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Human Cytomegalovirus (HCMV) can cause a variety of health disorders that can lead to

death in immunocompromised individuals and neonates. The HCMV lifecycle comprises

both a lytic (productive) and a latent (non-productive) phase. HCMV lytic infection occurs

in a wide range of terminally differentiated cell types. HCMV latency has been less

well-studied, but one characterized site of latency is in precursor cells of the myeloid

lineage. All known viral genes are expressed during a lytic infection and a subset of

these are also transcribed during latency. The UL111A gene which encodes the viral

IL-10, a homolog of the human IL-10, is one of these genes. During infection, different

transcript isoforms of UL111A are generated by alternative splicing. The most studied

of the UL111A isoforms are cmvIL-10 (also termed the “A” transcript) and LAcmvIL-10

(also termed the “B” transcript), the latter being a well-characterized latency associated

transcript. Both isoforms can downregulate MHC class II, however they differ in a number

of other immunomodulatory properties, such as the ability to bind the IL10 receptor and

induce signaling through STAT3. There are also a number of other isoforms which have

been identified which are expressed by differential splicing during lytic infection termed C,

D, E, F, and G, although these have been less extensively studied. HCMV uses the viral IL-

10 proteins to manipulate the immune system during lytic and latent phases of infection.

In this review, we will discuss the literature on the viral IL-10 transcripts identified to date,

their encoded proteins and the structures of these proteins as well as the functional

properties of all the different isoforms of viral IL-10.
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INTRODUCTION

Viruses have to face many challenges to become established in the host population. Herpesviruses
are extremely successful in overcoming such challenges as evidenced by their ability to establish
lifelong infection (Sinclair and Poole, 2014; Collins-McMillen et al., 2018). Cytomegalovirus is the
largest of the herpesviruses, belonging to the β-herpesvirinae subfamily and is characterized by slow
growth and species specificity (Mocarski et al., 2007).
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During primary HCMV infection there is a robust activation
of both innate and acquired immune responses which control
virus replication in immunocompetent hosts, generally resulting
in asymptomatic infection or mild disease. However, infection is
not cleared and, as with all herpesviruses, HCMV is maintained
for the life time of the host in equilibrium with the host
immune system as a latent infection, in certain cell types,
with spontaneous subclinical reactivation events which are well-
controlled by a normal host immune response (Sinclair and
Poole, 2014; Collins-McMillen et al., 2018; Elder and Sinclair,
2019). It is also likely that, in vivo, sites of low level persistent lytic
infection exist (Goodrum et al., 2012). However, dysregulation
of the host immune system can result in clinical reactivation
leading to a variety of diseases, highlighting the importance of
a competent immune system in the control of the virus (Varani
and Landini, 2011; Griffiths et al., 2015). This capacity of HCMV
to remain in balance with the immune system is the result of
over 200 million years of coevolution with its host where, in
order to survive, the virus has acquired a number of molecular
mechanisms which allow it to evade anti-viral immune responses
(McGeoch et al., 1995; Jackson et al., 2011; Noriega et al., 2012;
Wills et al., 2015; Patro, 2019).

During lytic infection all classes of viral genes are expressed,
viral DNA is replicated and new infectious viral particles are
produced. In contrast, during latency the viral genome is
maintained as an episome in the cell nucleus in the absence of
viral DNA replication and production of viral particles (Taylor-
Wiedeman et al., 1991; Mendelson et al., 1996; Hahn et al.,
1998; Reeves and Sinclair, 2013; Elder and Sinclair, 2019).
Robust lytic infection can occur in many differentiated cell types,
such as smooth muscle cells and fibroblasts, while low level
persistence is thought to occur some epithelial and endothelial
cells (Sinzger et al., 2008). In contrast, latency is restricted to a
few undifferentiated cells. One of the most highly characterized
latency and reactivation systems is in the hematopoietic lineage,
where latency is maintained in CD34+ progenitors and their
derivative CD14+ monocytes. Latency is then broken upon
terminal differentiation of these undifferentiated myeloid cells
to macrophages or dendritic cells (Taylor-Wiedeman et al., 1991,
1994; Mendelson et al., 1996; Hahn et al., 1998; Slobedman and
Mocarski, 1999; Reeves et al., 2005).

During latency, expression of key viral genes required for
efficient lytic infection, such as the viral major immediate early
(IE) genes, are repressed. The latency-associated transcriptome
is currently under intense investigation (Cheng et al., 2017;
Shnayder et al., 2018) and single cell RNAseq analyses have
recently shown that during latency, far from being silenced, viral
gene expression is much more extensive than first thought. A
number of latency-associated viral genes, which are all known
to also be expressed during lytic infection, have been well-
characterized; these include LUNA (latent undefined nuclear
antigen; UL81-82as), US28, UL138 (comprising a number of
transcripts), and the viral homolog of the interleukin 10 (IL10).
RNAs for all these genes have all been identified in natural latency
studies and analyses of roles for these genes in experimental
latency settings have identified a number of functions for these
latency-associated genes (Kondo et al., 1996; Beisser et al., 2001;

Goodrum et al., 2002, 2007; Jenkins et al., 2004; Cheung et al.,
2006; Hargett and Shenk, 2010; Poole et al., 2013; Humby and
O’Connor, 2015; Cheng et al., 2017; Shnayder et al., 2018).

