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Abstract: Litchi chinensis Sonn. is an important evergreen fruit crop cultivated in the tropical and
subtropical regions. The edible portion of litchi fruit is the aril, which contains a high concentration of
sucrose, glucose, and fructose. In this study, we review various aspects of sugar transport, metabolism,
and signaling during fruit development in litchi. We begin by detailing the sugar transport and
accumulation during aril development, and the biosynthesis of quebrachitol as a transportable
photosynthate is discussed. We then document sugar metabolism in litchi fruit. We focus on the links
between sugar signaling and seed development as well as fruit abscission. Finally, we outline future
directions for research on sugar metabolism and signaling to improve fruit yield and quality.

Keywords: Litchi chinensis; sugar; transport; metabolism; abscission; seed development

1. Introduction

In higher plants, the “source” refers to a photosynthesizing organ with a net export
of assimilates, such as mature leaves, whereas the “sink” is an organ that consumes or
accumulates assimilates, such as fruits. Photoassimilates are usually transported from
sources to sinks as simple sugars, typically as sucrose. Communication between sources
and sinks during plant growth and development, which determines the partitioning of
carbohydrates, has a pivotal role in controlling crop yield and affecting fruit quality [1]. Sink
strength is regulated by a complex signaling network encompassing sugars, hormones, and
environmental factors [2]. Fruits, which are strong sinks, compete for assimilates to ensure
acceptable fruit production and quality [3]. On the other hand, fruit set and development is
affected by source-sink interactions. Sugars provide energy and carbon backbone, and also
work as signal molecules to control fruit growth and development [4,5]. The partitioning
of assimilates in fruits is regulated by several processes, including phloem transport,
metabolism, and sugar signaling, by which they control sugar-mediated responses based
on cellular sugar homeostasis.

Litchi (Litchi chinensis Sonn.) belongs to the Sapindaceae family and is an important
evergreen fruit crop cultivated in the tropical and subtropical regions of the world. Litchi
fruits are characterized by a succulent edible pulp (aril) with a dark brown seed at the
center and a corky pericarp on the outside [6]. The outer pericarp changes to a pink/red
color during fruit ripening because of anthocyanins accumulation [7]. Inside, its pulp is
semi-translucent to white, which accumulates sugars amounting to 15–20% of the fresh
mass [8,9]. Sucrose, fructose, and glucose are the major sugars in the pulp, and the sugar
content and composition vary considerably among cultivars [10,11]. Sugar accumulation
not only contributes to the sweetness and flavor of litchi fruits, but it also provides carbon
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and energy for fruit set, development, and ripening. This review focuses on the recent
progress in the mechanism of sugar transport, phloem unloading, and metabolism. We
then review how sugar signaling affects seed development and fruit abscission.

2. Sugar Accumulation in Litchi Fruit
2.1. Litchi Fruit Development

The typical litchi ovary is two-lobe shaped, with one anatropous ovule in each lobe.
After fertilization, usually only one lobe develops into a single-seeded fruit, and the other
one remains attached as a tiny appendix. The two ovary lobes develop into twin full size
fruits in rare cases [12]. Fruit growth stages are typically sigmoidal and two distinct phases
are distinguished [13]. Stage I is mainly characterized by the growth of pericarp and seed
coat. Stage II is mainly characterized by the growth of an embryo (Stage II a) and the
rapid aril growth and maturation (Stage II b). Stage II a is not distinct in fruit with an
aborted seed. Evidence indicate that there is close correlation among the development of
the pericarp, seed, and aril. Huang and Xu [14] propose the “ball-skin vs. bladder effect”
concept. As the growth of the pericarp (ball skin) precedes the growth of the aril (bladder),
the pericarp determines and restricts aril growth and therefore fruit size [15]. The pericarp
becomes thinner, driven by the extending aril. Fruit size depends mostly on the number of
pericarp cells rather than size [16].

