority of proteins with concordant decrease (n = 128) are involved in nucleic
acid regulation, such as RNA processing (p-value < 1.91 × 10−5), chromatin remodel-
ing (p-value < 5.03 × 10−5), and nucleic acid metabolic process (p-value < 8.88 × 10−5)
(Figure 4b and Table S5).

In the case of MCF-7/PR cells, concordantly increasing (n = 23) and decreasing (n = 31)
genes between proteome and transcriptome profiles were subjected to enrichment analysis
to the biological process of gene ontology in MCF-7/PR. Differentially overexpressed
proteins in both proteome and transcriptome datasets were involved in the neutrophil
mediated immunity (p-value < 1.45 × 10−5) and neutrophil activation involved in immune
response (p-value < 1.40 × 10−5). In addition, the downregulated proteins were associated
with negative regulation of the cell motility process (p-value < 7.22 × 10−4) and negative
regulation of cell–cell adhesion (p-value < 0.002) (Figure 4c and Table S5).

Finally, genes (n = 196) that had concordant increase between mRNA and protein in
MCF-7/TAR cells are involved in protein localization control (p-value < 6.17 × 10−5) and
positive regulation of motility (p-value < 1.27 × 10−5). Moreover, spindle assembly check-
point signaling (p-value < 7.61 × 10−8), mitotic cell cycle phase transition
(p-value < 8.00 × 10−8), and G2/M transition of the mitotic cell cycle (p-value < 1.71 × 10−8)
were enriched in genes with concordant decreases (n = 219) (Figure 4d and Table S5).

2.5. Analysis of Three Types of Drug-Resistant-Cell-Expressed Proteins and Commonly
Regulated Proteins

To construct a protein panel that can predict anti-cancer drug resistance and prognosis
of drug treatment, we overlapped proteins showing drug-specific expression alterations
as well as protein expression changes associated with the acquisition of drug resistance.
The Venn diagram showed that 795, 442, and 237 proteins specifically related to DR-
resistance, PR-resistance, and TAR-resistance, respectively (Figure 5a). Among these
proteins, 1313 proteins were common DEPs, indicating that 1313 proteins show altered
expressions associated with resistance to the three specific drugs as well as common
resistance characteristics compared to non-resistance.

First, we examined the functional ontology enrichment analysis of common and drug-
specific DEPs based on GO annotations (Figure 5b and Table S6). Interestingly, distinct
biological processes were enriched in drug-specific proteins and depended on the type
of drug. DR-specific proteins were highly associated with mitotic cell cycle phase transi-
tion (p-value < 2.66 × 10−7), regulation of focal adhesion assembly (p-value < 1.06 × 10−6),
response to endoplasmic reticulum stress (p-value < 1.57× 10−6), and protein-containing
complex assembly (p-value < 3.05 × 10−6). PR-specific proteins were involved in rRNA
processing (p-value < 7.49 × 10−13), ribosome biogenesis (p-value < 1.85 × 10−9), the rRNA
metabolic process (p-value < 3.42 × 10−9), and ncRNA processing (p-value < 2.29 × 10−8).
Most TAR-specific DEPs were related to cell–cell junction organization (p-value < 5.37 × 10−5),
ERAD pathway (p-value < 7.84 × 10−5), negative regulation of translation
(p-value < 9.73 × 10−5), and vacuolar acidification (p-value < 9.82 × 10−5). Next, com-
mon DEPs (those that showed significant changes in expression among all three types of
drug-resistant cells) were enriched in neutrophil degranulation (p-value < 2.99 × 10−14),
neutrophil-mediated immunity (p-value < 6.63 × 10−14), mRNA processing
(p-value < 1.72 × 10−7), and cellular response to DNA damage stimulus (p-value < 2.36 × 10−6).
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To discover novel drug target proteins that may respond to drug resistance in breast
cancer, we compared these DEPs to three categories of druggable target proteins from the
human protein atlas [29]. Comparative analysis showed that the most abundant drug target
of disease-related proteins on commonly regulated genes had calculated enrichment scores
of 1.6. These results imply that 1313 common DEPs may be involved in the regulation of
other drug target genes during development of resistance (Figure 5c).

