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Succession of oral microbiota 
community as a tool to estimate 
postmortem interval
Kaikai Dong1, Ye Xin1, Fangqi Cao1,2, Zhiwei Huang3, Jing Sun4, Min Peng4, Wenbin Liu2 & 
Ping Shi1,4

The establishment of postmortem interval is one of the most important aspects of forensic expertise. 
Microbes may provide a novel way to estimate the postmortem intervals in order to avoid many of 
these limitations. The oral cavity harbors one of the most diverse microbiomes that play a key role in 
the decomposition of corpses. In this study, the oral bacterial community showed obvious changes 
in relative abundance during the process of mice decomposition. Meanwhile, at different taxonomic 
levels, specific bacteria were found to be significantly correlated with the postmortem interval. Linear 
regression models between relative abundance and the postmortem interval were constructed. Among 
these species, Gamma-proteobacteria and Proteus were the best ones that can be used to infer the 
postmortem interval, especially late postmortem interval. Therefore, we suggest that succession of oral 
microbial community can be developed as a forensic tool for estimating the postmortem interval.

Death is defined as the cessation of physiological processes that maintain cell integrity and function. Almost after 
death, the body begins to undergo an irreversible, ineluctable and progressive sequence of physical and chemical 
changes1. Understanding the expected autopsy changes is critical to the correct interpretation of the gross and 
micropathology of autopsy. In addition, the postmortem interval (PMI) estimate, which is the time after death, 
depends on the understanding of these postmortem processes to a large extent. It is critical to accurately estimate 
the PMI in forensic and law enforcement because it contributes to the identification of victims and suspects, the 
ascertainment or elimination of suspect witnesses, the notification of death certificates, and the distribution of 
assets listed in wills2. However, the PMI inference method is difficult to be established because PMI is susceptible 
to many external and environmental factors, such as temperature, humidity, oxygen tension, insects and scaven-
ger activity3.

Traditional methods of estimating PMI include the following: (1) Gross Changes. During the decomposi-
tion process, the body undergoes some predictable sequence of changes, including temporary muscle stiffness, 
changes in color, expansion of free gas, generation of scavenging fluid, slippage of the epidermis, destruction of 
soft tissue, and eventual destruction of the bone4–6. (2) Temperature Changes. Currently the most promising esti-
mates are based on recording multiple rectal temperatures or measuring temperatures from the eyes or ears7–9. (3) 
Entomology. Forensic entomology is a discipline that applies entomological and other related arthropod evidence 
to solve relevant criminal and civil problems in judicial practice. The insects used to research are those reside on 
a corpse especially. PMI inference is one of the most primary and important applications of forensic entomology. 
PMI was mainly inferred from insect ontogeny, insect community succession and insect metabolites and gene 
expression10–12. The new PMI inference methods mainly include postmortem chemistry, molecular methods, 
microbial assay and so on. The integrity and content of DNA, RNA and protein decreases in a time-dependent 
manner. However, these reductions differ between tissue and environmental conditions, such as temperature and 
humidity13–15. The emergence of microgenomics has significantly improved microbial detection. Therefore, the 
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value of microbes in forensic expertise has attracted more attention. For example, Metcalf et al.16 established a 
microbial clock providing an accurate estimate of PMI in a mouse model system. Johnson et al.17 have successfully 
demonstrated that skin microbiota is a promising tool in forensic death investigations. In addition, Debruyn et al.18  
documented postmortem changes in human gut bacterial communities. Adserias et al.19 monitored the oral 
microbiota of decaying bodies daily to identify characteristic bacterial taxa. Altogether the traditional methods 
are negatively disturbed by the external environment or the subjective judgment of the examiners. Because of the 
fixed mathematical models, the microbial method is less affected by the subjective judgment of the inspector and 
is relatively more reliable. Thus, the method of estimating PMI by microorganism can now serve as an auxiliary 
tool. Applying changes in microbial communities to infer the PMIs has gradually become a hot topic in forensic 
research.