With the expression of viral antigens during both lytic
and latent infection, it is clear that the virus must have
to continually evade host immune surveillance in vivo and,
in fact, HCMV is able to perform this task very efficiently
through multiple mechanisms (Jackson et al., 2011; Stack et al.,
2012). One of the main battles that the virus has to face
is to avoid the production of proinflammatory cytokines by
immune cells that function to activate the immune system and
eliminate the virus (Nordøy et al., 2000; Compton et al., 2003;
Clement and Humphreys, 2019). One of the strategies used
by HCMV to disable the immune system is to manipulate
the immunoregulatory functions of cellular anti-inflammatory
interleukin 10 (cIL-10) (Redpath et al., 2001). As part of this
strategy, and similar to other herpesviruses, during coevolution
with its host, HCMV has ‘captured’ a cIL-10 viral gene (UL111A)
which expresses different IL-10 protein isoforms (Kotenko et al.,
2000; Lockridge et al., 2000; Jenkins et al., 2004; Lin et al., 2008),
which help manipulate the immune response to HCMV.

In this article we review and discuss the transcripts, protein
structure and immune subversive mechanisms of the HCMV
viral IL10 (vIL-10) isoforms during productive lytic and latent
HCMV infections concentrating on its role in modulating
infection in the myeloid lineage and comparing it to the structure
and functions of human IL10 and other IL-10 homologs encoded
by other herperviruses.

HCMV INFECTION UPREGULATES LEVELS
OF cIL-10

cIL-10 is one of the most critical immunoregulatory cytokines of
the immune system that acts during inflammatory processes to
suppress and control the magnitude of the response in order to
avoid excessive immune activation and its consequences (Brooks
et al., 2006; Ouyang et al., 2011; Rojas et al., 2017). The human
IL10 encoding gene located on chromosome 1 is 5.1 Kb pairs in
length and gives rise to a primary transcript containing five exons
and four introns. Splicing of this primary transcript generates
a 1,629 bp mRNA, including the untranslated regions (UTRs),
which produces a protein of 178 aa which is secreted after
cleavage of a signal peptide (Vieira et al., 1991; Kim et al., 1992)
(Figure 1).

cIL-10 is a homodimer composed of two non-covalently
linked monomers that bind to the IL10 receptor (IL-10R) in a
coordinated manner. First, the homodimer binds to the high
affinity IL-10R1 subunit, changing the conformation of the
cytokine, and allowing its binding to the low affinity signaling
IL-10R2 subunit (Liu et al., 1994; Kotenko et al., 1997). Binding
of cIL-10 to receptor leads to a cascade of intracellular signaling
involving the Janus kinases, Jak1 and Tyk2, culminating in
activation of the signal transducers and activator of transcription
(STATs), which translocate to the nucleus and activate the
promoters of various cIL-10 responsive genes (Sabat et al., 2010).
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FIGURE 1 | Schematic representation of the genomic intron/exon organization of human IL-10 and the HCMV IL-10s transcripts. Boxes and horizontal lines

representing exons and introns were drawn to scale. The 39- and 59-UTRs of cellular IL-10 (GenBank accession no. NP_000563) are not shown. Colored boxes

represent homologous exons. The first horizontal scale represents the position in the AD169 HCMV strain genome (GenBank accession number FJ527563.1). The

second horizontal scale represents the length in base pairs (bp). Finally, the asterisks represent the position of the stop codons.

cIL-10 is produced mainly by cells involved in innate and
adaptive immunity and acts as a feedback regulator of these cells
primarily to suppress the immune response. The main producers
of cIL-10 are T cells, in particular the CD4+ T cells, as well as
Th1, Th2, and Th17T cell subsets. cIL-10 is also expressed by T
regulatory (Treg) cells, CD8+ T cells and certain subpopulations
of B cells (B1 and B2), which are also important players
in controlling the inflammatory response. Among the innate
immune cells, antigen presenting cells (APCs), including those
of the myeloid lineage such as monocytes, activated monocytes,
macrophages and dendritic cells (DCs), produce cIL-10 and cIL-
10 expression in these cells is regulated by an autocrine feedback
to restrict their activation in response to inflammatory cytokines.
Natural killer (NK) cells, critical regulators of the innate immune
response, are also able to produce cIL-10. cIL-10 has a variety
of biological functions in different cell types, but monocytes
and macrophages appear to be the main known targets of its
anti-inflammatory properties (Sabat et al., 2010; Ouyang et al.,
2011). In APCs, cIL-10 is able to inhibit the surface expression of
stimulatory and costimulatorymolecules as well as the expression
of pro-inflammatory cytokines, such as IFNy, TNFα, IL-1b, and
IL-6, which can prevent the activation andmaintenance of CD4+
T cells. Additionally, cIL-10 has immune stimulatory activities
that lead to proliferation of B cells, mast cells and thymocytes

(Hedrich and Bream, 2010; Saraiva and O’Garra, 2010; Rojas
et al., 2017).

The immunosuppressive functions of cIL-10 are so important
that many pathogens, including viruses, regulate the expression
of cIL-10 to control the host immune responses in order
to overcome antiviral responses and establish latent/persistent
infections (Wilson and Brooks, 2011). Perhaps unsurprisingly,
HCMV also modulates the infected environment by controlling
expression of cIL-10. cIL-10 is upregulated during both latent and
lytic phases of HCMV replication, as described below.

