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Abstract

Microwave remote sensing can provide long-term near-surface soil moisture data on

regional and global scales. Conducting standardized authenticity tests is critical to the effec-

tive use of observed data products in models, data assimilation, and various terminal sce-

narios. Global Land Data Assimilation System (GLDAS) soil moisture data were used as a

reference for comparative analysis, and triple collocation analysis was used to validate data

from four mainstream passive microwave remote sensing soil moisture products: Soil Mois-

ture and Ocean Salinity (SMOS), Soil Moisture Active and Passive (SMAP), Global Change

Observation Mission–Water using the Advanced Microwave Scanning Radiometer 2

(AMSR2) instrument, and Fengyun-3C (FY-3C). The effects of topography, land cover, and

meteorological factors on the accuracy of soil moisture observation data were determined.

The results show that SMAP had the best overall performance and AMSR2 the worst. Pas-

sive microwave detection technology can accurately capture soil moisture data in areas at

high altitude with uniform terrain, particularly if the underlying surface is soil, and in areas

with low average temperatures and little precipitation, such as the Qinghai–Tibet Plateau.

FY-3C performed in the middle of the group and was relatively optimal in northeast China

but showed poor data integrity. Variation in accuracy between products, together with other

factors identified in the study, provides a baseline reference for the improvement of the

retrieval algorithm, and the research results provide a quantitative basis for developing bet-

ter use of passive microwave soil moisture products.

1. Introduction

Water is an important resource on earth and a key component of the continuous soil–vegeta-

tion–atmosphere hydrologic cycle [1]. Soil moisture (SM) is a critical variable in the carbon

and water cycles that serves as an important index of surface water and the energy budget [2].

SM is the main source of water for plants [3]. Accurate SM data is necessary for science-based
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agricultural production [4] as it increases the value of research into the water cycle and energy

fluxes, increases the accuracy of climate and weather forecasting [5], and makes disaster warn-

ings more reliable [6].

The principal methods of SM data acquisition currently used are automated instrumental

observation and microwave remote sensing. Instrumental observation data are accurate, but

the spatial resolution of the data often does not meet current demands for data. Microwave

remote sensing of SM provides a wide range of surface information [7, 8] and it is very effi-

cient; it provides data over a wide area [9, 10] and is unaffected by weather conditions, in addi-

tion to providing long-term SM data [11, 12]. These benefits have ensured that it has rapidly

become a primary SM data source.

Widely used satellite-borne passive microwave remote sensing SM observation products

include the following: data observed by the microwave imaging radiometer with aperture syn-

thesis carried on the European Space Agency Soil Moisture and Ocean Salinity (SMOS) mis-

sion; data observed by the microwave radiometer carried on the U.S. NASA Soil Moisture

Active Passive (SMAP) mission; data observed by the advanced microwave scanning radiome-

ter 2 (AMSR2) carried on the joint America–Japan Global Change Observation Mission–

Water; and data observed by the microwave radiation imager (MWRI) carried on the Chinese

Fengyun-3C mission. These four products provide important data to support hydrometeorol-

ogy research and disaster prevention and mitigation [13, 14], but there is no consensus on the

applicability of these products in research on a regional scale, and this uncertainty reduces the

usefulness of the products.

A comprehensive assessment and evaluation of the performance of remote sensing SM

products can lead to improved quality and increase their value in research into climate, hydrol-

ogy and natural disasters. Different reference data (ground observation network data, data for

core validation sites, comparisons between satellite missions, and model simulations, among

others) have been used in numerous validation and evaluation studies [15–18]. The reference

data used in relevant studies offer both advantages and disadvantages: ground observation

data is real and accurate, but the spatial scale based on a single station is quite different from

the elliptical spatial grids of remote sensing products. The uneven distribution of ground

observation stations across different regions leads to large differences in the amounts of avail-

able data for different environmental conditions, which affects the utility of the regional repre-

sentation of assessment results. Assimilated data offers uniform grid distributions and

consistent time series, so the use of assimilated data as a baseline can offer a more accurate

comparison of remote sensing products from satellite observations.

Methods of validation and evaluation of soil moisture products can be divided into direct

evaluation based on multiple error coefficients and triple collocation analysis based on decom-

position error components. The results of the direct evaluation are intuitive and easy to under-

stand but their accuracy depends on the quality of the reference data. Triple collocation

analysis (TCA) is a method of estimating the random error variation of three collocated data-

sets of the same geophysical variable [19]. It does not require an available high-quality refer-

ence dataset and has therefore developed into an important evaluation tool in earth

observation. All metrics from TCA-based validation theoretically lie between the soil moisture

product under evaluation and the unknown truth [20], which allows for a more equitable eval-

uation of the accuracy and error characteristics of different soil moisture products [21, 22].

Studies of verification, the application of new theories, and the development of improved

methods of parameterization have all improved remote sensing retrieval algorithms used to

quantify SM [23]. However, many comprehensive remote sensing SM product evaluation

studies lacked any assessment of data accuracy for Asia, particularly China [17]. The geo-

graphic heterogeneity of China makes it a suitable region for a comprehensive comparison
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and assessment of SM products under different climatic and environmental conditions. The

objective of this study was to develop a method of comprehensive evaluation that used assimi-

lated datasets as baseline reference data to determine the authenticity of mainstream satellite-

borne passive microwave remote sensing soil moisture products for China. We identified the

effects of topography, land cover classification and meteorological factors on data authenticity.

