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Abstract

Discharge patterns from a population of motor units (MUs) were estimated with multi-chan-

nel surface electromyogram and signal processing techniques to investigate parametric dif-

ferences in low-frequency force fluctuations, MU discharges, and force-discharge relation

during static force-tracking with varying sizes of execution error presented via visual feed-

back. Fourteen healthy adults produced isometric force at 10% of maximal voluntary con-

traction through index abduction under three visual conditions that scaled execution errors

with different amplification factors. Error-augmentation feedback that used a high amplifica-

tion factor (HAF) to potentiate visualized error size resulted in higher sample entropy, mean

frequency, ratio of high-frequency components, and spectral dispersion of force fluctuations

than those of error-reducing feedback using a low amplification factor (LAF). In the HAF con-

dition, MUs with relatively high recruitment thresholds in the dorsal interosseous muscle

exhibited a larger coefficient of variation for inter-spike intervals and a greater spectral peak

of the pooled MU coherence at 13–35 Hz than did those in the LAF condition. Manipulation

of the size of error feedback altered the force-discharge relation, which was characterized

with non-linear approaches such as mutual information and cross sample entropy. The

association of force fluctuations and global discharge trace decreased with increasing error

amplification factor. Our findings provide direct neurophysiological evidence that favors

motor training using error-augmentation feedback. Amplification of the visualized error size

of visual feedback could enrich force gradation strategies during static force-tracking, per-

taining to selective increases in the discharge variability of higher-threshold MUs that

receive greater common oscillatory inputs in the β-band.
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Introduction

Force steadiness is a useful paradigm for investigating fine motor control and perceptuo-

motor variability [1, 2]. During constant isometric contraction, the smoothness of a force tra-

jectory is undermined by numerous intermittent drifts of the force output away from the target

force, known as force fluctuations. Accumulating evidence has convincingly shown that force

variability, particularly for those low-frequency force fluctuations under 4 Hz, are related to

visuomotor processes [3, 4, 5] and movement corrections [6, 7]. The amount of visual spatial

information can influence the properties of force fluctuations. For static isometric contraction

at very low exertion levels (2%-10% maximal voluntary contraction), the majority of previous

studies reported that a high spatial resolution of the visual display (or a smaller change in force

occupying a greater number of pixels) produced superior force steadiness for the young adults,

supported by reduction in the size of force fluctuations [8, 9, 10]. Although motor unit dis-

charge is a major determinant of force fluctuations [11, 12], the mean and coefficient of varia-

tion of the inter-spike interval of motor units of young adults are unexpectedly not tuned to

visual spatial information [3, 13], except that Laine et al [14] reported that all spectral bands of

the common oscillatory input to motor units varied with the spatial resolution of a visual dis-

play. In addition to experimental contexts, some of the inconsistency in the findings on the

visual impact on force fluctuations and motor unit discharge was due to the failure of previous

studies to specify the roles of high-threshold motor units. On account of lower and more vari-

ant discharge rates, high-threshold motor units with a larger twitch force are liable to produce

a greater size of force fluctuations [11, 15].

Execution errors during continuous adjustments of the planned motor goal are critical to

improving task quality [16]. Error detection relies predominantly on visual feedback to

reduce perception uncertainty from the proprioceptive and haptic inputs. Distorted visual

feedback could degrade task performance before the participants develop a new calibration

process to override the biased perception-action link. Intriguingly, error-augmentation feed-

back, a particular form of distorted visual feedback, does not exert a negative impact on task

success. For point-to-point movements with visual rotation, previous kinematic studies

showed that augmenting trajectory errors by adding a fixed bias to the original error could

expedite motor adaptations to novel task constraints [17, 18, 19]. Although spatiotemporal

tuning of force performance of central origins is known to selectively involve in striatal—

frontal circuit and parietal—frontal circuit [20, 21], yet the neural mechanisms underlying

variations in force performance with the error size are not fully lucid especially in the aspects

of motor unit physiology. In real practice, the augmentation of execution errors via visual

display is considered to be effective for facilitating motor recovery of patients with neurologi-

cal disorders [19, 22].

If error augmentation could increase control of force steadiness, low-frequency force fluc-

tuations and motor unit behaviors should show characteristic changes in favor of fine force-

tuning processes, and vice versa. Employing multi-electrode surface electromyography tech-

nology and decomposition procedures, this study aimed to examine how the size of visualized

execution error alter motor unit discharge and force-discharge relation during force-tracking

at a fixed exertion level. Our main hypotheses were that 1) force steadiness, high frequency

components, spectral dispersion, and complexity of force fluctuations would augment with

increasing error amplification factor that virtually multiplied the size of execution error, and

vice versa, 2) the inter-spike intervals of MUs (mean and variability) and common oscillatory

drives to MUs would increase with larger error amplification factor, particularly for motor

units with relatively high recruitment thresholds, and 3) the force-discharge relation would be

complicated by increasing error amplification factor.