Oral cavity is one of the key research fields of human microbial community engineering. It is one of the most 
abundant areas of human microbial community and the second largest human complex after colon20. About 
1000 bacterial species have been found in the oral microbial community, with representatives from the phyla 
Actinomycetes, Proteobacteria, Firmicutes, Bacteroidetes, Synergists, Spirochetes and Aponeurophytes21. What’s 
more, oral and gastrointestinal tract autochthonous microbiome plays a key role in decomposition22. Thus, the 
method of estimating PMI by microorganism can now serve as an auxiliary tool. However, few studies have 
focused on the ecological changes of oral microbiome which has the potential to be one of the inferred PMI 
indicators.

This study aimed to investigate the correlation of oral microbes with PMI in mouse models. It is expected to 
find species which are significantly correlated with PMI at different biological classification levels and to establish 
a simple linear regression model that can be helpful to estimate PMI more accurately.

Results
In total, we collected 24 oral cavity samples. Only one male mouse sample with a PMI of 0 hr was not successfully 
sequenced, and the remaining 23 samples were successfully sequenced. After sequence quality filtering, removal 
of failed samples and low numbers of sequences, using the IonS5TM XL sequence dataset which includes the 
1722677 16sRNA sequences, 1455 OTUs were obtained. 16s rRNA sequencing data has been submitted to the 
SRA database and the accession number is SRP194019.

Bacterial community change at phylum level during decomposition.  The top ten bacteria with 
the highest abundance in each group at different taxonomic level were analyzed. At the phylum level, within 
240 hrs after the death of mice, the Proteobacteria and Firmicutes always occupied the dominant position. 
Proteobacteria displayed a tendency of decreasing first and then increasing, while phylum of Firmicutes showed 
a tendency of first increasing and then decreasing. Actinobacteria and Bacteroidetes are the third and fourth 
highest phyla, which decreased with the increasing of PMI (Fig. 1A). It was found that relative abundance changes 
of Proteobacteria showed a positive linear correlation with PMI, (PCCs)Pearson correlation coefficient = 0.970, 
p = 0.030* (Fig. 1B).

It was worth noting that at different postmortem intervals, the oral microbes of mice are basically domi-
nated by the same phyla, but the genus of microbes are different (Fig. 2). When the postmortem interval was 
0 hr, it was Proteobacteria (Acinetobacter, Pseudomonas, Phyllobacterium, Photobacterium, Vibrio, Arcobacter, 
Muribacter), Actinobacteria (Propionibacterium, Rhodococcus), Firmicutes (Ruminococcaceae_UCG-014, 
Clostridiumsensu_stricto_1, Paeniclostridium, Lactobacillus, Christensenelaceae_R-7_Group), Bacteroidetes 
(Alistipes, Prevotella _9, Marinitilum) and Fusobacteria (Fusobacterium, Psychrilyobacter) that basically consti-
tuted the mice oral microbes. On the PMI of 24 hrs, mice oral microbes mainly included Firmicutes (Blautia, 
Enterococcus, Streptococcus, Faecalbacterium), Proteobacteria (Pasteurella), Bacteroidetes (Bacteroides), 
Actinobacteria (Bifidobacterium). When the PMI is 144 hrs, mice oral microbes was principally made up of 
Actinobacteria (Staphylococcus, Subdoligranulum, Romboutsia) and Proteobacteria (Morganella, Escherichia 

Figure 1.  (A) Relative abundance of phyla of bacteria with different PMI. (B) Relative abundance changes of 
Proteobacteria had high positive linear relationship with PMI.
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shigella, Enterobacter). In addition, it was Proteobacteria (Citrobacter, Proteus) which chiefly comprised oral 
microbes on the PMI of 240 hrs.