The aril develops from a site just above the obturator on the funicle [17]. The aril
appears around 21–35 days after anthesis (DAA) as a ring of white tissue around the seed
base [16]. It grows upwards, eventually enclosing the seed (Figure 1). The growth rate
of aril is slow at the beginning, but increases rapidly with fruit ripening. The mature aril
consists of large, irregular, thin-walled cells and contains around 15–20% dry mass.
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2.2. Sugar Accumulation during Aril Development

Litchi fruit is widely eaten by consumers due to its sweet taste and rich nutrition [18].
Sugars are the major nutrient in litchi aril, which determine the fruit quality and flavor.
Litchi fruit accumulates different types of soluble sugars and methylated cyclitols, mainly
sucrose, glucose, fructose and quebrachitol (2-O-methyl-chiro-inositol) [19]. The sugar com-
position in the mature aril varies considerably among different litchi cultivars. According
to the hexose/sucrose ratio, litchi cultivars are classified into three types: hexose prevalent
type (hexose/sucrose ratios > 2), sucrose prevalent type (hexose/sucrose ratios < 1), and
intermediate types (1 < hexose/sucrose ratios < 2) [9,10]. The difference in hexose/sucrose
ratio between litchi cultivar offers a valuable system for the regulatory mechanisms of
sugar accumulation in fruits. High levels of quebrachitol, a major sugar derivative, have
been detected in litchi aril [20]. In addition to oligosaccharides, mature litchi aril also
contains various polysaccharides [18].

The content of total sugar increases during aril development and maturation, de-
creasing during postharvest storage [21]. However, the patterns of sugar accumulation
in the aril are significantly different between the hexose-prevalent type (‘Feizixiao’, FZX)
and the sucrose-prevalent type (‘Wuheli’, WHL). In FZX, sucrose initially increases and



Int. J. Mol. Sci. 2021, 22, 11231 3 of 11

then declines at 60 DAA when the fruit reaches half its mature weight, while glucose
and fructose increase steadily, resulting in a high hexose/sucrose ratio. In WHL, sucrose
increases during aril development up to maturity, but glucose and fructose remain constant
during fruit ripening, leading to a low hexose/sucrose ratio. Quebrachitol decreases and
remains constant during fruit ripening [22].

2.3. Sugar Transport and Sugar Transporters of Litchi Fruit

It is well recognized that phloem unloading in sink organs plays a critical role in
regulating the distribution of photoassimilate [23]. Post-phloem transport has symplastic
and/or apoplastic pathways depending on the type of organ and developmental state [24].
The vascular bundles of litchi fruit end in the funicle or seed stalk. There is no vascular
bundle in the aril and the connection area of the aril and funicle. Therefore, the funicle,
where the aril originates, serves as the connection between the vascular pedicel and the
aril (Figure 2). This special structure suggests that phloem unloading into aril seems to be
apoplastic. Carboxyfluorescein (CF), a cell-to-cell migration of symplastically restricted
fluorescent dye, was used to test the continuity of the symplasmic pathway between the
funicle and aril. CF was transported along the vascular bundle and diffused to funicle
parenchyma cells, but it was confined there with no distribution in the aril [25]. Therefore,
the aril is symplasmically separated from the funicle. The post-phloem sugar transportation
pathway from the funicle to the aril is apoplasmic.
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Sugars accumulate in the vacuoles of flesh cells by either simple diffusion along
a steep concentration gradient or energy-driven transporter-mediated process. Since the
post-phloem sugar transport into aril through the apoplasmic pathway, energy-driven
transporters rather than the sugar gradient might play key roles in regulating aril sugar
accumulation in litchi. Infiltration of both an ATPase inhibitor [eosin B (EB)] and a sucrose
transporter inhibitor [p-chloromercuribenzene sulfonate (PCMBS)] inhibited sugar accu-
mulation in litchi aril [25]. In summary, the uploading of sugars into litchi aril depends on
ATPase and involves the action of the sugar transporter.

Analysis of the litchi genome sequence shows that sucrose transporters (SUTs) and
hexose transporters (HTs) are both encoded by a multi-gene family. Five and seven ortholog
genes of SUTs and HTs are identified in litchi. There is considerable variation in the
expression patterns of LcSUT and LcHT genes in the aril. LcSUT1, LcSUT4, LcHT2 and
LcHT5 display higher expression levels in the aril [25]. LcSUT1 shows high similarity to the
SUC3/SUT2 group, while LcSUT4 shows high similarity to the SUC4/SUT4 group. During
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aril development, stronger expression of LcSUT4 coincide with the sugar accumulation,
suggesting that LcSUT4 is involved in apoplasmic transport for sugar accumulation in litchi
aril [25]. However, the expression of LcHT2 and LcHT5 is not paralleled by the increase in
hexose concentration in litchi aril. Further work is needed to clarify their roles in sugar
accumulation in litchi fruit.