It is well-established that increased levels of cIL-10 correlate
with viral load during virus reactivation in transplant patients
(Nordøy et al., 2000; Cervera et al., 2007; Zedtwitz-Liebenstein
et al., 2007; Sadeghi et al., 2008; Essa et al., 2009; Schaffer et al.,
2009; Zhang et al., 2009; Krishnan et al., 2010; La Rosa et al.,
2011; Limaye et al., 2016). Furthermore, elevated levels of cIL-
10 associated with high viral loads, have also been observed in
patients with sepsis (Silva et al., 2019) and coronary diseases (Sun
et al., 2005). Whilst the specific cell types secreting cIL-10 in
response to active viral replication in vivo have not been fully
elucidated, some studies shown that CD4+ T cells produce cIL-
10, in response to lytic and latent antigens in vivo (Mason et al.,
2012; Schwele et al., 2012; Jackson et al., 2017). It is possible that
the induction of cIL-10 acts in favor of the virus to minimize
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the inflammatory response and, as such, tissue damage caused
by virus infection in the immune competent. In an individual
infected with HCMV there are continual reactivation events
(Reeves and Sinclair, 2008), however, very little tissue damage and
this is, perhaps, due to the robust activation of cIL10 by the virus.
In support of these observations, studies in mouse and Rhesus
models revealed that elevated levels of cIL-10 are important to
reduce immune pathologies (Humphreys et al., 2007; Lee et al.,
2009; Chang and Barry, 2010; Jones et al., 2010; Mandaric et al.,
2012; Clement et al., 2016; Eberhardt et al., 2016).

Given the known immune suppressive functions of cIL-10,
it is perhaps not surprising that HCMV infection increases
expression of cIL-10 in order to help avoid virus clearance and
facilitate persistence. In fact, a recent study by Zischke et al.
(2017), provided the first mechanistic evidence of an HCMV
protein that can modulate expression of cIL-10 from T cells in
vitro. It was demonstrated that the extracellular domain of the
glycoprotein UL11 binds the CD45 phosphatase (Gabaev et al.,
2011), increasing TCR signal strength, and production of cIL-
10, via its control over the SRC family kinase LcK (Zischke
et al., 2017). UL11 localizes at the surface of infected fibroblasts,
therefore the protein likely functions during active replication, in
vivo, to promote cIL-10 expression (Gabaev et al., 2014). It would
be interesting to analyze UL11 variability and test whether there
is any correlation with levels of cIL-10 in infected individuals.

Clearly any increases in cIL-10 might be likely to help limit
virus clearance, thus favoring a latent infection or low levels
of persistence, and therefore the ability of HCMV to induce
cIL-10 during active infection would be advantageous to the
virus. In fact, induction of cIL-10 occurs during both lytic
and latent infection and the viral cIL-10 homologs appear to
important modulators of this induction of cIL-10, as further
discussed below.

THE UL111A GENE AND DIFFERENT
TRANSCRIPTS

HCMV encodes a cIL-10 homolog gene, which is differentially
spliced into several variants. Among them the entitled cmvIL-10
(also termed the “A” transcript) and LAcmvIL-10 (also termed the
’B’ transcript) are the most studied. The identification of a cIL-10
gene homolog in the HCMV genome resulted from the work of
two groups simultaneously (Kotenko et al., 2000; Lockridge et al.,
2000). An ORF in the RhCMV genome with homology to cIL-
10 was recognized which was also present in HCMV as well as
baboon and African green monkey CMVs (BaCMV, AGMCMV,
respectively) (Kotenko et al., 2000; Lockridge et al., 2000). The
HCMV transcript, termed cmvIL-10, was shown to contain three
exons and two introns (Figure 1), in contrast to four exons and
three introns present in the RhCMV transcript. The HCMV
cDNA had only 45% sequence identity to the cDNA of RhCMV.
The predicted IL10 proteins of HCMV and RhCMV had 27 and
25% identity to their respective host cIL-10 (Kotenko et al., 2000;
Lockridge et al., 2000).

A number of cIL-10 homologs have been identified in other
members of the herpesviridae family and many of them are

located in orthologous locations in the viral genomes, likely
indicating a gene capture event in an ancestral virus. Positional
orthology is observed in the genus Cytomegalovirus and the cIL-
10 capture event is estimated to have taken place at least 42
million ago, when the Old and New World monkeys diverged.
Viral cIL-10 homologs have been identified in other members
of the herpesviridae family. Many of them are located in
orthologous locations within the viral genomes. This likely
indicates a gene capture event in an ancestral virus after
divergence of subfamilies. The vIL-10s in the genomes of
members of the betaherpesvirinae subfamily, including HCMV,
rhesus CMV (RhCMV), African green monkey CMV, baboon
CMV and cynomolgus CMV, all have high sequence divergence
from their host cIL-10 (Marsh et al., 2011; Ouyang et al.,
2014). However, gammaherpesviruses, such as Epstein-Barr and
Macaque CMV (RhLCV), have 92 and 97% identity to cIL-10 at
the amino acid level, respectively (Arrand et al., 1981; Franken
et al., 1996; Ouyang et al., 2014). These observations indicate
a capture gene event earlier in the coevolutionary history of
the betaherpesvirinae subfamily with their hosts (Ouyang et al.,
2014).

During lytic HCMV infection in fibroblasts the cmvIL-10
transcript is expressed with late (γ) gene kinetics (Chang et al.,
2004) (also more recently classified as TP5 kinetics; Weekes et al.,
2014; Nightingale et al., 2018). The primary transcript, of 693
bp, contains two introns of 77 and 84 bp, respectively (Figure 1)
(Kotenko et al., 2000; Lockridge et al., 2000). Notably, a region
comprising part of the first exon and part of the first intron of
the HCMV UL111A is colinear with a previously identified ORF
of 79aa, the morphological transforming region (mtrII), involved
in rodent cell transformation (Muralidhar et al., 1996). Studies
such as these suggest that, under certain conditions, regions of
the HCMV genome may have oncogenic properties which needs
further research.