Of common DEPs (1313 proteins), TMT 6-plex data indicated that 194 proteins were
consistently upregulated in all three drug-resistant MCF-7 cells, and 295 proteins were
downregulated (Figure 5d). Especially, we found eight DEPs consistently upregulated in
any drug-resistant cell—ATP6V1B2, MAP2K1, MAP4, PLIN3, PRKCI, ROCK2, SMN1, and
TXNRD1, which were overexpressed more than 1.2-fold compared with parental MCF-7
cell lines—whereas FADS1, FRK, GAA, HSD17B10, CYP51A1, DHODH, CA12, ACAA1,
SQLE, and TOP2A were consistently downregulated (Figure 5d, Tables 1 and S7).

Table 1. Representative relative expression levels of protein between parental MCF-7 and drug-
resistant cells.

Protein Name
MCF-7/DR MCF-7/PR MCF-7/TAR

Log2 FC Adj p-Value Log2 FC Adj p-Value Log2 FC Adj p-Value

ATP6V1B2 0.2987 0.0007 0.1741 0.0167 0.4997 0.0034
MAP2K1 0.8756 0.0015 0.5689 0.0076 0.4647 0.0125

MAP4 0.7893 0.0005 0.2916 0.0218 0.3371 0.0141
PLIN3 0.8894 0.0007 0.6368 0.0057 0.2839 0.0189
PRKCI 0.1833 0.0195 0.2564 0.0060 0.6548 0.0060
ROCK2 0.2936 0.0131 0.2128 0.0198 0.1766 0.0322
SMN1 0.6062 0.0016 0.2697 0.0241 0.3360 0.0226

TXNRD1 0.8700 0.0007 0.3042 0.0137 0.6149 0.0121
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Table 1. Cont.

Protein Name
MCF-7/DR MCF-7/PR MCF-7/TAR

Log2 FC Adj p-Value Log2 FC Adj p-Value Log2 FC Adj p-Value

FADS1 −0.2534 0.0226 −0.5072 0.0069 −0.8856 0.0137
FRK −0.6422 0.0006 −0.2322 0.0043 −0.9870 0.0043
GAA −0.6750 0.0010 −0.1442 0.0440 −0.3608 0.0133

HSD17B10 −0.6633 0.0054 −0.2812 0.0143 −0.3145 0.0308
CYP51A1 −1.0314 0.0072 −0.7026 0.0014 −0.6652 0.0209
DHODH −0.9274 0.0051 −0.4792 0.0015 −0.1451 0.0329

CA12 −1.5826 0.0025 −0.7594 0.0020 −0.7171 0.0051
ACAA1 −1.3387 0.0002 −0.3037 0.0039 −0.3683 0.0282

2.6. Discovery of Candidate Anti-Cancer-Drug-Resistant Marker with TCGA and Metabric
Survival Data

To assess contribution of drug-resistance-related proteins to breast cancer patient sur-
vival, we calculated the overall survival rate of the 194 upregulated and 294 downregulated
proteins found in all three drug-resistant cells using survival information of TCGA-BRCA
(n = 940) and Metabric cohort (n = 1468) [30,31].

Among all 488 proteins, 12 proteins were closely associated with overall survival
(OS) in both databases, as determined by Kaplan–Meier (KM) analysis (Figure 6a,b). In
upregulated proteins (Table 2), ATP6V1A, VPS26B, PLXNB2, RNF214, and THYN1 are
highly associated with shorter OS in both patient populations (log-rank < 0.01) (Figure S6).
In addition, downregulation of RIDA, CPSF6, ABCD3, UHRF1, HNRNPL, P4HB, and
ACOX3 was associated with shorter OS in both databases (Figure S7). Interestingly, in
subgroups of patients treated with chemotherapy (332 patients in Metabric), we found that
high plexin-B2 (PLXNB2) expression was associated with shorter OS, whereas downreg-
ulation of acyl-coenzyme A oxidase 3 (ACOX3) predicted shorter OS in patients treated
with chemotherapy (Figure 6c,d). Significantly, MS/MS spectrums showed that PLXNB2
and ACOX3 are identified with high confidence in our data (Figures S8 and S9). Moreover,
expression patterns of these two proteins from TMT 10-plex data suggested that PLXNB2
and ACOX3 are putative prognosis markers of chemotherapy-resistance regardless of drug
type (Figure S10).

Table 2. Summary of 12 prognostic marker candidates. The Log2 FC was calculated between parental
MCF-7 and drug-resistant cells using TMT 6-plex data.