Bacterial community at class-level change during PMI decomposition.  At the class level, when 
the PMI was 0 hr, the distribution of oral microbes was relatively uniform, but with the increase of PMI, the rel-
ative abundance of Gamma-proteobacteria was increased, moreover, Alpha-proteobacteria and Bacteroidia has 
decreased. Bacilli and Clostridia showed a trend of first increasing and then decreasing with the change of PMI 
(Fig. 3A). Relative abundance of Gamma-proteobacteria showed a strong positive linear correlation with PMI 
(PCCs = 0.998, **p = 0.002) (Fig. 3B).

Bacterial community at order-level change during PMI decomposition.  When the biological level 
was order, the relative abundance of Entero-bacteriales increased with the rise of PMI, while the relative abun-
dance of Pasteurellales, Bacteroidales and Rhizobiales decreased with the increase of PMI, and the relative abun-
dance of Lactobacillales increased first and then decreased with the increase of PMI (Fig. 4A). The positive linear 
relationship between the relative abundance of Enterobacteriales and PMI is the strongest at the level of order 
(PCCs = 0.979, *p = 0.021) (Fig. 4B).

Bacterial community changes at the family level during PMI decomposition.  At the family level, 
the relative abundance of Enterobacteriaceae increased with the rise of PMI though the relative abundance of 
Pasteurellaceaeae and Phyllobacteriaceae decreased. Meanwhile, the relative abundance of Streptococcaceae, 
Ruminococcaceae and Bacteroidaceae presented a tendency of increasing first and then decreasing (Fig. 5A). We 
also discovered that the relative abundance of Enterobacteriaceae showed a high positive relationship with PMI 
(PCCs = 0.979, *p = 0.021) (Fig. 5B).

Figure 2.  Heat map of top 35 genera of relative abundance of mice oral microbes. The relative abundance of 
oral microbes in mice varies with PMI.
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Bacterial community changes at the genus level during PMI decomposition.  At the biological 
level of genus, with the rise of PMI, the relative abundance of Proteus increased, while the relative abundance 
of Muribacter and Phyllobacterium increased first and then decreased (Fig. 6A). Relative abundance of Proteus 
showed strong positive linear relationship with PMI (PCCs = 0.994, **p = 0.006) (Fig. 6B).

Figure 3.  (A) Relative abundance of classes of bacteria with different PMI. (B) Relative abundance changes of 
Gamma-proteobacteria had positive strong linear relationship with PMI.

Figure 4.  (A) Relative abundance of orders of bacteria with different PMI. (B) Relative abundance changes of 
Enterobacteriales had high positive linear relationship with PMI.

Figure 5.  (A) Relative abundance of families of bacteria with different PMI. (B) Relative abundance changes of 
Enterobacteriaceae had high positive linear relationship with PMI.
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Diversity analysis of bacterial community succession.  The alpha diversity of oral microbial com-
munities in mice decreased slightly with the increase of PMI (Fig. 7A). The communities composition of oral 
microbes on the PMI of 144 hrs was superficially similar to that when the PMI was 240 hrs (Fig. 7B). It indicated 
that with the increase of PMI, the individual difference decreased gradually and the similarity of microbial com-
munities between different PMI raised. Meanwhile, there were significant differences in microbial communities 
composition between the two groups besides 240 hrs vs 144 hrs and 24 hrs vs 0 hr. When the death time was rela-
tively far apart, there was a significant difference in communities composition (Table 1).

In conclusion, at each taxonomic level, a bacterium with significant correlation with PMI changes was respec-
tively found, and linear regression models between relative abundance and PMI were constructed (Table 2). The 

Figure 6.  (A) Relative abundance of genera of bacteria with different PMI. (B) Relative abundance changes of 
Proteus had strong positive linear relationship with PMI.

Figure 7.  Diversity analysis of oral microbial communities of different PMI. (A) Phylogenetic distance (PD) 
alpha diversity for microbial communities at each group. (B) PCoA plot based on unweighted UniFrac distances 
displaying microbial communities change during death.