The errors in each product were decomposed and analyzed using TCA. The results obtained

provide a reference for future improvement of remote sensing retrieval algorithms. This study

also provides a scientific basis for the development and application of remote sensing SM

products and provides data to support science-based agricultural production. Government

departments can benefit from our research through improved drought and flood monitoring

at a local scale, which enables better decision making. This research also offers technical sup-

port for research in meteorology and hydrology.

2. Materials and methods

2.1 Study area

China covers a land area of 9.6 million km2, spanning 52 degrees of latitude from north to

south and 63 degrees of longitude from east to west. China embraces tropical, subtropical and

temperate zones, and humid, sub-humid, semi-arid and arid regions in its vast land area with

a variety of regional climates. China’s terrain is high in the west and low in the east. The Qing-

hai–Tibet Plateau in the west of the country has an average elevation of more than 4000 meters

above sea level. The terrain of the country is complex and diverse; mountains, plateaus and

hills account for about two-thirds of the land area, and basins and plains account for about

one-third.

2.2 Soil moisture products

The passive microwave soil moisture products used in this study were from four satellites, and

the data were retrieved as daily data products from 2017-01-01 to 2019-12-31 (Table 1). SMOS

was the world’s first satellite mission to measure soil moisture content on the planet surface

and its soil moisture products are widely used [24]. Observation was by L-band (1.4 GHz)

detection with a microwave imaging radiometer (MIRAS); resolution was 27–55 km, and

induction depth was 3–5 cm. The SMOS-L3-SM product is gridded soil moisture data

Table 1. Overview of the four satellite soil moisture datasets being compared.

SMOS SMAP AMSR2 FY-3C

Satellite SMOS SMAP GCOM-W FY-3C

Sensor MIRAS radiometer AMSR2 MWRI

Time period Jun 2010–present Mar 2015–present Jul 2012–present May 2014–present

Band frequency 1.4 GHz 1.4 GHz 10.7 GHz 10.7 GHz

Spatial sampling 25 km EASE-2 36 km EASE-2 25 km 25 km EASE

Sensor resolution 27–55 km 43 km 24–42 km 50–75 km

Spatial coverage Global Global Global Global

Asquisition time (local time) ASC: 06:00 ASC: 18:00 ASC: 13:30 ASC: 22:00

DES: 18:00 DES: 06:00 DES: 01:30 DES: 10:00

Product version SMOS-L3 V3.0 SMAP-L3 V7 LPRM AMSR-2 L3 V001 FY-3C/MWRI V1.0.0

Unit m3/m3 m3/m3 % cm3/cm3

Note: All periods in the data are as of Jan 2020; DES is descending and ASC is ascending.

https://doi.org/10.1371/journal.pone.0266091.t001
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obtained after spatiotemporal recombination of L2 soil moisture data; resolution is 25 km and

the Equal-Area Scalable Earth Grid 2.0 (EASE-Grid 2.0) is used. The data version is V3.0, the

download website is www.catds.fr/, and the data is in netCDF format.

SMAP is the latest satellite that is dedicated to soil moisture detection, and its L-band soil

moisture products are widely used in climate and environmental monitoring. The passive

remote sensing L3 product has a resolution of 36 km, and the projection is EASE-Grid 2.0.

The data version is V7, the download website is https://nsidc.org/, and the data is in HDF

format.

AMSR-E/2 soil moisture retrieval products are widely used in various fields. The AMSR-2

L3 X-band (10.7 GHz) soil moisture product from the Land Parameter Retrieval Model

(LPRM) can avoid radio frequency interference (RFI). It has a resolution of 25 km. The data

version is V001, the download website is https://disc.gsfc.nasa.gov, and the data is in netCDF

format.

FY-3C is the third mission of the FY-3 series of second-generation polar orbiting meteoro-

logical satellite missions. The FY-3 series was independently developed by China. FY-3C

observation products are widely used in weather forecasting, climate change monitoring, and

in applications that support agriculture, transportation, shipping and other fields. Soil mois-

ture data were observed by dual polarized X-band (10.7 GHz) detectors. The National Satellite

Meteorological Center of China provides FY-3C/MWRI daily soil moisture products with a

resolution of 25 km. The projection is EASE-Grid. The data version is V1.0.0, the download

site is http://satellite.nsmc.org.cn/, and the data is in HDF format.

The problem of scale mismatch in remote sensing product verification is always difficult to

solve. In this study, we used the Global Land Data Assimilation System (GLDAS), a globally

available reference soil moisture assimilation dataset, to reduce test errors caused by scale dif-

ferences. GLDAS is the most widely used land surface data assimilation product, which is

ingested by satellite- and ground-based observational data products and generated with

advanced land surface modeling and data assimilation techniques [25]. GLDAS soil moisture

products are used in hydrology and in water cycle and climate change research at large water-

shed and global scales. We used the 3-hourly GLDAS-2.1 Noah-3.6 product, downloaded from

https://disc.gsfc.nasa.gov, with data in netCDF format. Soil moisture data for the 0–10 cm

layer was extracted from the product to be used as the reference dataset. Spatial resolution was

0.25˚×0.25˚. Auxiliary data used in data preprocessing included GLDAS-2.1 soil temperature

for the 0–10 cm layer and the snow depth dataset.

2.3 Other auxiliary data

Auxiliary environmental data for the study area were also collected for our comprehensive

comparison, analysis and evaluation of the four SM products. The auxiliary topographic data

included NASA’s Advanced Spaceborne Thermal Emission and Reflection Radiometer Global

Digital Elevation Model Version 3 (GDEM) 30 m resolution elevation datasets (https://doi.

org/10.5067/ASTER/AST14DEM.003). Auxiliary land cover classification data was obtained

from the Multi-Period Land Use Land Cover Remote Sensing Monitoring Dataset (CNLUCC)

for 2018 with a resolution of 1 km, downloaded from the Institute of Geographic Sciences and

Natural Resources Research, Chinese Academy of Sciences (https://www.resdc.cn/data.aspx?