Protein Name
MCF-7/DR MCF-7/PR MCF-7/TAR

Log2 FC Adj p-Value Log2 FC Adj p-Value Log2 FC Adj p-Value

ATP6V1A 0.3835 0.0084 0.3850 0.0082 0.4489 0.0181
VPS26B 0.7674 0.0013 0.6040 0.0014 0.4039 0.0040

PLXNB2 0.6396 0.0017 0.3654 0.0017 0.6469 0.0055
RNF214 1.2672 0.0005 0.1830 0.0081 0.3928 0.0114
THYN1 0.6490 0.0006 0.2734 0.0438 0.2793 0.0043
RIDA −0.5185 0.0025 −0.2993 0.0059 −0.1191 0.0104
CPSF6 −0.4050 0.0085 −0.1964 0.0028 −0.2366 0.0139
ABCD3 −0.9008 0.0040 −0.2900 0.0055 −0.8820 0.0104
UHRF1 −0.1969 0.0021 −0.1794 0.0328 −0.4596 0.0088

HNRNPL −0.2741 0.0220 −0.1738 0.0414 −0.2100 0.0353
P4HB −1.0898 0.0050 −0.3169 0.0336 −0.3561 0.0023

ACOX3 −1.5011 0.0069 −0.2912 0.0193 −0.5299 0.0098
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3. Discussion

Here, we performed, for the first time, a comparative proteomic analysis between
three drugs for breast cancer chemotherapy. The novelty of our research deals with the
application of in-depth quantitative proteomic methodologies to discover the relationship of
doxorubicin-, paclitaxel-, and tamoxifen-resistance mechanisms in breast cancer cells. TMT-
based in-depth proteome analysis paves the way to a better understanding of underlying
molecular mechanisms of drug resistance and helps to identify potential drug targets for
breast cancer treatment.

Many studies reported that the relationship between transcript and protein expression
levels is highly variable in mammalian cells [32]. The proteome is characterized by large
protein-abundance differences, cell-type and time-dependent expression patterns, and post-
translational modifications, all of which carry biological information that is inaccessible by
genomics or transcriptomics. In our study, we used differential gene expression profiles
from publicly available transcriptome profiles of each drug-resistant MCF-7 compared
to data produced by microarray and RNA sequencing to identify trends related to drug
resistance with high consistency between mRNA and proteins. The overlapped genes with
concordant expression patterns between DEPs in our data and differentially expressed
genes (DEGs) in public transcriptomics data are highly correlated. However, correlation
analysis using overlapping genes, regardless of expression direction, differed depending
on the type of drug. Although one dataset for MCF-7/DR from X Wang et al. and two
transcriptomics datasets for MCF-7/TAR were significantly positively correlated, data from
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ST bailey et al. and He Dx et al. showed negative correlation. This is probably because
the data from ST bailey et al. data is micro-array data, and the data from He DX et al. is
low-depth sequenced RNA-seq data with only one experimental sample size. Therefore,
genes with high consistency between mRNA and protein were selected and subjected to
further analysis.

Since the 1970s, doxorubicin (DR), an anthracycline antibiotic, has been regarded as
one of the most effective treatments for breast cancer [33]. Anthracyclines have been the
standard backbone of chemotherapy for breast cancer cure for over three decades [34]. The
mechanism of the antineoplastic effect of doxorubicin at the cellular level is drug binding to
DNA by insertion between base pairs and inhibition of RNA synthesis by template disorder
and steric hindrance [35]. This leads to cell-cycle arrest and subsequent induction of DNA
damage related to the apoptotic pathway.

However, DR’s efficiency is impeded by resistance via several mechanisms. A range of
factors contributing to the acquired phenotype of DR resistance in breast cancer have been
proposed, including the activation of the nuclear factor erythroid 2-related factor 2 (Nrf2)
signaling pathway [36] and the mitogen-activated protein kinase (MAPK)/extracellular-
signal-regulated kinase (ERK) [37].