An additional shorter HCMV IL10 transcript was also
identified in primary human GM-Ps, latently infected with
the CMV strains Toledo, AD169 and Towne, and was named
latent associated transcript (LAcmvIL-10, also termed the “B”
transcript) (Kondo et al., 1996). LAcmvIL-10 was also detected
in mononuclear cells from healthy bone marrow and mobilized
peripheral blood allograft donors, demonstrating its expression
during natural latent infection (Jenkins et al., 2004).

The LAcmvIL-10 transcript results from a single splice event
in which only the first intron of the full length cmvIL-10
transcript is removed resulting in the presence of an in-
frame stop codon at nucleotide position 160171 in the AD169
strain, 12 amino acids after the end of the second exon
(Chee et al., 1990) (Figure 1). Primer-walking RT-PCR assays
demonstrated that the LAcmvIL-10 in AD169 starts at a site 38
bp (between nucleotide position 159577 and 159615) upstream
of the transcription start site of cmvIL-10 (position 159642)
(AD169, accession number X17403), but both LAcmvIL-10 and
cmvIL-10 transcripts terminate at the same site (position 160430)
and translation of cmvIL-10 and LAcmvIL-10 starts at the
same methionine (position 159678). LAcmvIL-10 comprises a
truncated protein of 139 aa that shares the first 127 aa residues
with the cmvlL10 protein. LAcmvIL-10 has 27% identity and 46%
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similarity to cIL-10 over a 124 amino acid region (Jenkins et al.,
2004).

Interestingly, the LAcmvIL-10 transcript was detected in only
1–12% of latently infected GM-Ps, indicating that latency may
still proceed in some cells that fail to express these transcripts
or that the limit of their detection was too low (Jenkins et al.,
2004). Sometime after the initial identification of LAcmvIL-10 in
latently infected cells, the same group showed that LAcmvIL-10
is also expressed during lytic infection of HFF cells at 72 h post-
infection. Even though the transcript was shown to be expressed
during both lytic and latent infections, the name LAcmvIL-10 is
still used (Jenkins et al., 2008a).

Intriguingly, during permissive infection, the LAcmvIL-10
transcript was shown to initiate at the same site as the cmvIL-
10 transcript. This likely indicates that the virus utilizes different
start sites for LAcmvIL-10 transcription depending on whether
the infection is latent or lytic, possibly as a result of differential
promoter usage as a result of different cellular and viral factors
present in cells at different stages of cell differentiation.

Latterly, five additional UL111A transcripts have been
detected in MRC-5 and Bud8 cells productively infected with
the AD169 strain by Lin et al. (2008). These transcripts were
detected as products of nested PCR by agarose gel electrophoresis
and were subsequently cloned and sequenced. In contrast to
lytic infection, these transcripts are not detectable to any
appreciable extent in infected myelomonocytic THP1 cells in
the same work, which are a cell type in which the virus
establishes latency (Beisser et al., 2001). In order to facilitate
nomenclature, in their work, the cmvIL-10 and LAcmvIL-10 were
named transcripts vIL10A and B, respectively, and the additional
newly found transcripts were named vIL10C, D, E, F, and G.
Donor and acceptor sites were identified in all transcripts with
exception of D. Of note, transcript D does not contain the first
intron and therefore has the intact 79 aa ORF, which upon
translation could produce a putative 79 aa oncogenic protein,
previously described.

All identified HCMV vIL10 transcripts share the first exon
(nucleotide sequence 159678–159857) at the N terminal but their
C terminal region varies in amino acid sequence and length
(Figure 1). The report by Lin et al. is the only report of the
production of additional spliced transcripts, besides cmvIL-10
and LAcmvIL-10 in HCMV infected cells. It is possible that the
absence of their previous detection could be due to the low
sensitivity of the techniques used, despite the same primer sets
being used as those used in the original identification of cmvIL-
10 (Kotenko et al., 2000). Considering the frequency in which the
smaller transcripts were found, and the presence of donor and
accepting sites in all of them (with exception of transcript D)
it would be of considerable interest to analyze these transcripts
further during lytic and latent infection.

Interestingly, HCMV UL111A is the only viral cIL-10
homolog that expresses different vIL10 proteins by alternative
splicing. Alternatively spliced vIL10 transcripts were not
identified in other herpesviruses (Ouyang et al., 2014). This
suggests that HCMVmay express different transcripts at different
phases of infection. This area of research has not been explored
and awaits further investigation.

THE HCMV IL10 PROTEINS, THEIR
STRUCTURES AND FUNCTIONS

In cell culture HCMV UL111A is not essential for viral
replication (Dunn et al., 2003; Yu et al., 2003), however the gene
conservation in HCMV strains, the lack of sequence variability
(Cunningham et al., 2010; Sijmons et al., 2014) and the functional
analysis of the encoded proteins in vitro, described below,
indicate that they have critical importance in controlling the host
immune system during active infection, persistence and latency.

Consistently, research with Rhesus macaques, the closest
CMV to HCMV in which an animal model exists, provided
evidence for the role of RhCMV UL111A during infection
in vivo. The UL111A genes from RhCMV and HCMV are
close homologs (Powers and Früh, 2008; Itell et al., 2017) and
in vitro functional analysis of RhcmvIL10 demonstrated that
it has similar properties to HCMV IL10, such as inhibition
of PBMC proliferation, inhibition of cytokine production and
downregulation of MHC in immune cells (Spencer et al., 2002).
RhCMV UL111A, like cmvIL-10 from HCMV, is also not
essential for viral growth in cell culture and this is the same
for all other viral cIL-10 homologs analyzed so far (Chang
and Barry, 2010). However, studies in macaques infected with
recombinant viruses showed that the lack of RhCMV UL111A
has profound effects in themagnitude of both innate and adaptive
host immunity and indicate that RhCMV IL10 is important for
dissemination of the virus during primary infection (Chang and
Barry, 2010).