Variations in Force Control with the Size of Error Feedback

PLOS ONE | DOI:10.1371/journal.pone.0170824 January 26, 2017 2 / 20



Materials and Methods

The participants were 14 healthy adults (6 males and 8 females; mean age: 25.87 ± 1.19 years,

range: 21–35 years old) from a university campus or the local community. All were self-

reported as being right-handed, and none had symptoms or signs of neuromuscular diseases.

The research project was approved by an authorized institutional human research review

board (IRB) at the University Hospital of the National Cheng Kung University, Taiwan. All of

the participants signed an informed consent before the experiment, conforming to the Decla-

ration of Helsinki.

Experimental Procedures

The participants completed a unilateral static force task (isometric index abduction) under

three error feedback conditions (low amplification factor (LAF), normal amplification fac-

tor (NAF), and high amplification factor (HAF)) at a low force level (10% maximal volun-

tary contraction (MVC)). A low force level was chosen to prevent neuromuscular fatigue

during the multiple trials in this study. Each condition contained 3 experimental trials inter-

leaved with 3-minute pauses. Experimental trials were executed in a randomized order. The

participant was seated with his/her palm and forearm of the left hand firmly fixed within a

thermoplastic splint on the table. We considered the non-dominant limb for the force-

tracking task, because it would be more novel to the non-dominant limb as compared with

the dominant limbs [23]. The index finger was held slightly abducted (5 degrees of abduc-

tion), and its abduction force was measured using a force transducer (Model: MB-100,

Interface Inc., Scottsdale, AZ, USA). With verbal encouragement, the maximal voluntary

contraction (MVC) of the first dorsal interosseus (FDI) was determined by three contrac-

tion trials of index abduction with maximal effort of 5 s separated by 3 min pauses. The

average of the highest force value produced in each trial was the respective MVC for each

individual.

The experiment commenced after a rest period of 20 minutes. All the participants were

given three practice trials in each feedback condition (LAF, NAF, and HAF). In the practice

trials and the following experimental trials, the participants were instructed to produce an iso-

metric force by pushing their index finger against the force transducer and to match the force

produced to the target force line (10% MVC) displayed on the monitor (1024×768 pixels).

After a latent period of 3 seconds, the participants were given 1 second to reach the target

force and steadily maintained that force for 36 seconds under visual guidance (Fig 1). Then the

force output returned back to the resting state in 1 second, followed by another 3-second latent

period. An experimental trial took 44 seconds to complete. The time window of interest was

denoted as the 7th to 37th seconds of the experimental trial.

The force feedback of the three feedback conditions was mathematically transformed in

three different ways before it was displayed on the monitor (Fig 2) such that the participants

could visualize different degrees of mismatches between the same actual force output and

the target signal. In the low amplification (LAF) condition, the force output displayed on the

monitor (visualized force, VF) was equal to the sum of half of the real force (RF) plus half of

the target signal (T)(VF = 0.5�RF+0.5�T). The size of the visualized tracking error (VE) was

reduced so that the participant saw half of the real error (RE) of the static force-tracking task

(VE = 0.5�RE). In the normal amplification (NAF) condition, the participant was provided

with real error (VE = RE), as the visualized force output was identical to real force output. In

the high amplification (HAF) condition, the force output displayed on the monitor (VF) was

transformed with VF = 1.5�RF-0.5�T. The size of the perceived tracking error was aug-

mented by 50% during the static force-tracking task in the HAF condition (VE = 1.5�RE).

Variations in Force Control with the Size of Error Feedback
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To accentuate the differences, the spatial gain to the display target signal and the force out-

put was identical for all experimental conditions, with the visual resolution set at 15 pixels

per 1% MVC. The representation of visual gain with pixels per 1% MVC rather than pixels

to per Newton was to minimize potential strength effect across the participants on visual dis-

play. The inter-trial interval of rest was 3 minutes to minimize a potential fatigue effect. The

force signal was sampled at 1 kHz by an analog-to-digital converter with 16-bit resolution

(DAQCard-6024E; National Instruments Inc., Austin, TX, USA), controlled by a custom

program on a LabVIEW platform (LabVIEW v.8.5, National Instruments Inc., Austin, TX,

USA).

Electromyographic Recordings

Synchronized with the force signal, multi-electrode surface electromyography (EMG)(Bag-

noli sEMG system, Delsys Inc, Natick, MA, USA) with 5 surface pin-sensors (0.5 mm diame-

ter) was used to record activities of the FDI muscle. The pin-sensors were placed at the

center and at the corners of a 5 ×5 mm square. Protruding from the housing of the electrode,

the pins of such sensors have blunted ends and do not puncture the skin when pressed

against it to detect muscle activities. The analog EMG signals from each pin-sensor were

amplified (gain = 1000) and filtered with a bandwidth of 20–450 Hz [24]. A high sampling

rate of 20 KHz was used to avoid introducing phase skew across channels for this decomposi-

tion-based surface EMG system [24, 25, 26]. Multi-channel surface EMG signals were

derived from pair-wise subtractions of voltages (4 single differential EMG channels) at the

five pin-detections. This type of spatial filtering allows accurate decomposition of the single

motor unit action potential (MUAP) [24, 25, 27], as baseline noise is strictly controlled to a

peak-to-peak value of less than 20 μV. The software used for the post-decomposition pro-

cessing of action potential morphology was EMG works v.4.1 (Delsys Inc, Natick, MA,