In our study, proteins involved in branched-chain amino acid (BCAA) catabolic pro-
cesses were uniquely upregulated in MCF-7/DR cells. Recent studies have demonstrated
that catabolism of BCAAs produces intermediates that are vital for driving triple-negative
breast cancer (TNBC) growth and survival [38]. Moreover, BCAA catabolism dysregulation
is significantly related to DR chemosensitivity and chemoresistance [39]. In addition, sev-
eral upregulated proteins were involved in negative regulation of the p38-MAPK cascade.
A recent study reported that p38 MAPK inhibitor significantly increases gastric cancer cell
sensitivity to doxorubicin [40], which contradicts our enrichment result. Interestingly, that
the recombinant, dual-target MDM2/MDMX inhibitor could reverse doxorubicin resis-
tance via the activation of the TAB1/TAK1/p38 MAPK cascade in breast cancer cells [41] is
consistent with our result.

Positive regulation of the Notch signaling pathway was also associated with upreg-
ulated proteins in MCF-7/DR cells. The Notch signaling pathway played a key role in
breast cancer tumorigenesis and progression, as well as therapy resistance and disease
relapse in breast cancer patients [42]. Li et al. [43] showed that the inhibition of the Notch-1
signaling pathway with γ-secretase inhibitor could enhance the sensitivity to doxorubicin
treatment in MDA-MB-231 cells. Another recent study demonstrated that antibody-specific
inhibition of JAG1 sensitizes chemoresistance of TNBC cells in vivo in mice, showcasing an
important role for JAG1 and the Notch pathway in promoting chemoresistance in breast
cancer [44]. These studies suggest that upregulated proteins involved in positive regulation
of the Notch signaling pathway can be potential therapeutic targets for chemoresistance in
breast cancer.

On the other hand, downregulated proteins were mainly involved in chromatic remod-
eling, including DNA and RNA metabolic process and histone modifications. Interestingly,
a recent epigenetic study demonstrated that major histone-modifying enzymes, such as
HDAC2, EZH2, and PRMT5, are significantly downregulated in doxorubicin-resistant
MCF7 cells [25], suggesting that downregulation or loss of certain regulators in chromatic
remodeling may also play an important role in promoting the development of cancer
drug resistance.

Paclitaxel (PR) is one of the active chemotherapeutic drugs commonly used to treat
metastatic breast cancer [8,9]. Paclitaxel, a class of taxanes, is an anti-tumor drug that
binds to β-tubulin and prevents mitosis through microtubule hyperstabilization [9]. Sev-
eral mechanisms have been reported to understand paclitaxel resistance in breast cancer.
Previous studies reported that PR resistance is mediated by the Hippo–LATS signaling
pathway and its downstream transcriptional coactivator [45] and overexpression of mul-
tidrug transporter genes such as ATP binding cassette subfamily B member 1 (ABCB1,
MDR1) and the ATP binding cassette subfamily C member 1 (ABCC1, MRP1) [46]. The
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additional mechanism described suggested that paclitaxel resistance is caused by a point
mutation at β292 (Gln to Glu), β173 (Pro to Ala), and β422 (Tyr to Tyr/Cys) in the β-tubulin
gene at the paclitaxel binding site [47,48]. These point mutations are located around the
M-loop, nucleotide-binding site, and C-terminus, which are responsible for stabilizing lat-
eral connections between protofilaments, GTP hydrolysis, and MAP binding, respectively.
Moreover, changing tubulin isotype expression levels have been linked to the emergence of
paclitaxel resistance [49,50].

Interestingly, we identified that upregulated proteins in MCF-7/PR are mainly in-
volved in neutrophil activation involved in immune response. Tumor-associated neu-
trophils (TANs) have been shown to promote tumor progression through a variety of
mechanisms, including stimulation of angiogenesis, invasiveness, and releasing growth
factors [51,52]. Indeed, tumors are thought to unintentionally stimulate tumor progression
by secreting factors that induce wound healing responses from TAN and tumor-associated
macrophages [53]. Even neutrophil extracellular traps generated during inflammation
may also promote the reawakening of dormant tumor cells [54]. These results suggest an
important role of interactions between breast cancer cells and TANs in regulating pro-tumor
characteristics in neutrophils and their modulation by therapy resistance [55].

Meanwhile, downregulated proteins in MCF-7/PR were uniquely enriched to cause
negative regulation of cell motility and migration. Because chemoresistance can be driven
by the motility of the cancer cells within the chemotherapy drug gradient [56], downregula-
tion of proteins that acted as negative regulators of cell motility could induce the migration
of breast cancer cells. Especially, the upregulated group contained CLDN3, CDH1, and
PTPRK, which have major roles in epithelial–mesenchymal transition (EMT). Recent stud-
ies reported that drug-resistant breast cancer cells acquire EMT characteristics and have
increased motility and invasion activities by suppression of CLDN3 [57], CDH1 [58], and
PTPRK [59]. Moreover, PTPRK is proposed as an important regulator of EMT plasticity
in breast cancer [59]. Therefore, the development of plasticity inhibitors may have great
potential in cancer treatment, despite limited evidence from clinical studies [60].