THE cmvIL10 PROTEIN

Among the proteins encoded by the HCMV UL111A (Figure 1),
the cmvIL-10 (also termed the “A” transcript) protein is the best
structurally and functionally characterized. Although expression
of the cmvIL-10 transcript and functions of the protein have only
been extensively analyzed during the lytic virus life cycle, it has
been shown to play a role in the regulation of cIL-10 in cells
which support latent infection (Avdic et al., 2016). Indeed, the
upregulation of cIL-10 during latent infection in both CD34 and
CD14monocytes has been proposed to play an antiapoptotic role
in latently infected cells (Poole and Sinclair, 2015; Poole et al.,
2015).

The cmvIL-10 protein is glycosylated, likely at an N linked
glycosylation site Asn-151-X-Thr-153. Upon cleavage of the 25
aa leader peptide, the protein is secreted from infected cells
(Kotenko et al., 2000; Spencer et al., 2002; Chang et al., 2004)
and binds to the IL10 receptor (IL10R) (Kotenko et al., 2000;
Spencer et al., 2002), with identical affinity to cIL-10 (Jones
et al., 2002), despite their low amino acid sequence identity
(27%). In fact, cmvIL-10 is able to compete with cIL-10 for
receptor binding (Kotenko et al., 2000). Jones et al. (2002) have
reported the crystal structure of cmvIL-10 in complex with the
extracellular domain of the IL-10R1, demonstrating that it binds
to the receptor in the same intertwined dimer topology as cIL-10.
However, while in the cIL-10 dimer, the 2-fold related domains
comprise four helices (A–D) from one chain and two helices
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from the other chain (E and F) (Walter and Nagabhushan, 1995;
Zdanov et al., 1995), the cmvIL-10 dimer consists of five alpha
helices, comprising helices A, B and D donated from one peptide
chain and helices E and F donated from the 2-fold related chain.
In addition, the 2-fold related domains of the cmvIL10 dimer
adopt a 130◦ interdomain angle, compared with 90◦ for cIL-10
(and EbvIL-10), as a result IL-10R1 bound to cmvIL-10 moves
25◦, relative to the cIL-10/IL-10R1 complex, toward the putative
position of the cell membrane. Despite this peculiar engagement
with the receptor, cmvIL-10 uses essentially the same structural
epitope as cIL-10, comprised of helix A, the AB loop, and helix F,
to contact the IL-10R1 (Jones et al., 2002).

Interestingly, the structural studies of cmvIL-10 and EbvIL10
revealed that even though bothmimic the structure of cIL10 their
particular engagements with the receptor occur in specific ways,
resulting in different receptor affinities and distinct activation of
signaling pathways (Liu et al., 1997; Jones et al., 2002).

BIOLOGICAL ACTIVITIES OF cmvIL-10 IN
MONOCYTE DERIVED DENDRITIC CELLS

In a particularly high affinity interaction with the IL-10 receptor,
cmvIL-10 activates the Jak-STAT pathway and, therefore, its
immunosuppressive effects can be mediated by phosphorylation
of STAT3 (Kotenko et al., 2000; Spencer et al., 2002; Jenkins et al.,
2008b). cmvIL-10 has several immunomodulatory properties,
particularly in immune cells of the myeloid lineage which
are biologically relevant sites of HCMV infection not least
because monocytes and their derivatives, macrophages and
dendritic cells, are sites of latency and reactivation, respectively
(Mendelson et al., 1996; Hahn et al., 1998; Sinclair and Poole,
2014).

DCs play a central role in the orchestration of the immune
response and are mainly present in peripheral sites as immature
cells, where capture and process antigens are loaded in MHC
class I and MHC class II molecules for presentation to effector
immune cells. Upon stimuli, such as recognition of PAMPs
by pattern-recognition receptors, DCs undergo maturation and
migrate to secondary lymphoid organs, becoming the most
potent professional APCs and activators of the T cell response
(Steinman, 1991; Reis e Sousa, 2001). Substantial work has been
carried out to uncover the functions of cmvIL-10 in dendritic
cells. cmvIL10 present in the supernatants from HCMV-
infected cultures inhibits lipopolysaccharide (LPS)-induced DC
maturation, as observed by the reduced levels of maturation
markers (including CD83 and HLA-DR as well as CD40, CD80,
and CD86), and production of the pro-inflammatory cytokines
IL-12, IL-6, and TNF-α. These inhibitory effects are specifically
mediated through the IL-10 receptor and are only observed
in immature DCs (iDCs) cultured with supernatants from
WT virus but not with supernatants from a UL111A deleted
virus (Chang et al., 2004). Furthermore, in LPS treated iDCs,
recombinant cmvIL-10 blocks expression of IL6, IL-12, TNF
alpha (Chang et al., 2004), MHC class I and II, as well as

other costimulatory molecules such as CD40, CD80, CD86, B7-
H1, B7-DC (Raftery et al., 2004). cmvIL-10 also inhibits cell
surface exposure of CD1a, CD1b, and CD1c in DCs (Raftery
et al., 2008). Additionally, members of a family of non-classical
class I (MHC-I) (which have a role in the presentation of
hydrophobic antigens, such as lipids to natural killer T (NKT)
cells, a specialized cell type that expresses both NK markers and
T-cell receptors on their surface) are also downregulated (Major
et al., 2006).