DATAID=264). Auxiliary precipitation data was taken from the China Precipitation Daily

0.5˚×0.5˚ Grid Data (V2.0) of the China Meteorological Administration (http://data.cma.cn/).

The 0–10 cm soil temperature data in the GLDAS dataset was used as the surface temperature

(Ts) data.
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2.4 Methods

2.4.1 Data preprocessing. We attempted to process all data products uniformly to avoid

systematic errors affecting the evaluation. The FY-3C product does not contain data quality

control flags, so the data from all four satellites were not filtered due to data quality control

parameters. However, the dielectric properties of water and ice are significantly different [26],

and the capability of microwave sensing to detect soil moisture is limited for freezing water.

Therefore, frozen season data were eliminated according to soil temperature values and snow

depth values for the underlying surface during the transit time of satellite observation data col-

lection [27].

Data were preprocessed in the following stages.

1. The data units of SM products for the period 2017–2019 were uniformly converted to

volumetric water content (cm3/cm3). The SM parameters were re-projected into the GLDAS

grid; nearest-neighbor sampling was used for SMOS and FY-3C [20], and inverse distance

weighting was used for SMAP [28]. A satellite remote sensing observation datum has an asso-

ciated instantaneous observation time; temporal nearest neighbor matching between remote

sensing products and GLDAS data based on the transit time of each remote sensing satellite

was used in the authenticity test. Unmatched data and data from footprints with <5 data pair-

ings after matching were not considered in subsequent analysis. Data were screened with refer-

ence to GLDAS snow depth and soil temperature data for the observation periods of the

subject datasets, and data for snow depth>0.1 m or soil temperature <0˚C were removed.

The performance of each of the four soil moisture products was evaluated for each matched

dataset and the accuracy of the observation of soil moisture in China was determined for each

product.

2. GDEM data and CNLUCC data were resampled to the GLDAS grid, and the means,

ranges and standard deviations of elevation, modal number and information entropy of land

cover classification in each grid were calculated.

Information entropy is a measure of system uncertainty. The probability distribution of a

random variable X with n possible outcomes is P(X = xi) = pi for i = 1,2,. . .,n. Information

entropy H(X) is calculated by:

HðXÞ ¼ �
Xn

i¼1

pilogpi ð1Þ

Precipitation data were also resampled to the GLDAS grid, and the means, standard devia-

tions, maxima and medians of daily precipitation and the means, standard deviations, maxima,

minima and ranges of Ts data in each grid were calculated.

The effects of topography, landcover type, and meteorological conditions on the accuracy

of remote sensing SM products were determined.

3. The optimal product of the four remote sensing SM products and GLDAS data were tem-

porally and spatially matched with the other three products for TCA. The matched dataset was

at a daily time step on the GLDAS grid and error components for this dataset were calculated

and analyzed.

2.4.2 Performance index. 1. Authenticity test

Correlation analysis was used to evaluate the performance of different remote sensing soil

moisture products in China-wide observations. We compared the results of ascending orbit

observations, descending orbit observations and regional observations and analyzed the effects

of environmental factors on the accuracy of each product. Four statistical measures, widely

used to test the authenticity of SM products, were used to evaluate the performance of each

product: the Pearson correlation coefficient (r; Eq (2)) to indicate the accuracy of satellite-
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based observations to match variation in SM in GLDAS datasets; relative bias (Biasr; Eq (3)) to

measure the extent to which the retrieval parameters of spaceborne sensors were dry or wet

relative to GLDAS data; root mean square error (RMSE; Eq (4)) to indicate the deviation

between remote sensing soil moisture data and GLDAS data; and unbiased root mean square

error (ubRMSE; Eq (5)) to remove the effect of random error on RMSE and better measure

absolute deviation. The four indicators were calculated by:

r ¼
covðRSSM;ASSMÞ

sRSSMsASSM
ð2Þ

Biasr ¼
1

m

Xm

i¼1

ðRSSMi � ASSMiÞ

ASSMi
ð3Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

m

Xm

i¼1

ðRSSMi � ASSMiÞ
2

s

ð4Þ

ubRMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

RMSE2 �
1

m

Xm

i¼1

RSSMi � ASSMið Þ

 !2
v
u
u
t ð5Þ

where RSSM is SM of each remote sensing product, ASSM is SM of the GLDAS product, cov()

is covariance, and σ is standard deviation.

2. Triple collocation analysis

The following three parameters were used to indicate the results of TCA. Sensitivity (Eq

(6)) indicates the sensitivity of the product to the real signal changes in soil moisture. Standard

error (Stderr; Eq (8)) indicates standard errors for each of the measurement systems [29]; sig-

nal-to-noise ratio in decibels (Snr_db; Eq (10)) indicates the ratio of signal to noise in logarith-

mic form.

Sensitivitya ¼
covða; bÞ � covða; cÞ

covðb; cÞ
ð6Þ

Errvara ¼ covða; aÞ � Sensitivitya ð7Þ

If Errvara � 0; then Stderra ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Errvara

p
ð8Þ

Snra ¼
covða; aÞ � covðb; cÞ
covða; bÞ � covða; cÞ

� 1 ð9Þ

If Snra � 0; then Snr dba ¼ � 10� logðSnraÞ ð10Þ

where a, b and c are three SM products matched in daily time scale and GLDAS grid step, and

cov() is covariance.