Tamoxifen is a competitive inhibitor of estrogen action and a hormone-based anti-
cancer drug that blocks the binding of estradiol to the ER through positive hormone
receptors in cancer cells [61,62]. Tamoxifen is approved as the first-line treatment for
the prevention of high-risk breast cancer and is used to treat breast cancer, including
delaying recurrence and progression [62–64]. However, about 20–30% of tumors are
resistant to tamoxifen therapy either prior to treatment or during treatment. Several factors
suggested to be responsible for tamoxifen resistance include crosstalk between ER and the
growth factor receptor (GFR) network [65], downregulation of ER [14], upregulation of
specific GFR [66], activation of PI3/AKT/mTOR pathway [67], PTEN inactivation [68], and
induction of NF-κB signaling [69].

Compared with other drug-resistant cells, proteins involved in protein localization
control and regulation of cell migration were mainly upregulated in tamoxifen-resistant
cells. As expected, our data showed that the molecular mechanisms of tamoxifen resis-
tance might be mainly related to membrane structures. Moreover, previous studies have
shown that regulation of protein localization changes is associated with EGFR/ERK and
EGFR/AKT signaling activation in tamoxifen-resistant breast cancer cells, indicating that
this may be a potential target for enhancing chemosensitivity of breast cancer patients [70].

In addition, cell cycle related terms, including spindle assembly checkpoint signaling,
mitotic cell cycle phase transition, and G2/M transition of the mitotic cell cycle were signif-
icantly enriched in downregulated proteins. Several studies reported that the expression
and activity of cell cycle regulators are significantly associated with tamoxifen sensitivity
and resistance [71]. Interestingly, our enrichment results showed several proteins involved
in cell cycle machinery are downregulated in MCF-7/TAR cells, which is in contrast to
the previous studies. Although enrichment analysis is performed using proteins with
concordant abundance changes between proteome and transcriptome, discrepancies with
previous studies should be addressed in further studies.
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Mass-spectrometry-based proteomics is a well-established tool in drug target discovery.
Large scale quantification data with protein expression levels and changes of protein
abundance makes proteomics particularly valuable in drug target discovery [72]. In this
study, we discovered a putative drug target protein in DEPs in all three drug-resistant MCF-
7 lines by using the human proteome atlas database containing the druggable target protein
candidates. Regardless of whether drug-specific DEPs or common DEPs, a considerable
number of druggable target proteins were identified. Among them, common DEPs had the
most abundant druggable target proteins. It is important that the large number of proteins
changed by all three of the chemoresistant cell lines are included as protein targets for
other drugs. These proteins can be presented as potentially druggable target proteins for
anti-cancer-drug resistance, further if it is a protein that is already being studied as a target
for other drugs and has great potential for novel drug development.

Finally, we analyzed the prognostic role of common DEPs in three drug-resistant
breast cancer cells using public clinical information (TCGA-BRCA and Metabric cohorts).
Interestingly, survival analysis in subpopulations of patients treated with chemotherapy
suggested that high PLXNB2 expression and low ACOX3 expression were associated with
a highly significant increase in risk.

PLXNB2 is the functional cell surface receptor of ANG, which was originally identified
as a tumor angiogenic factor [73,74]. PLXNB2 can also finetune the invasive growth process
under both physiological conditions and tumor growth and metastasis [75]. Moreover,
overexpression of PLXNB2 proteins is correlated with significantly reduced median sur-
vival rate in prostate cancer, glioma, and breast cancer [73]. As PLXNB2 responds to cell
proliferation and stress [73], it is expected to show worse drug resistance as it increases.
ACOX3, an acyl-CoA oxidase, is known to be involved in peroxisomal branched-chain fatty
acid β-oxidation. Although ACOX3 is highly expressed in human prostate cancer tissue
compared with paired normal tissues, very low levels of expression are shown in other
organs [76,77]. Interestingly, the prognostic role of ACOX3 in breast cancer as well as other
cancers is unclear. On the other hand, ACOX2, known to be related to ACOX3, is proposed
as a promising prognostic marker in hepatocellular carcinoma [78] and breast carcino-
mas [79]. This suggests that ACOX3 can be a potential prognostic marker in breast cancer
and drug resistance, although prognostic performance of ACOX3 should be confirmed
in future experiments. In our data, PLXNB2 and ACOX3 are up- and downregulated,
respectively, in all three drug-resistant cells (Table 2). Considering our results and previous
studies, PLXNB2 and ACOX3 are proposed as universal prognostic markers of breast cancer
associated with chemotherapy resistance.