USA), which can extract action potential “templates” of as many motor unit action potential

trains (MUAPTs) as practically possible using an enhanced artificial intelligence algorithm,

Fig 1. Schematic diagrams of task protocol and recording of physiological data. The force task required the participant to couple force

output with the target signal (left plot) under three different feedback conditions. EMG decomposition analysis was performed throughout the

44 s data collection period (right plot), whereas only behavior and discharge variables from the 7th to the 37th seconds were considered, as

data in the time window of interest were considered relatively stable.

doi:10.1371/journal.pone.0170824.g001

Variations in Force Control with the Size of Error Feedback
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according to a previous proof-of-principle [25, 26]. The validity of the EMG decomposition

of each MUAPT was evaluated with the Decomposition-Synthesis-Decomposition-Compare

(DSDC) test [25, 28], the algorithm of the Bagnoli sEMG system. The mean decomposition

accuracy was obtained by averaging the individual accuracies of all of the MUAPTs of experi-

mental trials of the feedback condition.

Data Analysis

To remove involuntary tremulous movements independent of voluntary error corrections, the

force signal of the index abduction was first conditioned with a low-pass filter (cut-off fre-

quency: 6 Hz) [7,29]. The remaining force components under 4 Hz are susceptible to most of

the effects of visuo-motor processes [3, 6]. In this study, we did not account for high-frequency

tremulous force movements (such as 8–12 Hz physiological tremor), as they are functionally

irrelevant to correcting force deviations in a visuomotor task [7, 30, 31]. After deleting the first

and last 7 seconds of force tracing, force data in the time window of interest were further ana-

lyzed (Fig 1). Force fluctuations, obtained following removal of a linear trend from the real

force output, were down-sampled at 100 Hz prior to feature extraction [8]. Temporal features

of force fluctuations were characterized with the root mean square (RMS) and sample entropy

(SampEn). SampEn is a popular and reliable entropy measure of the temporal aspects of

Fig 2. Illustration of modulation of error feedback gain. Following mathematical transformation, the visualized force outputs (black bold

line) represent an on-line force trajectory that augments and reduces by 50% the original real tracking error (grey thin line) in the high

amplification (HAF) and low amplification (LAF) conditions, respectively. In the normal amplification (NAF) condition, visualized force output

is equal to real force output, such that the participant perceives the real tracking error during force-tracking. (VF: visualized force; VE:

visualized error; RF: real force; RE: real error; T: target signal)

doi:10.1371/journal.pone.0170824.g002

Variations in Force Control with the Size of Error Feedback
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biological variability [32]. The mathematical formula for sample entropy was

SampEnðm; r;NÞ ¼ ln
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where r = 15% of the standard deviation of the force channel and m = 3. A larger value repre-

sents a more complex structure of the low-frequency force fluctuations, and vice versa. Spectral

dimensions of force fluctuations were characterized with the mean frequency (MF), spectral

dispersion (Pdisp), and ratio of high frequency components (RHF) of force fluctuations. The

MF was determined through a force spectral profile estimated with a fast Fourier transform

and the Welch method (Hanning window, window length: 2.048 seconds, overlapping time

segment: 1/4 × window length) with a spectral resolution of 0.1 Hz. Spectral dispersion of

force fluctuations was defined as the spectral ranges that consisted of 90% of the overall spec-

tral areas between the lowest 5% and the highest 5% of the spectral regions. The RHF was the

ratio of the spectral area above 1.5 Hz to the overall spectral regions of the force fluctuations.

With decomposition processing, binary spike trains that coded the activation of all motor

units with a value of 0 or 1 were identified. In line with the truncated force data, the discharge

variables were determined in the time window of interest (00:07 to 00:37) based on the decom-

posed EMG data of overall 44 seconds (Fig 3). The order of MU recruitment could also be

identified by inspecting the decomposed spike trains of all MUs during the early ramp-up

Fig 3. Decomposition of motor unit discharge from multi-channel surface EMG and discharge patterns of individual motor units. Means (Mean

ISI) and coefficients of variance (CV_ISI) of inter-spike intervals of individual motor units are assessed with a single motor unit action potential train. The

spike trains are arranged from the bottom to the top according to recruitment thresholds of motor units. Global discharge trace was defined as convolution

of the cumulative spike trains of all motor units with a Hanning window of fixed duration. Discharge-force relation in this study was characterized with either

linear or non-linear association between detrended global discharge trace and detrended force fluctuations.

doi:10.1371/journal.pone.0170824.g003

Variations in Force Control with the Size of Error Feedback
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contraction (00:04 to 00:05). The motor units recruited above 5% MVC (half of target force)

were denoted as higher-threshold motor units (HT MUs) in this study. Experimentally

observed variability of the inter-spike interval for individual MUs in the time window of inter-

est was characterized with the coefficient of variation (CV). The grand average of ISI CV (ISI

CV_GAV) was the mean of the ISI CV of a population of motor units. The mean inter-spike

interval and ISI_GAV of all MUs and HT MUs were determined, respectively.