Of the preceding parameters, greater r and Sensitivity and lesser Biasr, RMSE, ubRMSE and

Stderr indicate better product performance. A value of zero for Snr_db indicates that signal

variance is equal to noise variance; +3(+6) dB indicates that signal variance is twice (four

times) noise variance; −3(−6) dB indicates that signal variance is half (one fourth) noise vari-

ance, and so forth [30].
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3. Results

3.1 Comparative analysis of authenticity of remote sensing soil moisture

data

The indicators r, Biasr, RMSE, and ubRMSE were computed between each remotely-sensed

SM dataset (after data screening) and the GLDAS data (Table 2). All available observations

within the 2017–2019 period were included. Thus the period used to compute the scores for

each product was consistent across products.

Overall analysis shows that during the three years 2017–2019, SMAP data were significantly

more accurate for China than data from the other three products, as indicated by the optimal

values of r, Biasr (in absolute value), RMSE and ubRMSE. The accuracy of SMOS was similar

to that of FY-3C, and AMSR2 was the least accurate. The r value for FY-3C indicates that the

ascent data was more accurate than descent data; for other products, the descent data was

more accurate than the ascent data, and AMSR2 showed the greatest difference between ascent

and descent data; Biasr indicates that ascent data performed better for all products (the abso-

lute value of Biasr in ASC was smaller), and AMSR2 again showed the greatest difference;

RMSE and ubRMSE were better for ascent data than descent data in SMOS and AMSR2, and

for descent data in SMAP and FY-3C. We note that in SMOS the difference between ascent

and descent for ubRMSE was minimal. Except for AMSR2, the satellite products were dry

when compared with GLDAS data.

Quantities of data observed by each satellite over China in the period 2017–2019 were quite

different due to the different satellite orbits. After exclusion using snow depth and soil temper-

ature threshold values, the quantity of data for each product was, ranked from greatest to least,

AMSR2, FY-3C, SMOS and SMAP. The quantity of data from AMSR2 was roughly equal to

the total quantity of data from the other three products. The ascent data quantity was greater

than the descent data quantity for both SMOS and AMSR2, and the converse was true for

SMAP and FY-3C.

SMAP accurately detected surface soil moisture content in most regions of China; although

it had a smaller quantity of data than the other three products, the data were evenly distributed

(Fig 1). In general, the four products produced accurate soil moisture data for the Qinghai–

Tibet Plateau (QTP) and parts of north and northeast China. Areas for which there was a low

Table 2. Indicator values for comparison of remote sensing data with GLDAS data.

r Data quantity (million) Biasr (%) RMSE (cm3/cm3) ubRMSE (cm3/cm3)

SMOS ASC 0.5 2.94 −44.69 0.133 0.096

DES 0.52 2.59 −45.25 0.137 0.096

all 0.51 5.53 −44.95 0.135 0.096

SMAP ASC 0.73 1.18 −13.47 0.09 0.085

DES 0.77 1.85 −15.45 0.078 0.071

all 0.76 3.03 −14.68 0.083 0.077

AMSR2 ASC 0.38 9.35 41.18 0.235 0.222

DES 0.5 8.14 60.8 0.276 0.235
all 0.44 17.5 50.31 0.255 0.231

FY-3C ASC 0.51 4.28 −25.51 0.125 0.11

DES 0.5 5.09 −27.39 0.123 0.106

all 0.51 9.37 −26.53 0.124 0.108

Note: Data in bold are the optimal parameter values overall and for each orbit; data in italic are the least optimal; DES is descending and ASC is ascending.

https://doi.org/10.1371/journal.pone.0266091.t002
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correlation between GLDAS and SMOS or SMAP were in parts of northeast and central

China, north of QTP. Correlations between GLDAS and AMSR2 were similarly distributed,

but there were more areas of low correlation. FY-3C performed better than the other three

Fig 1. Correlation coefficients and data quantity distributions over China for passive microwave soil moisture products; grids

with less than 5 data points are blank.

https://doi.org/10.1371/journal.pone.0266091.g001
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products in terms of correlation in northeast China, and areas for which it showed low correla-

tion were in southeast coastal China and northwest and southwest China. The quantity of data

observed by AMSR2 was much greater than the quantities observed by the other three prod-

ucts in all regions. SMOS produced more data for parts of northeast China and in the north of

QTP but it was more accurate for the former area than the latter. In general, more SMOS data

were observed for northern China than southern China, which is the converse of AMSR2 and

FY-3C, which produced greater quantities of data for the southeast coastal areas. However,

most of the regions for which there were more data did not show good correlations with

GLDAS data.

Areas for which SMOS had high r values were in southern QTP and areas with low r values

(negative r) were scattered, with most being in northeast China. Areas for which SMAP had

high r values were in southeast and central China and areas with low r values were scattered,

with the lowest being in central China. Areas for which AMSR2 had high r values were concen-

trated in southwest QTP and areas with low r values were in central China. Areas for which

FY-3C had high r values were scattered across QTP and areas with low r values were scattered

in western China, with the lowest r value being for an area near the western border. The maxi-

mum r values for SMOS, SMAP and FY-3C were all>0.9, and some grids in southeast region

reached an r value of 0.99 for SMAP.

The integrity of FY-3C data was less than that of other products. There were many areas

with insufficient data (<5 data points in 3 years), and there was no data for some areas in cen-

tral and northern QTP. In the FY-3C product, soil water parameters for many grid squares

were 0 (these areas are shown in Fig 1 as blank on the left-hand r-value graph and by color on

the right-hand data quantity graph), such as most areas in Qaidam Basin and the sparse grid

areas distributed over QTP. Some grid areas had about 1000 remote sensing soil water parame-

ters which were all 0. All of these were excluded from the calculation of the correlation

coefficient.