More recently, a new class of sugar transporters named Sugar Will Eventually be
Exported Transporters (SWEETs) has been identified from archaebacteria to plants and
humans. SWEETs can mediate both cellular uptake and efflux of various mono- and
disaccharides, which is largely pH independent [26]. Sixteen LcSWEET genes are identified
in the litchi genome, which are divided into four clades by phylogenetic tree analysis [27].
Among them, LcSWEET10 is strongly expressed with the sugar accumulation and has
different expression patterns during aril development between cultivars with different
hexose/sucrose ratios (unpublished data). The similar gene in grapevine VvSWEET10 has
been proved to be a hexose-affinity transporter with broad spectrum of sugar transport
functions [28].

2.4. Biosynthesis of Quebrachitol, a Transportable Photosynthate

In litchi, as in many higher plants, sucrose is the major photosynthetic product of
long-distance transport in the phloem. Recently, quebrachitol, the main element in the aril
of litchi, was identified as one of the transportable photosynthates [20]. Quebrachitol was
first discovered as a natural product in Aspidosperma quebracho (Apocynaceae), and was
later detected in various species of the Sapindaceae. Quebrachitol is ubiquitous in litchi
organs and tissues, with especially high levels in leaves, phloem, and xylem. Wu et al. [20]
fed 14CO2 to litchi leaves, and detected radioactivity in both the sucrose and quebrachitol
fractions, proving quebrachitol is a translocated photoassimilate. The accumulation of
quebrachitol might be a taxonomic trait of plants belonging to the Sapindaceae, such as
sorbitol in species of the Rosaceae and mannitol in members in the Apiaceae. The high
concentrations of quebrachitol in litchi may represent an important carbon metabolic
strategy that maintains osmolality under reduced-sucrose conditions.

Myo-inositol is the precursor for quebrachitol synthesis, which involves the methy-
lation of myo-inositol and subsequent epimerization of bornesitol (the methylated in-
termediate). In litchi, inositol 1-O-methyltransferase has been identified as a catalyzer
the methylation of myo-inositol to the formation of bornesitol (1-O-methyl-myo-inositol).
Wu et al. [20] identified an inositol methyltransferase gene (LcIMT1) involved in bornesitol
biosynthesis. The down-regulation of LcIMT1 through virus-induced gene silencing (VIGS)
resulted in significantly lower concentrations of bornesitol. These results suggest that
bornesitol is a stable intermediate in quebrachitol biosynthesis.

3. Sugar Metabolism in Litchi Fruit

Once imported into sink cells, sucrose is either stored or metabolized. Sucrose syn-
thases (SuSy: EC 2.4.1.13) and invertases (INV: EC 3.2.1.26) are mainly involved in the
cleavage of sucrose, which helps the maintenance of sink strength [29]. In addition, re-
synthesis of sucrose in sink cells may occur via sucrose phosphate synthase (SPS: 2.4.1.14).

3.1. SPS

SPS is a key enzyme of sucrose synthesis from Fructose-6-Phosphate and uridine
diphosphate (UDP)-glucose. Its activity has been shown to be associated with plant
biomass production. In sugarcane, overexpression of SoSPS1 gene increased plant biomass
production and stalk [30]. In litchi, no significant correlation was observed between the aril
hexose/sucrose ratio and SPS activity [10]. However, the activities of SPS and expression
levels of LcSPS genes in high-sucrose cultivar WHL were much higher than those in low-
sucrose cultivar FZX [9]. Indeed, sugar accumulation and composition in fruit comprises
a complex regulatory network [31]. Sucrose can be resynthesized in sink cells, particularly
where phloem unloading occurs apoplasmically [32]. Higher activities and expression
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levels of LcSPSs in WHL indicate that SPS might be involved in the re-synthesis of sucrose
to maintain high sucrose accumulation in aril with low hexose/sucrose ratios.