Interestingly, cell adhesion molecules are upregulated (CD44,
DC-SIGN) or downregulated (CD11, CD18, and ICAM-1)
by cmvIL10 in DCs, suggesting its role in modulation of
cell adhesion (Raftery et al., 2004). Furthermore, cmvIL10
upregulates HLA-DM, a non-classical HLA molecule which
is part of an unusual extracellular presentation pathway that
allows Ag processing and peptide loading outside immature DCs
(Santambrogio et al., 1999; Arndt et al., 2000), and IDO, a
regulator of T cell proliferation and survival (Raftery et al., 2004).
cmvIL10 also plays a role in increasing infectivity of the virus in
DCs by increasing expression of DC-SIGN (Raftery et al., 2004),
a lectin expressed on the surface of DCs which has been shown to
be used by the virus to enter DCs (due to the ability of gB to bind
DC-SIGN) (Halary et al., 2002).

Intriguingly, recombinant cmvIL-10 increases apoptosis in
activated immature DCs, by blocking the antiapoptotic c-
FLIPL and Bcl-xL, which are normally upregulated during
LPS activation (Raftery et al., 2004). Therefore it is, perhaps,
unsurprising that during a lytic infection the virus has evolved
ways of counteracting the induction of apoptosis (McCormick
et al., 2003). It is also true that during a latent infection in
undifferentiated myeloid precursor cells the cellular apoptome is
modulated (Poole and Sinclair, 2015), although cIL10 plays an
anti-apoptotic role in these cells via the regulation of PEA-15
(Poole et al., 2015). Further effects of viral IL10 during latency
are discussed in the myeloid progenitor sections below.

Importantly, cmvIL10 enhances cIL10 expression in DCs
(Chang et al., 2004), potentiating the anti-inflammatory effects of
cIL-10 (Corinti et al., 2001). Notably, various effects of cmvIL10
on immature DCs, are properties shared with cIL10 and not
observed, or observed to a lesser extent, in cells treated with
ebvIL10 (Raftery et al., 2004), likely due to the low affinity of
ebvIL10 to the cIL10 receptor (Jones et al., 2002).

Together, these studies demonstrate that cmvIL-10 shares a
number of known properties of cIL-10 on DCs and these are
summarized in Figure 2.

BIOLOGICAL EFFECTS OF cmvIL-10 IN
MYELOID PROGENITORS

Significant work has also been carried out to evaluate the
effects of cmvIL-10 in myeloid progenitors, cell types that
supports latent HCMV infection (Sinclair and Poole, 2014).
Recombinant cmvIL-10 inhibits IFN-γ, IL-1α, IL-6, GM-CSF,
and TNFalpha (Spencer et al., 2002), by preventing NF-κB
signaling in monocytes via inhibition of IKK (Nachtwey and
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FIGURE 2 | Biological properties of cmvIL10 in dendritic cells (lytic infection). On the left hand side cmvIL10 secreted by infected iDC or by bystander infected cells

binds to the cIL10 receptor in iDCs inducing STAT3 phosphorylation and downstream signaling. Green vertical arrows indicate molecules up or downregulated upon

signaling and red point to pathways induced or inhibited by cmvIL10. On the right hand side cmvIL10 secreted by infected cells acts though the cIL10R and inhibits

production of IFN-α and IFN-β in pDCs.

Spencer, 2008), as well as cell surface expression of MHC I and
II in stimulated PBMCs, monocytes and GM-Ps (Spencer et al.,
2002; Jenkins et al., 2008b). Furthermore, cmvIL-10 suppresses
proliferation of PBMCs (Spencer et al., 2002). At least in part, the
cmvIL-10 effect in reduction of MHC II protein in monocytes
results from downregulation of CIITA, a transcription factor that
activates transcription of α, β, and invariant MHC II chains
genes leading to the accumulation of MHC-II molecules within
cytoplasmic vesicles (Jenkins et al., 2008b). cmvIL-10 also induces
upregulation of HLA-G on monocytes (Spencer et al., 2002), a
molecule able to confer cell protection from natural killer cell
mediated lysis (Rouas-Freiss et al., 1997).

Although it is established that canonical IL-10 signaling
in monocytes requires the IL10R and activates STAT3
phosphorylation (Tyr 705) (Jenkins et al., 2008b), JAK1
activity and STAT3 phosphorylation on tyrosine 705 are not
required for the inhibition of TNF-α levels by cmvIL-10. Instead,
it was shown that TNF-α production requires the PI3K signaling
pathway, which culminates with STAT3 phosphorylation on S727
(Spencer, 2007). In fact, as further discussed below, both PI3K
and STAT3 are required for cmvIL10 signaling in monocytes
(Avdic et al., 2016). The PI3K-mediated activation by cIL10 is

well-established and this pathway was thought to be involved
in the proliferative effects of the cytokine (Crawley et al., 1996),
however recent evidence indicates that PI3K signaling is also
required for the immunosuppressive functions of cIL10 (Antoniv
and Ivashkiv, 2011).