There were more errors in AMSR2 data than in other products. In nearly one-third of the

grid areas, remote sensing soil moisture data was negatively correlated with GLDAS soil mois-

ture data, and the negative correlation coefficient of ascent data was greater than that of

descent data. There were only a few data points with negative correlations in other satellite

remote sensing products.

3.2 Analysis of the effects of environmental factors

China is a vast country that spans many latitudes and longitudes, and environmental factors

are heterogeneous in all regions of the country. In this section, we analyze in more depth the

effects of topography, landcover type, and meteorological factors on the four satellite-based

SM data products. The results of the analysis described in this section are significant and were

obtained by multifactor analysis.

3.2.1 Influence of topography. The mean value of DEM elevation greatly affects the accu-

racy of microwave remote sensing SM products. The r values of the four products were greatest

when mean DEM elevation was high (Fig 2). As mean DEM elevation increased, r values for

SMOS, SMAP and AMSR2 increased and the r value of FY-3C initially decreased and then

increased. These results indicated that the ability of the products to capture the trend of surface

soil moisture increased for high elevations. The data quantities of SMOS, AMSR2 and FY-3C

decreased as elevation increased, and the data quantity of SMAP showed a slight increasing

trend.

An increase in the range of DEM elevation led to an increase in bias, as indicated by Biasr

(in absolute value) and RMSE, in all four products. Except for AMSR2, ubRMSE had a
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decreasing trend (Fig 3). As the range of DEM elevation increased, the observed dryness of

SMOS, SMAP and FY-3C, as indicated by Biasr, increased and the observed wetness of

AMSR2 increased. RMSE increased for all four products; however, the trends for the increase

were weak for SMAP and FY-3C. The increase in ubRMSE was significant for AMSR2, and

ubRMSE showed a weak decreasing trend for SMOS, SMAP and FY-3C. The opposed trends

of RMSE and ubRMSE for SMOS, SMAP and FY-3C indicated that the absolute deviation had

a weak decreasing trend as the range of DEM elevation increased after removing the random

error for them. The reason this phenomenon was not found in the AMSR2 product may be

that there were large observation errors in this product, as indicated by Biasr for high elevation

exceeding 100%.

3.2.2 Influence of land cover. We used the 1 km resolution land cover classification data

to reassess the effects of different land cover types and variation in land cover on the perfor-

mance of the four remote sensing soil moisture products. The land cover types involved in the

analysis are based on post-screening data and non-water surface land covers.

The accuracy of passively observed microwave soil moisture data is affected by differences

in land cover. Different products performed differently under the same land cover (Fig 4). For

cropland, forest, grassland and urban land, SMAP was more stable and significantly more

accurate than either SMOS or AMSR2. For cropland, all four products were more accurate for

dry field than for paddy field. For barren land (rock/sand/clay), the accuracy of SM data for

the four products observed over different land covers was ordered, from low to high accuracy,

sand, saline alkali land, Gobi, swampland and barren land. Accuracy varied for rock and gravel

Fig 2. Boxplots of mean DEM elevation for r and data quantity.

https://doi.org/10.1371/journal.pone.0266091.g002
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and other unused land (e.g., alpine desert and tundra). For grassland, the accuracy of AMSR2

SM data increased as grass coverage decreased, but the accuracy of the other three products

did not change.

The greatest r value for SMOS was for rock and gravel and the least was for dense forest; the

greatest r value for SMAP was for dense forest and the least value was for dwarf scrub and

shrub; the greatest r value for AMSR2 was for low coverage grassland and the least value was

for dense forest; both the greatest and least r values for FY-3C were found in low coverage

grassland. We note that the best overall performance of the four surface types of products was

for bare land, and the worst overall performance was for woodland (in SMOS, other forests,

and in AMSR2, dwarf scrub and shrubs) and sandy land (in SMAP and FY-3C).

Fig 3. Boxplots of DEM elevation ranges for Biasr, RMSE and ubRMSE.

https://doi.org/10.1371/journal.pone.0266091.g003
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Biasr differed between products for different types of land cover. In general, the results were

consistent with the overall analysis that AMSR2 was wetter and the other products drier than

the GLDAS data (Fig 5). In several land cover types, Biasr was consistent in direction; for

example, for SM data observed on Gobi, all products were drier, and for data observed on

swampland, all products were wetter. The drier trend of SMOS was greater for dense forest,

dwarf scrub and shrub, sparse forest and sandy land. AMSR2 showed a much wetter trend for

paddy field, dense forest and swampland. FY-3C showed a much drier trend for sand and

Gobi. Biasr of SMAP was overall small. Land cover types with the largest variation were

medium coverage grassland, Gobi, and rock and gravel land. We note that Biasr for SMAP and

FY-3C in paddy field, dense forest, other forests and for FY-3C in high coverage grassland was

minimal.

Fig 4. Boxplots of coefficients of correlation between SM data accuracy and land cover type for each product; abbreviations of

landcover types are: PF paddy field, DL dry field, DF dense forest, DSS dwarf scrub and shrub, SF sparse forest, OF other forests,

HCG high coverage grassland, MCG medium coverage grassland, LCG low coverage grassland, UL urban land, SA sand, GO Gobi,

SAL saline alkali land, SL swampland, BL barren land, RG rock and gravel, OUL other unused land.

https://doi.org/10.1371/journal.pone.0266091.g004

PLOS ONE Evalution of SMOS, SMAP, AMSR2 and FY-3C Soil Moisture Products over China

PLOS ONE | https://doi.org/10.1371/journal.pone.0266091 April 7, 2022 12 / 23

https://doi.org/10.1371/journal.pone.0266091.g004
https://doi.org/10.1371/journal.pone.0266091


The problem of authenticity being affected by surface heterogeneity has become a major

research issue because of the low resolution of passive microwave remote sensing data [31].