3.2. SuSy

SuSy catalyzes the reversible cleavage of sucrose and UDP into fructose and UDP-
glucose. It has been proposed to be a biochemical marker of sink strength. In addition,
increasing evidence suggest that SuSy functions in sink development and responds to
environmental changes in plants [32]. In litchi, SuSy activities increase with increasing
hexose/sucrose ratios among different cultivars. There is a significantly positive linear
correlation between SuSy activities and the hexose/sucrose ratio [10]. Five SuSy genes are
identified in litchi, which exhibit distinct but partially redundant expression patterns [22].
The expression profile of LcSuSy1 is consistent with the trend of sugar accumulation during
aril development, suggesting it may play an important role in the determination of sink
strength in aril. Moreover, LcSuSy2, LcSuSy4, and LcSuSy5 show varied expression patterns
between cultivars with different hexose/sucrose ratios [22]. These analyses highlight the
diversity and complexity of SuSy function in aril development.

3.3. INV

INV irreversibly hydrolyzes sucrose into glucose and fructose. According to their
subcellular localization, INVs are classified into three groups: cell wall invertases (CWIN),
vacuolar invertases (VIN), and cytoplasmic invertases (CIN). CWIN and VIN, which
are also called acid invertase, have an acidic pH optimum (4.5–5.5). By contrast, CIN
has a neutral/alkaline pH optimum (7.0–7.8) [33]. INVs have a crucial function in plant
growth and development, and CWIN and VIN are also involved in abiotic and biotic stress
responses [5]. For example, a major CWIN gene, LIN5, and CWIN activity are differentially
activated in styles and ovaries during pollination and fertilization, and elevated CWIN
activity up-regulates sugar transporters to promote sugar uptake by parenchyma cell for
early fruit development in tomatoes [34,35]. In addition, INV activity is post-translationally
regulated by invertase inhibitors (INHs) in plant [36].

In litchi, the activities of CWIN and VIN in the arils are significantly and positively
correlated with their hexose/sucrose ratios. Sucrose-prevalent type cultivars display very
low or non-detectable levels of CWIN and VIN. By contrast, hexose-prevalent type cultivars
show high activities of CWIN and VIN. There is no obvious correlation between CIN
activities and hexose/sucrose ratio among different cultivars [10]. During aril development,
CWIN and VIN activities are low at early stages and then continuously increase until
maturity in hexose-prevalent cultivars, however, CWIN and VIN activities remain low
in sucrose-prevalent cultivars [10]. CWIN has been shown to play an essential role in
nonphotosynthetic organs where sucrose phloem unloading or subsequent post-phloem
transport follow an apoplasmic pathway [37]. As previously mentioned, sugar transport
from the funicle to the aril follow an apoplasmic pathway [25]. Therefore, CWIN plays
a critical role in litchi aril development and fruit quality. By contrast, VIN plays a major
role in cell expansion and hexose-accumulating organs [32]. In tomatoes, the lack of VIN
activity in wild species, Lycopersicon chmielewskii, accumulates high levels of sucrose in
mature fruit and transgenic repression of SlVIN1 results in fruit accumulating sucrose
instead of hexose [38]. The role of LcVIN in determining sugar composition in the litchi
aril is worth further study.

4. Sugar Signaling and Fruit Development

In addition to the role as a nutrient, sugar can regulate plant development and gene
expression by sugar signaling. Complex mechanistic approaches have been evolved in
plants to sense different sugars, such as sucrose, hexoses, and trehalose [39]. Sugar signaling
has been known to be involved in plant growth, development, and stress responses [40]. In
addition, the interaction between sugars and plant hormones has also been described in
plant development [41].
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4.1. Sugar Regulation of Genes Involved in Fruit Abscission

Fruit abscission is a normal event during fruit development. However, massive fruit
abscission is a major problem causing low and unstable yield in litchi. Around 5% or less
of the initial female flowers can develop into mature fruit, depending on cultivars, weather,
and the status of tree nutrients [16]. Endogenous hormones and carbohydrates have been
applied to regulate fruit abscission in litchi [42]. In South China, overcast or rainy weather
frequently occurs during litchi fruit development, leading to low photosynthetic activity
and fruit set [16]. Artificial shading over the whole canopy or spraying photosynthetic
inhibitors causes serious fruit abscission. Trunk-girlding treatment at full bloom is car-
ried out to inhibit fruit abscission, which is probably due to more carbohydrate being
available in source leaves, thereby strengthening the fruit in the competition of carbohy-
drate [43]. Therefore, it is proposed that the status of carbohydrate acts as an abscission
signal perceived by fruit.