For each experimental trial, the degree of correlation between spike trains for all MUs

and HT MUs was calculated in the frequency domain, known as the pooled coherences MUs

of composite spike trains. Prior to calculation of the pooled coherences MUs, the two groups

of MUs from all identified MUs or from HT MUs were predetermined. Then the coherence

was analyzed with two cumulative spike trains, obtained by summing five motor unit spike

trains in each defined MU group (two MU groups composed of all identified MUs or two

MU groups simply composed of the HT MUs). This number of MU spike trains was used to

derive the cumulative spike trains as an empirical trade-off between the minimum number

of motor units and a high coherence sensitivity with a sufficient number of MUs [33]. For an

experimental trial of the three feedback conditions, the coherence obtained values were aver-

aged across 200 combinations of different cumulative spike trains. It has been demonstrated

that the correlation between cumulative trains of discharges of motor units can enhance

low-frequency common oscillatory inputs to motor units relative to traditional coherence

estimation by computing the coherence between pairs of motor units, due to effective sup-

pression of individual synaptic inputs to motor units [12, 34]. The magnitude squared

coherence values (C) were estimated with two unfiltered composite spike trains using a 1-s

Hanning window and an overlap of 90% [35]. The coherence values were converted to Fish-

er’s values (FZ) to minimize an intrinsic bias of the coherence estimates from each segment

profile [36]:

FZ ¼ tan� 1ð
ffiffiffiffi
C
p
Þ

Following the z transformation, we subtracted the mean coherence between 100 and 500

Hz from each coherence profile because the mean coherence contained no significant coher-

ence [14,37]. Typically, the corrected pooled MU coherence contained two prominent spectral

peaks in the range of 0–4 Hz (ZC0-4Hz) and 13–35 Hz (ZC13-35Hz). Based on all MUs or those

HT MUs, ZC0-4Hz and ZC13-35Hz of the corrected pooled MU coherence were determined sub-

ject-by-subject for each experimental trial. Those coherence variables of the three trials were

averaged and compared across various error feedback conditions. Differences in the ZC0-4Hz

and ZC13-35Hz represent differences in the strength of common oscillatory input to MUs in

each band.

Associations between force fluctuations and discharge patterns of motor units were

denoted as the force-discharge relation in this study. Prior to assessing the force-discharge

relation, we first estimated the cumulative spike trains of all identified MUs followed by a

smoothing procedure with Hanning windows of different durations (50 ms, 400 ms, and 1600

ms), with which the degree of tremulous discharges was differentially suppressed [38]. The

resulting low-frequency global discharge trace, or effective neural drive to muscle, has been

shown to reliably predict force fluctuations during static isometric contraction [34]. In addi-

tion to cross correlation, the association between detrended force fluctuation and detrended

global discharge trace was characterized with cross mutual information (MI) and cross sample

entropy (cross-SampEn), on account of the potential nonlinear effects of summing motor-unit

potentials to reproduce the patterns of force fluctuations [39]. Based on the joint probability

distribution, MI was used to measure the information shared by force fluctuations and global

Variations in Force Control with the Size of Error Feedback
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discharge trace. MI is mathematically formulated as:

MIðX; YÞ ¼
X

y2Y

X

x2X

pðx; yÞlogðpðx; yÞ=p1ðxÞp2ðyÞÞ

where p(x,y) is the joint probability density function of the time series of X and Y, and p1(x)

and p2(y) are the marginal probability density functions of X and Y, respectively. With formu-

las suggested to estimate the Kolmogorov entropy of a time series, cross-SampEn quantifies

asynchrony between two distinct but interactive variable statistics [32]. The simplified mathe-

matical expression is

Cross � SampEnðm; r;NÞ ¼ � lnð
AmðrÞðXjYÞ
BmðrÞðXjYÞ

Þ

We applied cross-sample entropy with m = 3 and r = 0.15 (where m is the embedding dimen-

sion and r is the tolerance limits of similarity) to a standardized time series of detrended global

discharge trace and force fluctuations, and therefore the complexity measure was independent

of magnitude of the two analyzed signals. Smaller values of cross-SampEn showed higher cou-

pling of the global discharge trace and force fluctuations. All of the force variables and dis-

charge variables of the three experimental trials were calculated subject-by-subject and then

averaged across subjects in different feedback conditions.