Vs_ group F. Model R2 Pr (>F)

240 hrs-24 hrs 7.3247 0.42279 (0.57721) 0.005

240 hrs-0 hr 5.7658 0.39048 (0.60952) 0.004

240 hrs-144 hrs 1.3718 0.12063 (0.87937) 0.265

24 hrs-0 hr 2.1598 0.19354 (0.80646) 0.065

24 hrs-144 hrs 2.9687 0.22891 (0.77109) 0.009

0 hr-144 hrs 2.4809 0.21609 (0.78391) 0.012

Table 1.  Adonis Group Difference Analysis of microbial communities’ composition between different PMI. F. 
Model is F test value. R2 indicates the interpretation degree of sample difference in different groups, that is, the 
larger the ratio of group variance to total variance is, the higher the interpretation degree of the group to the 
difference is. In addition, the Pr is P value, and less than 0.05 means that the reliability of this test is high. The 
value of the residuals in parentheses.
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larger the R2, the better the fitting degree of the linear regression equation. Therefore, Gamma-proteobacteria and 
Proteus were the best candidates that can be used to infer PMI, especially late PMI.

Discussion
In this study, we used the mouse model, one of the most important model organisms, to develop a potential tool 
for estimating the PMI with the succession of oral microbial community. Large number of samples allowed us 
to perform replicate experiments with a large number of samples to minimize experimental error and assess 
to what extent the intra-individual variation of microbiota that we know is present in living humans and other 
mammals23.

The oral cavity was chosen as the sampling point for microbes. Compared with intestinal sampling which 
needs dissection, oral sampling is much more convenient. The Human Microbiome Project observes that human 
stool harbors a rich microbiome, while the oral cavity is relatively limited24. Furthermore, Guo et al. observed the 
same phenomenon in samples collected from live rats25. Therefore, the analysis of oral microbes simplifies our 
analytical work and helps to find the target species that are associated with PMI. Meanwhile, oral microbes are 
an important part of the human microbiota, few articles focus on the relationship between oral microbial com-
munity succession and PMI. In our study, the dominant phyla in the oral cavity of the mice were Proteobacteria, 
Firmicutes, Actinobacteria and Bacteroidetes when PMI were 0 hr, similar to those in the mouth of healthy 
humans, as reported by the HMP24. Since the oral cavity is in direct contact with the outside environment, the 
change of microbiome is easy to be influenced by the external factors such as temperature and air humidity, we 
tried to keep the same experimental conditions by controlling the temperature and humidity and other controlla-
ble factors in order to minimize the impact of the external environment. In this case, the changes of oral microbes 
were analyzed in order to obtain basic and relatively standardized results. Further investigation regarding the 
external factors needs to be done in the future.

From the current data, we have obtained one bacterium at each taxonomic level that is associated with the 
change in PMI, namely, Proteobacteria, Gamma-proteobacteria, Entero-bacteriales, Enterobacteriaceae and 
Proteus. Interestingly, these candidates all belong to the Proteobacteria. Proteobacteria is the largest phylum in 
the bacterial kingdom. They are all Gram-negative bacteria, which have both aerobic and anaerobic bacteria. 
Proteobacteria are usually associated with the decay of meat and have been found on the hides of slaughtered 
animals26. Besides, oral microbiome mainly includes aerobic bacteria and facultative anaerobic bacteria. Proteus, 
a dominant bacterium, is also facultative anaerobic, which may be related to the closed state of oral cavity when 
mice die. Therefore, the effect of oral closed state on oral microbial changes when mice die cannot be ignored. 
For another, the relative abundance of these candidates increases with the increase of PMI, but the R2 of microbes 
with PMI between adjacent classification levels are not the same, except the order and family level. It may be 
due to the presence of other influential species in addition to the dominant species. It should be noted that 
Enterobacteriales contains only one family of Enterobacteriaceae, so the linear relationship between relative 
abundance of them with PMI is the same.