Our analysis revealed novel properties for the chemical resistance of the three anti-
cancer drugs and possible drug targets that could overcome them. The major limitation
is that cells were not cotreated with three anti-cancer drugs. Furthermore, additional
evaluations for potential clinical applicability will necessitate experimental validation of
these results. Ongoing research to correlate combined treatment of the three anti-cancer
drugs and clinical responses will address this issue.

4. Materials and Methods
4.1. Cell Culture

The ER-positive human breast cancer cell line, MCF-7, was obtained from ATCC (Man-
assas, VA, USA). The tamoxifen (TAR)-, paclitaxel (PR)-, and doxorubicin (DR)-resistant,
ER-positive human breast cancer cell lines were kindly provided by Professor Woo Kyung
Moon (Department of Radiology, Seoul National University Hospital, Seoul, Korea). All
these cell lines were cultured in Dulbecco’s Modified Eagle’s Media (DMEM) (WelGENE,
Daegu, Korea) containing 10% fetal bovine serum, 100 units/mL penicillin, and 100 µg/mL
streptomycin. MCF-7/TAR cells were cultured in a medium supplemented with 3 µmol/L
TAR (Sigma, St. Louis, MO, USA). All cells were incubated at 37 ◦C in a humidified
atmosphere of 95% air/5% CO2.
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4.2. Cell Lysis and Protein Digestion

Cell pellets were lysed with lysis buffer (4% SDS and 2 mM TCEP in 0.1 M Tris
pH 8.5). Protein concentration was measured by a BCA-reducing compatible kit (Thermo
Fisher Scientific, Waltham, MA, USA). Protein digestion was performed using a filter-aided
sample preparation (FASP) procedure as described previously [80,81]. After 200 µg of
proteins was precipitated overnight at −20 ◦C using ice-cold acetone, protein digestion was
performed via the two-step FASP procedure as described with some modifications [80,81].
Protein pellets were dissolved in SDT buffer (4% SDS, 10 mM TCEP, and 50 mM CAA
in 0.1 M Tris pH 8.0) and loaded onto a 30 K Amicon filter (Millipore, Jaffrey, NH, USA).
The buffer exchanges were performed with UA solution (8 M urea in 0.1 M Tris pH 8.5)
via centrifugation at 14,000× g for 15 min. Following the exchange of buffer with 50 mM
TEAB, protein digestion was performed at 37 ◦C overnight using a trypsin/Lys-C mixture
(Promega, Madison, WI, USA) at a 100:1 protein-to-protease ratio. The digested peptides
were collected by centrifugation. After the filter units were washed with 40 mM ABC, the
second digestion was performed at 37 ◦C for 2 h using trypsin (enzyme-to-substrate ratio
(w/w) of 1:1000). The peptide concentration was measured by tryptophan assay [82].

4.3. TMT Labeling

Tandem mass tag (TMT) labeling was performed according to the manufacturer’s
protocol with some modifications. Briefly, TMT 10-plex (Thermo Fisher Scientific, Waltham,
MA, USA) or TMT 6-plex reagent (0.8 mg) was dissolved in 100% can. Each 40-µg sample
was spiked with 260 ng of peptides derived from ovalbumin for use as an internal standard,
ACN was added to the reagent to give a final concentration of 30% (v/v). After incubation
at room temperature for 1 h, the reaction was quenched with 5% hydroxylamine. The
TMT-labeled peptides were pooled at equal concentrations, and the mixtures were dried in
a speed vacuum.