Statistical Analysis

The major interest of this study was to examine the effect of manipulating the size of error

feedback via visual feedback on low-frequency force fluctuations, discharge behaviors of MUs,

and force-discharge relation. We used repeated measures one-way ANOVA to contrast the

force fluctuation variables (RMS, SampEn, MF, spectral dispersion, and ratio of high frequency

components), decomposition variables (mean number of decomposed MUs and mean decom-

position accuracy), discharge variables (ISI_GAV and ISI CV_GAV), pooled MU coherence vari-

ables (ZC0-4Hz and ZC13-35Hz), and discharge-force relationship (cross correlation, MI, and

cross-SampEn) among the LAF, NAF, and HAF conditions. The level of significance was 0.05.

Signal processing and statistical analyses were completed using Matlab (Mathworks Inc., USA)

and the statistical package for Social Sciences (SPSS) for Windows v. 15.0 (SPSS Inc., USA).

Data reported in the texts and figures without specific illustrations are presented as

mean ± standard error.

Results

Force Fluctuation Characteristics

The mean value of MVC of all 14 subjects was 24.07 ± 8.12 N. Fig 4 displays the force output

and target signal of a representative trial and the pooled spectra of force fluctuations of three

trials from a typical subject for different feedback conditions. In terms of % MVC, Fig 5(a)

contrasts the temporal features (RMS and SampEn) of force fluctuations among different error

feedback conditions. The repeated measures ANOVA test revealed only a marginal effect of

error feedback on the size of the force fluctuations (F2,26 = 3.02, p = 0.066), with a decreasing

trend of smaller force fluctuations for increasing size of error feedback. The complexity of

force fluctuations in terms of SampEn was subject to manipulation of error size (F2,26 = 13.02,

p< 0.001)(Fig 5(a)). Reduction in error feedback led to the smallest SampEn of force fluctua-

tions among the feedback conditions (LAF < HAF, NAF, p< 0.005). For the spectral dimen-

sion, the mean frequency (MF) and ratio of high frequency components of force fluctuations

Variations in Force Control with the Size of Error Feedback
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Fig 4. Representative trials of force data (left plots) and pooled power spectra (right plots) of force fluctuations in the

time window of interest from a typical participant for the low amplification (LAF), normal amplification (NAF), and high

amplification (HAF) conditions. FFRMS: root mean square value of force fluctuations, FFSampEn: Sample entropy of force

fluctuations, MF: mean frequency, Pdisp: power dispersion of force fluctuations, RHF: ratio of high frequency components in force

fluctuations.

doi:10.1371/journal.pone.0170824.g004

Variations in Force Control with the Size of Error Feedback
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Fig 5. The contrast of force fluctuation variables among the low amplification (LAF), normal

amplification (NAF), and high amplification (HAF) conditions. (a) Temporal features of force fluctuations,

including RMS and sample entropy (SampEn). (b) Spectral features of force fluctuations, including mean

frequency, Pdisp: power dispersion of force fluctuations, RHF: ratio of high frequency components in force

fluctuations of force fluctuations.

doi:10.1371/journal.pone.0170824.g005

Variations in Force Control with the Size of Error Feedback
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(RHF) were also a function of error amplification factor (mean frequency: F2,26 = 24.85,

p< 0.001; RHF: F2,26 = 8.85, p = 0.002). The MF increased progressively with increment of

error feedback gain (HAF > NAF> LAF, p� .05)(Fig 5(b)), and RHF was lower in the LAF

condition than in the NAF and HAF conditions (p< 0.05). The ANOVA test also revealed

that power dispersion of force fluctuations (Pdisp) was a function of error amplification factor

(F2,26 = 10.44, p< 0.001), and the HAF presented the largest Pdisp of the three conditions

(p< 0.05). The findings strongly suggest that temporal and spectral dimensions of force fluctu-

ations varied with the visualized error size during constant isometric contraction.

Discharge Characteristics and Common Oscillatory Inputs

The average number of motor units in an experimental trial following the decomposition pro-

cedure did not differ among the three feedback conditions (F2,26 = 0.28, p = 0.761)(LAF:

28.1 ± 1.4 (18.0–36.7); NAF: 28.1 ± 1.3 (19.7–38.0); HAF: 28.9 ± 1.4 (16.4–34.7)). The overall

decomposition accuracy of motor units was not different among the feedback conditions

(F2,26 = 0.91, p = 0.414)(LAF: 95.22 ± 0.23% (92.82–96.03%); NAF: 94.88 ± 0.30% (92.10–

96.38%); HAF: 95.24 ± 0.28% (range: 92.37–96.53%)). Table 1 summarizes the error feedback

effect on ISI_GAV and ISI CV_GAV for all motor units and higher-threshold motor units (HT

MUs) among the different feedback conditions. For all motor units, the ANOVA test revealed

an insignificant effect of error size on ISI_GAV and ISI CV_GAV. For the HT MUs, ISI CV_GAV

significantly depended on error amplification factor (F2,26 = 4.03, p = 0.030), with the highest

variations in inter-spike intervals for the HAF conditions (p = 0.039). However, ISI_GAV was

independent of error amplification factor.

Fig 6(a) shows representative pooled motor unit coherences estimated based on all MUs

and those HT MUs under various feedback conditions, respectively, from a typical participant.