Recently, transcriptome analyses have been conducted to investigate the molecular
events underlying fruit abscission in litchi. Carbohydrate deficiency-inducing treatments
such as girdling plus defoliation result in 100% fruit drop of litchi, meanwhile, the genes
involved in sugar degradation are upregulated and the sugar synthesis genes are downregu-
lated [44]. Moreover, girdling plus defoliation treatment reduces the content of endogenous
indole-3-acetic acid (IAA) and increases the transcript level of LcAUX/IAA1, LcGH3.1 and
LcSAUR1, in contrast to the decreasing level of LcARF1 [45]. These results suggest that
carbohydrate deficiency not only induce the sugar signaling, but also the endogenous
hormones signals, such as auxin polar transport and signal transduction. Similarly, the
expression of genes related to IAA synthesis and transport are significantly reduced in the
pericarp of abscising mango fruitlets [46].

4.2. Sugar and Seed Development

Based on the type of seed development, litchi fruits can be categorized into three types:
normal, abortive (shriveled) and seedless [16]. Seedless fruit are caused by embryo sac
sterility and therefore the absence of fertilization (parthenocarpy). The aborted seeds
are also called stenospermocarpy, which is caused by embryo abortion after fertilization.
Embryo abortion is believed to be a consequence of both the genotype and environment,
especially the temperature. There is a strong correlation between ‘Guiwei’ seed develop-
ment and the minimum temperature under field conditions, indicating thermos-sensitive
sterility underlying the partial seed abortion in ‘Guiwei’ [47]. Seed development depends
on the coordinated development of the seed coat, endosperm, and embryo [48]. In normal-
seeded cultivar, ‘Heiye’ (HY), visible liquid endosperm is observed around 21 DAA and
most abundant at 28 DAA when the embryo reaches the heart stage with a rudimentary
cotyledon, then the liquid endosperm is absorbed by the developing cotyledon. In the
abortive-seeded cultivar, ‘Nuomici’ (NMC), visible liquid endosperm is not obvious and
zygote development is retarded [49]. These results indicate that the failure of endosperm
development ultimately causes the arrest of embryo development. Indeed, the endosperm
acts not only as a nutrients source but also as an integrator of seed development [50]. It
confirms that seed size is affected by the timing of endosperm cellularization in maize [51].

As mentioned earlier, litchi cultivars are grouped into three types according to the
difference of hexose/sucrose ratio [10]. Interestingly, most of the cultivars with lower
hexose/sucrose ratio have abortive seeds, and further analysis indicates that there is a sig-
nificant positive correlation between hexose/sucrose ratio and seed weight [52]. Similar to
the aril, the CWIN activities in the funicle and seed coat are significantly lower in NMC
than in HY, which is consistent with the lower fructose and glucose contents in the funicles
of NMC compared with those of HY [49]. The aril and the seed share the same phloem
unloading pathway. The funicles are the main corridor from phloem to aril and seed.
Therefore, abortive seed cultivars in litchi are associated with the lower CWIN activities in
the funicle and seed coat, due to the weak unloading capacity. Mutants of maize and rice
with reduced CWIN activities produce smaller seeds, whereas elevation of CWIN activity
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in tomatoes increases the seed size [53–55]. Thus, CWIN play important roles in seed
development. Increasing evidence indicate that hexes, especially glucose released from
CWIN activity, not only provide nutrients, but also act as signals to activate the expression
of seed development related genes [32].

Among the five LcCWIN genes, LcCWIN5 is specifically expressed in anthers and
pistils, while LcCWIN2 is predominantly expressed in the funicle and the seed coat [49].
Silencing of LcCWIN5 or LcCWIN2 at early seed development result in impaired liquid
endosperm development, smaller seeds, and/or higher seed abortion rate [49]. Therefore,
it is suggested that the impaired endosperm development in abortive seed cultivars is
due to decreased CWIN expression. In maize, the Miniature1 (ZmMn1) encodes an en-
dosperm specific CWIN, and its mutant impairs endosperm development by reducing
the cell number [53]. Similarly, a larger endosperm correlates with expression changes of
a CWIN gene, OsGIF1 [54]. During early seed development, high glucose-to-sucrose ratios
generally correlate with mitotic activity and favor cell division. In fava beans (Vicia faba),
high CWIN activities correlate with high glucose levels and more cells are produced in
the embryo [56]. In cotton early seed development, GhCWIN1 plays important roles in
transfer cells differentiation, endosperm nuclear division, and embryonic provascular
development [57].