4.4. High-pH Peptide Fractionation

The TMT-labeled tryptic peptides were fractionated offline using the reversed-phase
high-pH strategy as described previously [83]. Before high-pH fractionation, the pooled
peptides were desalted using Oasis solid-phase extraction (SPE) columns (Waters, Milford,
MA, USA), and the resulting peptides were subjected to Agilent 1290 bioinert HPLC
(Agilent, Santa Clara, CA, USA) equipped with an Agilent Zorbax Extend-C18 5 µm
4.6× 250 mm column. For peptide separation, mobile phase A was 15 mM ammonium
hydroxide in water (pH = 10), and mobile phase B was 15 mM ammonium hydroxide in
acetonitrile (pH = 10). Ammonium hydroxide was used as the only additive to the mobile
phases. The peptides were fractionated with a gradient from 5 to 35% ACN at a flow rate
of 0.2 mL/min. A total of 96 fractions were concatenated into 24 fractions and evaporated
in a speed vacuum.

4.5. Mass Spectrometry and Proteomic Data Analysis

The fractionated peptides were analyzed with a Quadrupole Orbitrap mass spectrom-
etry (Q-exactive plus, Thermo Fisher Scientific, Waltham, MA, USA) equipped with an
Ultimate 3000 RSLC system (Dionex, Sunnyvale, CA, USA) via a nanoelectrospray source.
The peptides were separated on the two-column system with a trap column (300 µm I.D. ×
5 mm, C18 3 µm, 100 Å) and an analytical column (75 µm diameter, 50 cm length) using
0.1% formic acid in water as solvent A and 0.1% formic acid in acetonitrile as solvent B.
The samples were separated using a 180 min gradient from 8 to 30% solvent B at a flow
rate of 300 nL/min. The survey MS scan was acquired in the range 350–1650 m/z with a
resolution of 70,000 at m/z 200. The Q-exactive was operated in the data-dependent mode
using a top 20 with an isolation width of 1.2 m/z. High-energy collisional dissociation
(HCD) scans were acquired with a normalized collision of 32. Maximum ion injection time
for the survey scan and MS/MS scan was 20 and 100 ms, respectively.
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Raw MS/MS files were processed with Proteome Discoverer ver 2.4 (Thermo Fisher
Scientific, Waltham, MA, USA) using the SEQUEST HT algorithms against the UP000005640
human reference proteome including isoform sequences from the uniport-KB database.
The database search parameters were as follows: full enzyme digest using trypsin with up
to two missed cleavages allowed; a precursor ion mass tolerance of 20 ppm; a fragment ion
mass tolerance of 0.02 Da; dynamic modifications of 15.995 Da for methionine oxidation
and 42.011 Da for protein N-term acetylation; and static modifications of 57.021 Da for
carbamidomethylation on cysteine residues and 229.153 Da for TMT on any N-terminus.
The co-isolation threshold was set to 50%. The reporter ion intensities for TMT-labels
were corrected for isotopic impurities as provided by the manufacturer. Peptide and
peptide spectrum matches were confirmed by Percolator based on a 1% false discovery
rate (FDR). Confidence criteria were set to a 1% FDR at the peptide and protein lists used
for downstream analysis. The mass spectrometry proteomics data have been deposited to
the ProteomeXchange Consortium via the PRIDE [84] partner repository with the dataset
identifier PXD030881.

4.6. Transcriptome Data Analysis

Processed transcriptome data and raw sequenced reads were downloaded from NCBI
GEO (GSE174152 and GSE39870) and SRA database (SRR6493747-SRR6493750, SRR6493760-
SRR6494762, SRR13398517-SRR13398519, SRR13398523-SRR13398525, SRR2017562, and
SRR2017563), respectively. Downloaded sequenced reads were converted from the SRA
file into FASTQ file format using fastq-dump (Version 2.8.0). To obtain high-quality reads
from raw data, sequenced reads were pre-processed by Trimmomatic (Version 0.39, http:
//www.usadellab.org/cms/?page=trimmomatic, accessed on 5 January 2022) to remove
low-quality sequences. The high-quality reads were aligned to the NCBI human reference
genome (GRCh38) using Hisat2 (Version 2.1.0, https://daehwankimlab.github.io/hisat2,
accessed on 5 January 2022) with the default parameters. The gene expression levels were
calculated to FPKM using the cufflinks pipeline (Version 2.2.1, http://cole-trapnell-lab.
github.io/cufflinks/, accessed on 5 January 2022). A differentially expressed gene was
calculated between parental MCF-7 and anti-cancer-drug-resistant MCF-7 by the Cuffdiff
program (Version 2.2.1) with default parameters. The publicly available transcriptome data
and statistics were described in Table S4.