Each pooled motor unit coherence showed two major coherence peaks at 0–4 Hz (ZC0-4Hz)

and 13–35 Hz (ZC13-35Hz). The results of ANOVA showed that the ZC0-4Hz of all MUs (F2,26 =

0.28, p = 0.760) and HT MUs (F2,26 = 0.74, p = 0.488) was not significantly affected by varia-

tions in error amplification factor. In contrast, ZC13-35Hz of HT MUs was a function of error

amplification factor (F2,26 = 5.15, p = 0.013), although the size effect was not evident for ZC13-

35Hz of all MUs (F2,26 = 1.83, p = 0.181). Increases in error amplification factor were associated

with an increasing trend of ZC13-35Hz, which was significantly larger in the HAF condition

than in the LAF condition (p = 0.012).

Force-discharge Relation

Fig 7(a)–7(c) summarize the results of the effect of visualized error size on the association of

force fluctuations and global discharge trace, characterized with cross correlation, mutual

Table 1. Mean and standard errors of inter-spike interval variables of all motor units and motor units of high threshold in the LAF, NAF, and HAF

conditions.

LAF NAF HAF Statistic

All Mus ISI_GAV (ms) 51.99 ± 2.72 52.73 ± 3.16 54.01 ± 3.14 F2,26 = 1.01, p = 0.379

ISI CV_GAV 0.216 ± 0.006 0.218 ± 0.006 0.224 ± 0.007 F2,26 = 2.48, p = 0.104

HT Mus ISI_GAV (ms) 57.70 ± 3.03 58.96 ± 3.60 59.66 ± 3.51 F2,26 = 0.88, p = 0.425

ISI CV_GAV 0.224 ± 0.007 0.229 ± 0.008 0.237 ± 0.009* F2,26 = 4.03, p = 0.030

LAF, low amplification factor; NAF, normal amplification factor; HAF, high amplification factor; All Mus, all motor units; HT Mus, higher-threshold motor units.

*: HAF > NAF, LAF, p = 0.039

doi:10.1371/journal.pone.0170824.t001
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Fig 6. The contrast of pooled motor unit coherence among the low amplification (LAF), normal

amplification (NAF), and high amplification (HAF) conditions. (a) Pooled motor unit coherence following z

transformation and baseline correction from a typical subject. The pooled motor unit coherences for all motor

units and motor units of high threshold contain two major spectral peaks in 0–4 Hz (ZC0-4Hz) and 13–35 Hz

(ZC13-35Hz). (b) Mean and standard errors ZC0-4Hz and ZC13-35Hz of all motor units and motor units with high

threshold among the three different feedback conditions. (HT MUs: high-threshold motor units)

doi:10.1371/journal.pone.0170824.g006
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Fig 7. The contrast of force-discharge relations among the three different feedback conditions. The

force-discharge relations were characterized as cross correlation (a), mutual information (b), and cross

sample entropy (c) under various Hanning window durations (WD) used to smoothen the discharge rate.

(Xcorr: cross correlation; MI: mutual information; Cross-SampEn: cross sample entropy)(WD50: window

duration 50 ms; WD400: window duration 400 ms; WD1600: window duration 1600 ms).

doi:10.1371/journal.pone.0170824.g007
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information, and cross sample entropy. The size effect of force-discharge relation character-

ized with cross-correlation was significant only when an extremely long Hanning window

duration (1600 ms) was used to smoothen the global discharge trace (window duration 50 ms:

F2,26 = 0.11, p = 0.892; window duration 400 ms: F2,26 = 1.88, p = 0.173; window duration 1600

ms: F2,26 = 10.26, p = 0.001). The use of mutual information to characterize force-discharge

could show a significant effect of visualized error size in the window durations of 400 ms

(F2,26 = 8.78, p = 0.001) and 1600 ms (F2,26 = 10.75, p< 0.001). The relation of force fluctua-

tions and global discharge trace decreased with increasing error feedback gain (p< 0.05). The

use of cross sample entropy to characterize the force-discharge relation resulted in a consistent

of size effect for all window durations (window duration 50 ms: F2,26 = 5.43, p = 0.011; window

duration 400 ms: F2,26 = 9.22, p = 0.001; window duration 1600 ms: F2,26 = 6.00, p = 0.007).

There was a progressive increase in the degree of asynchrony between force fluctuations and

global discharge trace with increasing error amplification factor (p< 0.05).

Discussion

The novel findings of this study were that 1) error-augmentation feedback led to more high-

frequency components, power dispersion, and irregularity of low-frequency force fluctuations

than did error-reducing feedback, 2) error-augmentation feedback increased the standardized

variability and pooled motor unit coherence at 13–35 Hz of the high-threshold MUs relative to

those of error-reducing feedback, and 3) non-linear approaches were better able to character-

ize the size effect on the association of force fluctuations and global MU discharge. The force-

discharge relation waned with increasing size of error feedback.