Embryo and endosperm are symplasmically isolated from the maternal seed coat,
thus requiring the help of SUT or SWEET. Arabidopsis sweet11;12;15 triple mutant causes
a “wrinkled” seed phenotype, including retarded embryo development, reduced seed
weight, and reduced starch and lipid content, implicating SWEET-mediated sucrose efflux
in the transfer of sugars from seed coat to embryo [58]. Maize ZmSWEET4c transfers
CWIN-derived hexoses across the basal endosperm transfer layer (BETL) as a key step
in seed filling. Mutants of both maize ZmSWEET4c and its rice ortholog OsSWEET4 are
defective in seed filling [59]. In litchi, LcSWEET2a and LcSWEET3b are mainly expressed
in seeds. The expression of LcSWEET2a and LcSWEET3b are higher in the big-seeded
cultivar HY than that in the seed-aborting cultivar NMC. Moreover, LcSWEET2a and
LcSWEET3b are mainly expressed in the funicle in HY, where the sucrose is apoplasmic
phloem unloaded [27]. This research suggests that SWEET encodes hexose transporters
acting downstream of CWIN that hydrolyzes phloem-derived sucrose. LcSWEET2a and
LcSWEET3b appear to be responsible for transferring hexose from the funicle to endosperm
for its development. Interestingly, the expression of ZmMn1 and ZmSWEET4c is induced
by glucose in the BETL, intimating that a ‘feed-forward’ mechanism, in which increasing
glucose levels trigger enhanced membrane surface area, as well as increased capacity to
hydrolyze sucrose and import hexoses into the BETL [59]. Moreover, ZmSWEET4c and
OsSWEET4 shows signs indicative of selection during domestication. SWEET4 is likely
recruited during domestication to enhance sugar import into the endosperm in both maize
and rice [59]. Further work is required to determine whether LcSWEET is also a target of
selection during litchi domestication.

In summary, we hypothesize that impaired liquid endosperm development is associ-
ated with the lower CWIN activity under certain intrinsic and/or external stimuli, resulting
in seed abortion in NMC. In addition to impaired expression of LcCWIN gene, INHs that
post-translationally regulate CWIN activity may be responsible for the decreased CWIN
activity in NMC. Moreover, the CWIN-mediated sugar signal might interact with hormonal
signaling pathways to regulate seed development in litchi (Figure 3).
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5. Conclusions and Future Perspective

In this review, we focussed on the sugar transport, metabolism, and their involvement
in litchi fruit development. As an important fruit quality parameter, sugar content and
composition has also gained extensive attention for their critical roles in fruit development.
We underlined the complexity of sugar transport and sugar accumulation during litchi
aril development. Sugar content and composition vary considerably among cultivars.
However, the molecular mechanism of the accumulation of high concentrations of glucose
and fructose in the aril are still poorly characterized. Furthermore, factors that are involved
in sugar transport, as well as the sugar metabolic enzymes, and the sink-source relationship,
also need to be investigated to improve fruit quality and yield. Although high levels of
quebrachitol have been detected in litchi, its physiological roles in the regulation of fruit
development and adaptation to stress have not been well defined.

Beyond obtaining energy, the sugar status directly or indirectly affects fruit develop-
ment through sugar signaling pathway. Here we reviewed the role of sugar metabolism in
controlling important events in fruit abscission and seed development. CWIN activities
are essential for seed development. However, it remains largely unknown as to how this
is achieved. To answer this question, it will be essential to identify the molecule and
biochemical pathways that are responsive to up- or downregulation of CWIN. Equally
relevant is identifying the INHs that regulate CWIN activity at post-translational level.
Interactions between the sugar and hormonal signaling pathway play a key role in fruit
development. Further work is required to understand the regulatory mechanisms underly-
ing sugar and hormone connection in controlling fruit growth, ripening, and abscission, as
this will permit us to have a better control on fruit yield under abiotic stress. Answers to
these questions will depend on the development of functional genomic tools in litchi that
is recalcitrant to genetic transformation as well as long growth period.
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