Information entropy indicates the extent of uncertainty or randomness in a variable, and it

was used in our analysis of the effects of surface heterogeneity on SM data accuracy for the

four products. The results show that overall the observation data of microwave remote sensing

products is more accurate when land surface information entropy increases; that is, increased

heterogeneity of land surface type indicates greater observation accuracy but increased fluctua-

tion in error coefficients (Fig 6). AMSR2 was the most typical. As land cover heterogeneity

increased, the r value of AMSR2 increased and Biasr and ubRMSE decreased. As information

entropy increased, the r value of SMAP varied slightly, Biasr indicated a change from wetter to

drier, and ubRMSE tended to decrease. For both SMOS and FY-3C, observed SM increased as

information entropy increased; that is, r increased and ubRMSE decreased, but the dryness

indicated by Biasr increased.

Fig 5. Histograms of Biasr for different landcover types; the abbreviations are the same as for Fig 4.

https://doi.org/10.1371/journal.pone.0266091.g005
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3.2.3 Influence of meteorology. Meteorological parameters are environmental factors

that affect remote sensing SM observation [32]. We used Ts for the 0–10 cm soil layer and

daily precipitation data to determine the effects of meteorological factors on SM data for each

product. The meteorological parameters used in the analysis were calculated using all meteoro-

logical data for each grid pixel from 2017 to 2019 and were then used as the reference values

for meteorological conditions.

The r values of SM of SMOS, AMSR2 and FY-3C all decreased as mean temperature

increased; the accuracy of SMAP was unchanged. However, the r values of all products

decreased as maximum temperature increased, and ubRMSE for all products except AMSR2

did not change significantly as the temperature indicators changed (Fig 7). When the mean

temperature of the grid was low, the r value increased for all products. When the mean temper-

ature of the grid was high (19.19–29.72˚C), only SMAP gave a reliable value, but when the

maximum temperature of the grid reached 34.81–44.9˚C, the r value reached a minimum for

Fig 6. Boxplots of land cover information entropy (H) for r, Biasr and ubRMSE.

https://doi.org/10.1371/journal.pone.0266091.g006
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all products. The absolute deviation (ubRMSE) of other products did not fluctuate significantly

with temperature factors when compared with AMSR2. The ubRMSE of AMSR2 increased sig-

nificantly as mean temperature increased but decreased significantly as the standard deviation

of temperature increased, which indicated that the observation error of AMSR2 increased at

Fig 7. Boxplots of temperature condition for r and ubRMSE.

https://doi.org/10.1371/journal.pone.0266091.g007
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higher temperatures but that the observation accuracy of AMSR2 increased as variation in

temperature increased.

The r values of SMOS and SMAP were only slightly affected by precipitation. The r value of

AMSR2 initially decreased and then increased, and ubRMSE gradually increased, as precipita-

tion increased. The observation accuracy of FY-3C decreased as precipitation increased

(Fig 8).

Areas with large coefficients of determination were generally regions showing low mean

temperatures (−1.86–8.67˚C), maximum temperatures�34.81˚C, and little precipitation

(0.03–1.67 mm).

3.3 Triple collocation analysis

Soil surface moisture is a most challenging land surface parameter to observe accurately in

remote sensing quantitative retrieval [33]. TCA can overcome the difficulty of obtaining stan-

dard soil moisture data at a regional scale with high temporal and spatial resolution in evalua-

tion studies. The preceding analysis showed that the performance of the SMAP SM product in

China was optimal among the four remote sensing products. We therefore engaged in TCA of

combinations SMOS-GLDAS-SMAP, AMSR2-GLDAS-SMAP and FY-3C-GLDAS-SMAP.

For the grids in which all matched products were positively correlated, the performance was

analyzed by error component.

The results show that SMOS and AMSR2 in most areas of the Tibetan Plateau, FY-3C in

some areas of the Tibetan Plateau, and SMOS and FY-3C in some areas of northeast China

showed high Sensitivity. Overall, Sensitivity was high for FY-3C, and the highest value

appeared in northeast China (Fig 9). SMOS, AMSR2 and FY-3C all showed high values of

Stderr in parts of southeast and northeast China and mostly low values in western and

Fig 8. Boxplots of precipitation condition for r and ubRMSE.

https://doi.org/10.1371/journal.pone.0266091.g008
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northern China. AMSR2 had a high error level. The signals of surface soil moisture detected

by remote sensing contain noise due to many factors. Noise in SMOS and FY-3C was weak in

most areas of western, northern and northeastern China and noise in AMSR2 was weak in the

Qinghai–Tibet Plateau and the northwest border region. However, noise had a great effect on

soil moisture in the southeastern region, especially coastal areas. Noise from the AMSR2 signal

was relatively high in the three products. The reliability of the detection results for the three

products was low in the following areas, as shown in the blank areas for SMOS in the north-

west of the Qinghai–Tibet Plateau, AMSR2 in the west, central and south, and northeast of

China, and FY-3C in the west, southeast and northeast parts of China in the TCA results.