Unlike previous reports that the relative abundance of Firmicutes decreased first and then increased with 
PMI in oral cavity of rats and human19,25, our data demonstrated that it increased first and then decreased with 
PMI. The relative abundance of Firmicutes increased at 24 hrs of PMI and then decreased, similar to Bacilli, 
Lactobacillales, Streptococcaceae and Streptococcus. 24 hrs is the time point to distinguish early PMI from 
late PMI. As a conclusion, the community composition of oral microbes changed a lot before and after 24 hrs. 
Meanwhile, all the bacteria with turning change, which means that the change of relative abundance of species 
with prolongation of PMI is first decreasing then increasing or first increasing and then decreasing, belong to 
Firmicutes. Although Firmicutes was reported as one of the main phyla in the human gut (intestine, rectum 
and cecum) and fecal samples24,27–30, unfortunately, it does not have a significant linear relationship with PMI. 
In our results, the relative abundance of Actinobacteria has been decreased with the increase of PMI, which is 
consistent with the previous reports in oral cavity of rats and human19,25. Actinobacteria are widely distributed in 
terrestrial and aquatic ecosystems, especially in soil, which play an important role in the recycling of refractory 
biomaterials through decomposition and humus formation31. We also found that Gamma-proteobacteria were 
predominant throughout the postmortem interval in mice, which was concordant with that in preceding report25. 
The Gamma-proteobacteria exhibit different metabolic abilities and are involved in the decomposition of more 
complex molecules32. Taken together, Gamma-proteobacteria may be an important contributor to the decompo-
sition process. Enterobacteriaceae, an important component of intestinal microbes, was found to be dominant in 
the oral microbial community in the late PMI. There was also a significant linear relationship between its relative 
abundance and PMI. Metcalf et al.16 also found that Enterobacteriaceae bacteria such as Serratia, Escherichia, 

Species Family Order Class Phylum
Linear regression 
equation R2

Proteobacteria — — — — y = 0.0017x + 0.4547 0.94

Gammaproteobacteria — — — Proteobacteria y = 0.0021x + 0.3558 0.99

Enterobacteriales — — Gammaproteobacteria Proteobacteria y = 0.0035x + 0.0504 0.96

Enterobacteriaceae — Enterobacteriales Gammaproteobacteria Proteobacteria y = 0.0035x + 0.0504 0.96

Proteus Enterobacteriaceae Enterobacteriales Gammaproteobacteria Proteobacteria y = 0.0033x − 0.0444 0.99

Table 2.  The classification and linear regression equation of species which have significant correlation between 
relative abundance with PMI change. The y represents PMI (hr) and x represents the relative abundance (%) of 
species.

https://doi.org/10.1038/s41598-019-49338-z


7Scientific Reports |         (2019) 9:13063  | https://doi.org/10.1038/s41598-019-49338-z

www.nature.com/scientificreportswww.nature.com/scientificreports/

Klebsiella and Proteus became abundant after rupture. They were widely regarded as opportunistic pathogens 
related to sewage and animal substances. Whether the combination of the Enterobacteriaceae in oral cavity and 
abdominal cavity can improve the inferential accuracy of PMI is worth studying in the future. The relative abun-
dance of Proteus was very low in the early PMI and higher in the microbiome of the late PMI, which indicated 
that Proteus was more suitable for the prediction of the late PMI. The same conclusion was reached in rats and 
swines25,33. For another, Metcalf et al.34 found that the mice decomposed in three different soil types, and the 
error rate was as low as +/2–3 days within 25 days after death. Moreover, Ismail et al.35 demonstrated that under 
the same conditions, the dead microbiome of different organs in the same corpse is very similar. Therefore, the 
accuracy of our results should be similar to the previous reports, but the accurate accuracy needs to be further 
verified by furture experiments.

In short, Gamma-proteobacteria and Proteus are the best potential candidates of oral microbial communities 
for PMI estimation. Since Enterobacteriaceae is also present in the intestine, it can be considered in combination 
with its changes in the intestine to infer PMI.