cmvIL10 is an inducer of cIL10 transcription and protein
secretion in CD14+monocytes, monocyte-derived macrophages
(MDMs), and immature monocyte-derived dendritic cells
(MDDCs). In monocytes it has been shown that cmvIL10
also induces mRNA expression of tumor progression locus
2 (TPL2) (Avdic et al., 2016), which acts as a regulator of
positive and negative feedback loops for cIL-10 production
(Saraiva and O’Garra, 2010). It was also reported that cmvIL10
signaling, through the receptor, leads to upregulation of
HO-1, a heme-degrading enzyme with immunosuppressive
functions (Otterbein et al., 2003), which in turn induces
cIL10 in monocytes (Avdic et al., 2016). Since both PI3K
and STAT3 are required for cIL10 induction in monocytes
(Avdic et al., 2016), the most likely scenario is that these
pathways may converge, likely at STAT3 phosphorylation
on different residues, leading to activation of STAT3-
inducible genes.
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FIGURE 3 | Biological properties of cmvIL10 in myeloid progenitors (during lytic infection). cmvIL10 secreted by bystander infected cells binds to the cIL10 receptor in

myeloid progenitors inducing phosphorylation of STAT3 on Tyr 705. cmvIL10 also activates the PI3K pathway leading to phosphorylation of STAT3 on S727.

Phosphorylated STAT3 activates downstream signaling. Green vertical arrows indicate molecules up or downregulated upon signaling and red arrows point to

pathways induced or inhibited by LAcmvIL10.

FIGURE 4 | Biological properties of LAcmvIL10 in myeloid progenitors (during latent infection). Infected myeloid cells produce LAcmvIL10. Green vertical arrows

indicate molecules up or downregulated upon LAcmvIL10 by an undefined mechanism. Blue arrows point to pathways induced or inhibited by cIL10. The question

mark indicates the possibility that LAcmvIL10 can act through the cIL10R.

Importantly, cmvIL10 appears to have no effect on cIL10
secretion in CD4+, CD8+ T cells or primary human foreskin
fibroblasts (HFFs), supporting the fact that myeloid cells

are the main targets of cmvIL10 (Avdic et al., 2016). It
has also been shown that recombinant cmvIL-10, acting
through the cIL10R and STAT3 phosphorylation, can
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increase CXCR4 signaling mediated by its ligand CXCL12
leading to calcium flux and cell migration in epithelial and
monocytic cell lines, in an autocrine and paracrine manner on
bystander cells (Tu et al., 2018). These effects are summarized
in Figure 3.

BIOLOGICAL EFFECTS OF cmvIL-10 IN
NON-MYELOID CELLS

The effects of cmvIL-10 have also been evaluated in plasmacytoid
dendritic cells (pDCs), so called natural interferon-producing
cells, a specialized cell population that produces high amounts
of type I interferon in response to virus infection cells (Colonna
et al., 2004). In pDCs, cmvIL-10, similar to cIL-10, suppresses
transcription of IFN-α and IFN-β genes and also affects their
steady mRNA levels causing a reduction of IFN-α and IFN-β
levels by ∼75% (Chang et al., 2009). Also, like cIL10 (Bruchhage
et al., 2018), cmvIL-10 is not able to inhibit expression of CD83,
CD86, and MHC class II and consequently pDC maturation in
response to CpG (Chang et al., 2009).

cmvIL10 has also been shown to stimulate cIL10 and to
increase cell survival and proliferation of B cells (Spencer
et al., 2008) as well as to decrease metalloproteinase levels in
endothelial cells and cytotrophoblasts (a cell type present in
the uterine-placental interface) leading to impaired invasion
and migration capacities and consequently dysregulation of
the cell-cell and/or cell-matrix interactions between these cells
(Yamamoto-Tabata et al., 2004).

In some cancer cell types cmvIL10 has been shown to
stimulate proliferation and migration (Bishop et al., 2015) and
to promote invasiveness (Valle Oseguera and Spencer, 2014,
2017).

THE LAcmvIL10 PROTEIN AND ITS
BIOLOGICAL EFFECTS IN MYELOID
PROGENITORS

The LAcmvIL10 protein is produced with β kinetics in lytic
infection (Jenkins et al., 2008a) and contrary to cmvIL10 is
not glycosylated due to absence of the Asn151-Gly152-Thr153-
glycosylation site present in the C terminus of cmvIL10 (Jenkins
et al., 2008a; Lin et al., 2008).

LAcmvIL10 has been less extensively studied than cmvIL10
and most studies have focused on the properties of the protein in
cell models of latency in vitro, since it was the originally detected
in latent HCMV infected cells (Jenkins et al., 2004). Similar to
cmvIL10, recombinant LAcmvIL10 causes a decrease in total
MHC-II protein and transcription of components of the MHC
class II biosynthesis pathway in GM-Ps and monocytes (Jenkins
et al., 2008b).

In the context of viral infection, LAcmvIL10 inhibits IFN-γ
production in CD4+ T cells and their capacity to proliferate, as
well as to recognize CD34+ cells latently infected with HCMV
(Cheung et al., 2009). However, MHC class II downregulation by
LAcmvIL10 is not blocked by neutralizing antibodies to cIL10R

TABLE 1 | Biological properties of cIL-10 and HCMV vIL-10.

Gene

expression

(kinetics)

STAT3

activation

Cytokine

inhibition

MHC

inhibition

cmvIL-10 (A) Lytic infection

(γ)

Yes Yes Yes

LAcmvIL-10 (B) Lytic infection

(β)

Latent infection

No No Yes

C ? No ? ?

D ? No ? ?

E ? No ? ?

F ? No ? ?