4. Discussion

4.1 Causes of errors in authenticity testing

The validation and assessment of passive microwave soil moisture products are important and

challenging tasks. The differences in sensor performance, sensing depths, spatial resolutions,

retrieval algorithms and inputs, amongst others, contribute to the difficulties of comparing soil

moisture products [2]. In validating four mainstream passive microwave remote sensing soil

moisture products, we found that the factors that generate uncertainty were: (1) differences in

spatial resolution between different products [34]; (2) differences in observation frequency

and differences in detection technology between satellite-borne sensors [35]; (3) differences in

input data and soil moisture data retrieval algorithms between products [23]; and (4) the

representation of GLDAS soil water parameters [36].

Difference in spatial scales is one of the key issues in determining the authenticity of remote

sensing data products [37]. An accurate assessment of a product requires the use of realistic

data processing methods. We used the GLDAS dataset to avoid the problems with the

Fig 9. Distribution of parameters across China for SMOS, AMSR2 and FY-3C soil moisture products given by triple collocation

analysis; results are only shown for grids which all three datasets were positively correlated.

https://doi.org/10.1371/journal.pone.0266091.g009
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representation of ground observations that are found in conventional verification methods

and we matched data according to the transit times of satellites to avoid errors due to differ-

ences in times of observation [28]. The use of TCA reduced the effects of differences in scale

on the evaluation [38]. The spatial scale mismatch between different soil moisture products

was particularly acute in the lower spatial resolution of SMAP (36 km), which we resampled

using inverse distance weighting [39]. Comparison with other products showed that the

change in scale did not have a significant impact on product performance.

The characteristics of each satellite-borne sensor, such as its detection frequency, must be

carefully examined in a comprehensive comparison of each product. It is generally accepted

that L-band is best for soil moisture detection because it is more sensitive to SM than other

bands and more easily penetrates vegetation [37]. It is also less sensitive to atmospheric

changes, such as heavy rain, than the high-frequency and short-wavelength C- and X-bands.

L-band penetration depth (5 cm) covers approximately half of the modeled depth of GLDAS

(0–10 cm), but it is greater than X-band penetration depth, and as SM increases the microwave

penetration depth decreases [40]. These characteristics suggest that L-band products (SMOS

and SMAP) should perform better than X-band products (AMSR2 and FY-3C), but perfor-

mance differences were by no means entirely due to differences in sensor frequencies.

Different observational techniques also result in differences in observation. For example,

although both SMAP and SMOS use L-band to generate soil moisture data, the SMAP instru-

ment is a real aperture radiometer whereas SMOS uses a synthetic aperture radiometer; thus

SMOS observation produces more internal noise [38]. The relationship between TB and inci-

dence angles is used in the data retrieval algorithm of SMOS to decrease internal noise, but

data retrieval is also disrupted by RFI, the extent of which is unknown before launch. In con-

trast, SMAP provides observation data for a particular location at a fixed incidence angle,

which likely contributes to the decreased noise in the retrieved data, as confirmed in our

analysis.

It is important to determine how different factors affect SM products in order to improve

the quality of retrieved data. Knowing how each factor influences error can help to explain its

contribution to noise. If a factor is strongly correlated with error(s) in the input factors of the

retrieval algorithm, the model related to it should be improved; if the factor is not related to an

input factor of the retrieval algorithm, it may improve the accuracy of the product if the factor

is incorporated in the retrieval algorithm [39]. For example, the meteorological element Ts is

an important input parameter of the SM retrieval algorithm, and precipitation directly changes

soil moisture [40]. The accuracy of realtime determination of a satellite soil moisture product

will be improved if meteorological factors are better incorporated into the retrieval process

[32]. We found that the accuracy of SM data retrieved by AMSR2 clearly showed the greatest

decreasing trend for mean temperature (Fig 7). The parameter Ts was calculated in the

AMSR2 retrieval algorithm based on the empirical relationship between Ts and the vertical lin-

ear (V) polarization of TB [41]; improving the calculation of Ts would increase SM data accu-

racy for AMSR2.

The authenticity of SM data provided by the four products was determined through data

analysis and comparison to reference data. The analysis provided quantitative information

about data quality by estimating systematic and random errors. In this process, the reference

data are presumed to closely represent truth (i.e., they are considered to be accurate) [42].

However, due to the coarse resolution of microwave remote sensing products, it is almost

impossible to obtain high quality reference data covering a large variety of climatic, topo-

graphic, and land cover conditions [43]. The use of GLDAS data avoids the systematic errors

associated with the use of a single point observation as representative of an entire area, and

GLDAS data can therefore be used as reference data for remote sensing soil moisture products
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over wide areas. Although GLDAS parameters do not present the true level of surface soil

moisture, they are still considered to be reference data for remote sensing soil moisture prod-

ucts in relevant studies [43–45]. Moreover, TCA, as demonstrated in this study, can overcome

the problem of lack of accurate reference data and thus provide more rigor to the study.

4.2 Selection of optimal product and impact factors for China

There was both consistency and difference in performance of the different products in retriev-

ing data for China. The high correlations and low error levels in the evaluation parameters

found between each product and GLDAS data and the ability of each product to accurately

measure surface soil moisture as indicated by the TCA error components together indicate

that satellite-borne passive microwave detection can accurately observe surface soil moisture.

The results shown in Fig 1 and Table 2 indicate that the different products perform differ-

ently in observation across China, and that their accuracy and the quantity of data they provide

differs according to orbit and region. Analysis of a variety of error parameters and other fac-

tors, including topography, land cover classification, and meteorological factors, showed that

they all affect SM data accuracy, but that they differ in the extent of their effects.