Materials and Methods
Experimental set-up and sample collection.  All animal experimental procedures and protocols were 
conducted in accordance with Chinese legislation on the Use and Care of laboratory animals, and were approved 
by the Animal Ethics Committee (Institutional Animal Care and Use Committee of the East China University of 
Science and Technology). A total of 24 adult mice (strain ICR) were purchased from Shanghai Slac Laboratory 
Animal Company (Shanghai, China). The laboratory experiment was performed at East China University of 
Science and Technology in Shanghai, China. Mice were humanely sacrificed using CO2 gas followed by cervical 
dislocation and placed in clean cartons with sterile cotton gauze and UV-sterilized padding which were used 
for the absorption of the spoilage liquids produced by corpses in the experiments. Air temperature during the 
decomposition changed little with average temperature of 22.4 °C. Relative humidity ranged from 33% to 41%, 
(average 37%).

We separately sampled three female mice and three male mice across four points including 0 hr, 24 hrs, 144 hrs 
and 240 hrs. According to the previous studies16,25,34,24 h is the cut-off point between the early PMI and the late 
PMI, and many changes in the death process occur after 24 h. Then we divided the remaining nine days into four 
and five days. So the PMI we choosed was 0 hr, 24 hrs, 144 hrs and 240 hrs. High temperature sterilized cotton 
swabs wetted with aseptic water were used to wipe the oral cavity and transferred to sterile Eppendorf tube in 
duplicate. Four sets of samples were named as 0 hr, 24 hrs, 144 hrs and 240 hrs.

DNA extraction, PCR amplification, and next-generation sequencing.  DNA was extracted from 
the collected swab samples using the classical CTAB method36. An agarose gel electrophoresis was used to detect 
the purity and concentration of DNA. Samples with appropriate amount were taken into the Eppendorf tubes, 
and the samples were diluted with aseptic water to 1 ng/μL.

For sequencing, total genomic DNA was subjected to PCR application targeting an informative por-
tion of the 16s rRNA variable region 3(V3) and variable region 4(V4) using the bacterial primer set 
341F(CCTAYGGGRBGCASCAG)/806R(GGACTACNNGGGTATCTAAT).

The sequencing operation was completed by Novegene Co., LTD (Beijing, China). The sequencing platform 
was IonS5TM XL. The single-end method was used to construct a small fragment library for single-terminal 
sequencing.

16s rRNA sequencing data processing.  Raw reads were obtained by discarding low quality part and 
cutting barcodes and primer sequence using Catadapt (Version 1.9.1)37. Chimeric sequences were detected for 
alignment with Gold database by UCHIME Algorithm and removed in order to get clean reads38,39.

OTU clustering and species annotation.  Operational taxonomic units (OTUs) defined by a 97% identity 
were picked using the Uparse (Version 7.0.1001)40. Meanwhile, the representative sequence, chosen as the most 
abundant in each OTUs, were submitted to the Mothur in order to acquire the assignment and the abundance of 
each OUT using the SILVA’s SSUrRNA database at different taxonomic levels: phylum, order, family, genus and 
species (Threshold value was 0.8–1)41,42. Finally, the data of each sample are homogenized based on the minimum 
amount of data in the sample. The subsequent Alpha diversity analysis and Beta diversity analysis are based on 
the data after homogenization.

16s rRNA data analysis.  According to the result of species annotation, the top ten species with the highest 
abundance in each group at different taxonomic level were selected and made into the columnar accumulative 
graph so that the samples could be viewed directly in order that we can visually view the relative abundance of the 
species and their proportions at different classification levels. We analyzed whether there were species at different 
taxonomic levels that had a direct linear relationship with PMI and plotted a linear regression plot. Moreover, the 
top 35 genera of abundance are selected for clustering and plotted as heat maps.

The shannon diversity and phylogenetic diversity measures were used to estimate alpha diversity. The beta 
diversity model was performed by performing a principal coordinate analysis (PCOA) based on unweighted 
single fraction distance. These analyses were performed using the QIIME software (Version 1.9.1) and R software 
(Version 2.15.3). Additionally, we tested for significant changes in microbial communities between different PMI 
with Adonis analysis43,44.
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