Behavioral Mechanisms Underlying the Effect of Error Feedback Size

As low-frequency fluctuations are functionally linked to the voluntary engagement of error

corrections with the sampled process [30, 31, 40, 41], the reduction in RHF and mean fre-

quency of force fluctuations (Fig 5(b)) jointly suggested a more sporadic error correction to

remedy force deviation from an ideal trajectory in the LAF condition. Furthermore, force fluc-

tuations of lower SampEn in the LAF condition indicated coarse-grained force gradation dur-

ing force-tracking with visual feedback of smaller error size. Hence, it is very likely that virtual

reduction in the size of execution error dampened some useful error information and oversim-

plified control of the force-tracking act in the LAF condition. The low complexity of force fluc-

tuations was reminiscent of the loss of physiological complexity during exhaustive contraction

[29] and aging processes [42, 43]. In contrast, the parametric changes in force fluctuations in

the HAF condition implied more explorations toward target exactness, which conceptually

support rapid motor adaptation with error-augmentation feedback from observations of

point-to-point movement with visuomotor rotation [17, 18, 19].

The Effect of Error Feedback Size on Motor Unit Control

To the best of our knowledge, no study has directly assessed how MU behaviors are tuned to

the size of error feedback on a visual display during static isometric contraction. Error-aug-

mentation feedback during static force-matching at 10% MVC led to a significant increase in

the standardized variability of the inter-spike intervals (ISI CV_GAV) of the high-threshold

MUs as compared to the NAF and LAF conditions (Table 1). Our observations are consistent

with a parallel effect of discharge variability and force fluctuations during low-level static con-

traction [34, 44]. More specifically, the effect of manipulation of error amplification factor on

discharge variability was ascribed to higher-threshold MUs, which generally exhibited more

variant discharge with a lower discharge rate and larger twitch force than lower-threshold
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MUs. Hence, it is of interest to specify common neuromodulatory inputs to populations of

higher-threshold MUs. Another potential source of increases in the variability of inter-spike

intervals is enhanced synaptic noises or variations in post-spike after-hyperpolarization [45],

which have relatively little influence on the control of force steadiness due to an effective can-

cellation effect in the motoneuronal pool [12,34].

Common input components were enhanced in pooled MU coherence following a summa-

tion of multiple spike trains [12, 34, 46]. Previous studies have shown that the delivery of low-

frequency common oscillatory inputs (< 4 Hz) to motor neurons is a key determinant of accu-

racy in force control [12, 47, 48]. The amplitude of 0–4 Hz common oscillatory inputs has

been shown to be negatively related to force steadiness [49], and the greater amplitude of 0–4

Hz common oscillatory inputs is associated with the larger size of force fluctuations [34]. In

this study, the insignificant modulation of the magnitude of force fluctuations (Fig 5(a)) was

compatible with the observation that 0–4 Hz common oscillatory inputs did not differ with

feedback condition (Fig 6). The size-dependent modulation of spectral and complexity features

of force fluctuations was seemingly contingent upon 13–35 Hz pooled motor unit coherence

(Fig 6(b)), though its role on force control was much less addressed. Pooled MU coherence in

the β-band can be of central origin and be related to interaction between cortical and spinal

circuits [12, 34, 46]. Due to an increasing demand for sensorimotor integration, the β-band

coherence showed an increasing trend with increasing effort [35] and a greater amount of spa-

tial visual information of a force task [14]. In fact, enhanced EEG-EMG coherence in the β
band is critical to maintaining steady-state force control with precision [50, 51, 52]. Perez et al

[53] reported that a marked increase in EEG—EMG coherence around 15–35 Hz was observed

during a training session of visuomotor tracking [53], as a consequence of the higher degree of

attention and precision control required for early consolidation of learning a novel force task.

If the 13–35 Hz of pooled MU coherence is really a corollary to EMG-EEG in the β-band, the

error-augmentation feedback in this study could serve to facilitate force-tuning and better

exploit visual attention on force-tracking trajectory. Therefore, the potentiation of β-band

pooled MU coherence in the HAF condition explains concomitant behavioral changes in force

fluctuation property that favor a decreasing trend of smaller size of force fluctuations and

increases in strategic complexity and frequent force adjustments to remedy force deviations

during force-tracking (Fig 5). A notable point is that the modulation of force gradation using

error-augmentation feedback was selective, for only high-threshold MUs were subject to size-

dependent modulation of the β-band common oscillatory inputs (Fig 6(b)). Similarly, selective

control of lower-threshold and higher-threshold MUs was noted during fatiguing contraction

[54] and fast oscillatory contraction [24].