The deviation from observation values represented by Biasr is affected by many factors

besides representation errors caused by scale mismatch, errors inherent in the retrieval algo-

rithm, and error amplification [35, 46–48]. These other factors include different sensing depths

(and thus differences in the quantity of observed data), the use of auxiliary variables from

models (e.g., soil temperature), uncertainty in the reference data, the scaling and conversion of

units (mainly for GLDAS), and spatial heterogeneity. In addition, error determination should

consider the own value. If the soil moisture parameter in a pixel has a high value, a relatively

high observation error can be tolerated. However, if the soil moisture parameter has a low

value, even a very low observation error can have a great effect on the estimation of the error.

We used the relative value of the observation bias as an error evaluation parameter, and this

value can be used as an indicator of the dryness or wetness (i.e., the degree of SM) of the obser-

vation results and thus the degree of deviation from truth. All products except AMSR2 erred

on the side of dryness for China, and the bias degree from high to low was ordered as AMSR2,

SMOS, FY-3C and SMAP (Table 2). All products were drier in Gobi and wetter in swampland,

and the microwave detection of soil moisture deviates from truth particularly in dense forest,

sand and Gobi (Fig 5).

The SM data provided by SMAP using 1.4 GHz band detection were overall more accurate

for China than the data from other products. This finding is consistent with other studies [49,

50] and it is likely due to the greater capability of the sensor and the better RFI filtering algo-

rithm [17]. SMAP SM data were slightly less well correlated for sand and Gobi (Figs 4 and 5),

but their accuracy was little affected by environmental factors, as Ma et al. [51] also found.

The soil moisture product of FY-3C, independently developed in China, generally per-

formed in the middle of the four products, but its overall quality was reduced by poor data

quality in some regions and by some grids showing negative correlations. Its poor observation

accuracy in Gobi and sand is likely due to the large systematic error in observation. The accu-

racy of FY-3C was easily affected by precipitation conditions. Its performance in capturing SM

in northeast China was relatively good, but it also showed high variability in observation.

Of the many factors considered, vegetation cover and surface roughness greatly affect the

accuracy of remote sensing soil moisture observation [23, 52]. The land use classification that

provided the most accurate data was barren land (Figs 4 and 5), which is consistent with other

research [53]. The accuracy of SM data showed the same basic change trend for all four prod-

ucts with changes in secondary land cover types of cropland and barren land (rock/sand/clay).
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The highest correlations between AMSR2 and FY-3C and the reference data were found for

grassland, and the lowest correlations of SMOS, SMAP and AMSR2 were found for forest. The

landcover types that produced the worst overall accuracy were forest and sand. Other studies

have confirmed that the limited range of soil moisture in deserts and forested areas contributes

to higher errors for these areas [50].

The distribution of high values of Snr_db for the three products almost matches the distri-

bution of the r value. Areas of high Sensitivity for SMOS and AMSR2 overlapped with areas of

high r values; areas of high Sensitivity for FY-3C overlapped with areas of high r values in

northeast China and partially overlapped with them in the Qinghai–Tibet Plateau, although

the areas of relatively high r values in southern China were not matched in the Sensitivity dis-

tribution. The high Sensitivity areas of SMOS and AMSR2 were similar in distribution to areas

of high values of Snr_db but opposite to the distributions of Stderr. We note that FY-3C shows

areas of high values of Sensitivity, Stderr and Snr_db in northeast China.

When we combined the above results to analyze product performance, we found that the

best performance in terms of SM data accuracy from passive microwave remote sensing was

obtained when the terrain was higher in elevation and the surface was uniform, with soil

underlying the surface, a lower mean temperature and less precipitation. The best performance

was produced when the upper vegetation layer was simple and the moisture content was low.

The performance of all products was good for the QTP region because the region has charac-

teristics in common with regions that show high correlations for multiple factors.

5. Conclusions

In this study, the assimilated GLDAS dataset was used as baseline data for an evaluation and

comparison across China of four mainstream passive microwave SM data products (SMOS,

SMAP, AMSR2 and FY-3C). The comparison embraced a range of different topographies,

land covers and meteorological conditions. The indicators used for assessment of the products

included the Pearson correlation coefficient (r), relative bias (Biasr), root mean square error

(RMSE), unbiased root mean square error (ubRMSE); Sensitivity, standard error (Stderr), and

signal-to-noise ratio in decibels (Snr_db) of triple collocation analysis provided metrics. All

data was processed using established methods, and the results we obtained were realistic and

credible. They, therefore, have value as reference data for other studies. Several conclusions

were drawn from the research, and the most important results are presented in the following

paragraphs.

SMAP soil moisture products produced more accurate data for China than other products

and produced accurate SM data for most regions of China. Observational accuracy varied less

than for other products due to environmental factors. SMAP performed only slightly worse for

land cover types sand and Gobi and maximum temperatures in the range 34.81–44.9˚C.

Passive microwave soil moisture detection technology performs better in terms of data

accuracy when the terrain is at a higher elevation and the surface is uniform, the underlying

surface is soil, the mean temperature is lower and there is less precipitation. These criteria are

satisfied for the Qinghai–Tibet Plateau, but across most of China, most soil moisture parame-

ters are underestimated.

Environmental factors can affect the performance of microwave remote sensing soil mois-

ture products, especially AMSR2. Subsequent improvement of its retrieval algorithm should

include optimization by combining topography, land cover, and meteorological factors, and

more localized improvements can be made for western, southeast and northeast China.

FY-3C is China’s second-generation polar-orbiting meteorological satellite. It performed

well in our evaluation, with overall accuracy similar to that of SMOS but less than that of
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SMAP. It provides accurate SM data for the Qinghai–Tibet Plateau, central China, and particu-

larly for northeast China, where its SM data is more accurate than other products; however,

the SM data it provides are of low integrity and quality for some regions.
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