4.7. Statistical Analysis

R (Version 4.1) was used for all statistical analyses. Pair-wise comparison of proteome
and publicly available microarray data between parental MCF-7 and anti-cancer-drug-
resistant cell lines were performed using the t-test function in the stats package in R. The
resulting p-values were processed to be adjusted p-values with the p.adjust function with
the Benjamini–Hochberg method.

4.8. Bioinformatics Analysis

The protein expression level was calculated from an abundance of mass spectrometry
with the following normalization formula:

Normalized Abundance intensity of protein groups = Abundance Intensity of
Protein Groups/Sum of Abundance Intensity of Samples ∗ 1,000,000

The principal component analysis was performed using the prcomp function with
global proteome expression profiles. Functional gene classification was performed with
EnrichR based on the Gene Ontology database. The list of druggable proteomes was
downloaded from ProteinAtlas (https://www.proteinatlas.org/humanproteome/tissue/
druggable, accessed on 5 January 2022). The Kaplan–Meier survival analysis was performed
on R with survival and survminer packages using TCGA-BRCA pan-cancer data and
Metabric clinical data, which were downloaded by cgdsr packages. The hazard ratio was
calculated by the univariant Cox proportional-hazards model on R with survival packages.

http://www.usadellab.org/cms/?page=trimmomatic
http://www.usadellab.org/cms/?page=trimmomatic
https://daehwankimlab.github.io/hisat2
http://cole-trapnell-lab.github.io/cufflinks/
http://cole-trapnell-lab.github.io/cufflinks/
https://www.proteinatlas.org/humanproteome/tissue/druggable
https://www.proteinatlas.org/humanproteome/tissue/druggable
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5. Conclusions

The comprehensive proteome and transcriptome analyses presented here revealed
new insights on chemoresistance for three drugs. Our quantitative proteomics approach
is a powerful method to target potentially valuable prognostic and therapeutic resistance
biomarkers, enabling system-wide analysis and discovery of meaningful DEPs, leading to a
better understanding of chemoresistance mechanisms. Along the way, our proteome study
in drug-resistant breast cancer cells has identified several intriguing proteins that might be
used as novel drug targets and prognostic biomarkers. Finally, our study highlights the
two proteins as potential prognostic markers of chemotherapy resistance in breast cancer.

Supplementary Materials: The following supporting information can be downloaded https://www.
mdpi.com/article/10.3390/molecules27061762/s1. Figure S1: Distribution of number of unique
peptides per protein identification in TMT 6-plex and TMT 10-plex experiments; Figure S2: Vio-
lin plots of CV (coefficient of variance) between biological replications in each experimental set;
Figure S3: Volcano plots of significantly altered proteins between parental MCF-7 and drug-resistant
cells in each TMT 6-plex experiments; Figure S4: Direct comparison analysis between three drugs
and combined analysis using TMT 6-plex and 10-plex data; Figure S5: Heatmap showing relative
expression levels between MCF-7 and drug-resistant cells of each experimental set with log2 fold
change; Figure S6: Overall survival plot with Kaplan–Meier model with highly significant genes
of Figure 6a under Metabric chemotherapy patient data; Figure S7: Overall survival plot with
Kaplan–Meier model with highly significant genes of Figure 6b under Metabric chemotherapy patient
data; Figure S8: Representative MS/MS spectrum of LQLEQQVATGPALDNK peptide in PLXNB2;
Figure S9: Representative MS/MS spectrum of SPGADLSLEK peptide in ACOX3; Figure S10: Ex-
pression patterns of PLXNB2 and ACOX3 in TMT 10-plex data; Table S1: Raw abundance from
proteome discoverer pipeline; Table S2: Normalized protein expression level of TMT 6-plex and TMT
10-plex dataset; Table S3: Result of significantly differentially expressed proteins; Table S4: Analysis
results of public RNA-seq data from GEO and SRA; Table S5: Result of gene ontology analysis from
positively correlated DEPs and DEGs of public transcriptome data; Table S6: Result of gene ontology
analysis from common and unique identified drug-resistant DEPs; Table S7: Identified potential drug
target proteins with relative expression levels; Table S8: Overall survival rate of resistant cell lines
commonly regulated genes with TCGA and Metabric.
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