It should be emphasized that the neurophysiological mechanism underlying the size manip-

ulation of error feedback was fundamentally different from that of manipulation of the amount

of visual gain (or the number of pixels to represent force change) during static force produc-

tion [14]. The reason was apparent, since the visual gain was identical in the three feedback

conditions in this study. In actual practice, if visual gain of a force task decreases, changes in

visual angle with respect to a fixed degree of force fluctuations are smaller in the low-visual

gain condition. Visual angle is known to be the most important informational variables of task

accuracy for a force task [55]. Several previous experiments on isometric force control showed

that a low visual gain condition often associated with one-tenth of the number of visual angle

in a high visual gain condition [55]. A smaller visual angle hampers detection of the spatio-

temporal information from the movement and its feedback in visual space. The experimental

context adds difficulty to map movement trajectory to feedback positions, resulting in a lower

level of irregularity but a larger size of force fluctuations under the condition of low visual gain

for healthy adults [7, 8, 9]. As visual gain of all the feedback conditions was identical, we were
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able to physically manipulate the size of execution error without drastically altering visual

angle for all feedback conditions in this study. Hence, neither visual angle nor visual gain

could adequately account for differential performance variability and motor unit behaviors,

when different error amplification factors were used. Theoretically, manipulation of the size of

execution error altered the representation of the predicted “correct response”, and the mis-

match response is monitored by frontal executive function [56, 57]. In contrast, visual gain

determines visual acuity and somatotopic organizations of a force task. The manipulation of

visual gain should alter visuomotor processing principally involving in the visual cortex, pre-

motor cortex, and the right inferior parietal lobule [20, 21]. In fact, a high visual gain during

static force-tracking sometimes results in a greater size of force fluctuations [58, 59], together

with lower 0–5 Hz and higher 6–12 Hz pooled MU coherence [14]. The discrepancies in force

characteristics and pooled MU coherence address distinct mechanisms of the two task para-

digms by manipulating the error amplification factor and visual gain.

The Effect of Error Feedback Size on Force-discharge Relation

Theoretically, the summated discharge time series of all MUs should have accounted for the

majority of variability of the force exerted by the muscle. But, force-discharge relation is com-

plicated by viscous resistances of the musculotendon system that greatly attenuate the high-fre-

quency force components [37, 46]. Farina and his colleagues propose that the motoneuronal

pool serves as a linear filter to extract low-frequency common inputs to MUs with high linear

correlation with muscle force [12, 34]. Central to this argument is the fact that the cumulative

spike train of all MUs that are low-pass filtered, the effective neural drive [12, 34], can well rep-

resent low-frequency force fluctuations. It is interesting to find the progressive decrease in

neural representation of force fluctuations with the global discharge pattern with increasing

size of error feedback, characterized by cross sample entropy and lower mutual information of

the two data series (Fig 7(b) and 7(c). The results of the two non-linear approaches consistently

speak for the fact that low-frequency force fluctuations were less predictable by the effective

neural drive in the HAF condition. Under this circumstance, the transformation of neural

drive into force fluctuations may rely more on unidentified organizational discharge activities

from motoneuron subpopulations and/or the independent inputs, which are considered to

have a small influence on force genesis in the normal visual condition [12, 34]. As the cross

correlation was not a sensitive indicator to feature the size-dependent effect on force-discharge

relation (Fig 7(a), the alterations in force-discharge relation by variations in error amplifica-

tion factor should be non-linear. In part, the non-linearity is a physiological consequence of

selective modulation on high-threshold MUs with visualized error size.

Methodological Issues and Limitations

Several issues and limitations should be noted. First, the activities of individual MUs were

obtained from multi-electrode surface EMG in a noninvasive manner following state-of-the-

art decomposition techniques. Despite some inconsistencies in the decomposition frameworks

of multi-channel surface EMG [60, 61], the validity of the present surface EMG decomposition

algorithm proposed by De Luca et al. [25]and Nawab et al [26] has been independently verified

by different studies [15, 27, 62] from both physiological and engineering standpoints. Also, to

be rigorous, we conducted the experiment at a relatively low exertion level (10% MVC) to min-

imize MU waveform superimposition and applied the “reconstruct-and-test” procedure [26,

60] to verify the degree of accuracy of the attained identifications. In good agreement with pre-

vious studies reporting decomposition accuracies of 92.5% to 97.6% [25, 28], the high decom-

position accuracy of this study (92.1%–96.5%) did not vary with feedback conditions. The
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standard deviation and coefficient of variation of the firing intervals of the FDI in this study

were congruent with known physiological characteristics obtained with indwelling EMG [11,

63]. A methodological merit of surface EMG decomposition was that it could account for

force control based on more identifiable MUs of different recruitment thresholds than the

intramuscular approach, in that force behaviors are tuned to a population of MUs. Secondly, it

would be prudent to generalize the present findings to muscle contraction of other forms

(such as force-varying, concentric, and eccentric contractions), which may involve different

recruitment strategies and rate coding of MUs.

Conclusions

This study presents a preliminary investigation of behavioral and neurophysiological mecha-

nisms of force regulation when the size of error feedback varies. Capitalizing on characteristic

changes in force fluctuations, error-augmentation feedback provides a more frequent and

intricate force gradation process, which could increase the effectiveness of motor training by

increasing exploration variability. Force control associated with error-augmentation feedback

is pertinent to increases in the neurological degree of freedom for the firing patterns of high-

threshold MUs that receive β-band common oscillatory inputs and unidentified neural drives.
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