G ? No ? ?

cIL-10 NA## Yes Yes Yes

?, not known; ##NA, not applicable.

and does not trigger STAT3 phosphorylation of Tyrosine 705
(Jenkins et al., 2008b). Additionally, LAcmvIL10 does not inhibit
the expression of costimulatory molecules CD40, CD80, and
CD86 and the maturation marker CD83 on DCs, nor does it
inhibit proinflammatory cytokine expression (IL-1, IL-6, and
tumor necrosis factor alpha) (Jenkins et al., 2008b). Also, in
comparison to cmvIL10, it is not able to affect expression of
Fcγ receptors or increase receptor mediated phagocytosis in
monocytes (Jaworowski et al., 2009). Additionally, in contrast
to cmvIL10, LAcmvIL10 does not stimulate B cell proliferation,
Stat3 activation or cIL-10 production in B cells a non-myeloid
cell type (Spencer et al., 2008).

It is already established that the restricted signaling abilities of
LAcmvIL10 are likely due to the lack of the C-terminal helices
E and F (Jenkins et al., 2008b), which are present in cmvIL10
and cIL10 and are required for binding to the IL10R (Walter
and Nagabhushan, 1995; Zdanov et al., 1995; Jones et al., 2002).
Furthermore it is suggested that LAcmvIL10 engages the receptor
in a different manner, utilizes a different receptor or uses a
receptor-independent mechanism for downregulation of MHC
class II (Jenkins et al., 2008b). Therefore, further studies are
required to understand if LAcmvIL10 is still able to engage the
receptor, how it downregulates MHC class II in latent cells and
whether it has additional properties in both lytic and latent
HCMV infection.

Analyses of recombinant HCMV vIL10 proteins (LAcmvIL10
and cmvIL10) as well as comparative studies using supernatant
from HFFs infected with the AD169 and Merlin with and
without UL111A, showed that the viral IL10 proteins cause
polarization of CD14+ monocytes toward an M2c alternatively
activated phenotype, as determined by increase of cell surface
expression of CD14 and CD163 and decreased of MHC
class II (Avdic et al., 2013), markers characteristic of M2c
activated monocytes (Gordon, 2003; Mantovani et al., 2004;
Zizzo et al., 2012). Furthermore, in polarized monocytes, vIL10
proteins cause a reduction of TNF-α and IL-1β, by upregulation
of HO-1 (Avdic et al., 2013), although it remains to be
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established which of the viral IL10 proteins predominantly
mediate these effects.

In addition, studies using the clinical isolate stain of HCMV
Merlin, showed that the lack of UL111A led to a decrease in the
establishment of latent infection of CD14+ monocytes, as well
as in latently infected CD34+cells (Poole et al., 2014), suggesting
that LAcmvIL10 may play a role in the establishment and/or
maintenance of latency. LAcmvIL10 has also been shown to cause
downregulation of the cellular miRNA hsa-miR-92a leading to
increase of secreted cIL10 and CCL8, which are direct targets of
this miRNA (Poole et al., 2014). CCL8 acts to subvert the immune
response and, thus, is likely to be important for the establishment
of latency in vivo (Mason et al., 2012). The effects of LAcmvIL10
are summarized in Figure 4.

The LAcmvIL-10-induced increase in cIL10 appears to have
an important role in survival of CD14+ monocytes and CD34+
precursor cells, and consequently in the establishment of viral
latency in the cells, as shown by a decrease in latent carriage of
genome CD14+ monocytes and CD34+ precursor cells in the
absence of cIL10, suggesting a role for IL10 in the maintenance
of HCMV latency (Poole et al., 2011). Enhanced cell survival in
myeloid progenitors during HCMV latency is also a property of
cIL10 (Poole and Sinclair, 2015; Poole et al., 2015).

PROTEINS ENCODED BY THE
ADDITIONAL HCMV IL10 TRANSCRIPTS

The proteins encoded by the UL111A transcripts C, D, E, F,
and G share the first 60N terminal aa, with cmvIL10 (A) and
LAcmvIl10 (B), containing a signal peptide of 19 aa, but with C
terminal region varying in amino acid sequence and length. The
sizes of the transcripts and aa length of the proteins are shown in
Figure 1. These proteins were first identified in lytically infected
MRC-5 cells by western blotting (Lin et al., 2008). Isoforms vIL-
10A, E, and F were found to be glycosylated, but not B, C,
and D, consistent with the presence or absence of the N-linked
glycosylation site, Asn-151-X-Thr-153, in their sequences. As
in the case of LAcmvIL10 (B transcript) none of the isoforms
identified were able to induce STAT3 phosphorylation in THP1
cells (Lin et al., 2008).

Further work is necessary to verify presence of these
additional isoforms in other cell types and if they have any

immunosuppressive or biological properties that influence viral
carriage and propagation.

CONCLUDING REMARKS

The HCMV vIL10 proteins have a variety of immunosuppressive
properties in different cell types. The two most studied
isoforms, cmvIL10 and LAcmvIL10 (transcripts A and
B) appear to be differentially expressed in lytic and latent
infected cells. LAcmvIL10 has restricted functions compared
to cmvIL10, and one of its properties is downregulation
of MHC II, aiding immune evasion of the virus by
inhibiting presentation of viral antigens expressed during
latency (Table 1).

The production of different vIL10 isoforms by HCMV, with
different structures and specific biological properties indicate that
the virus evolved to use these cIL10 homologs in different phases
of infection.

Since their original identification, a great deal of work
which we have detailed in this review, has been carried out to
analyze the expression of viral IL-10 transcripts, the proteins
encoded by these RNAs and the biological functions of these
proteins. As much of this has depended on the analysis of
purified recombinant proteins, further studies, ideally using
clinical isolate recombinant viruses, are necessary to fully
understand the biological properties of the all the viral IL10
proteins in different cell types and at stages of the virus
life cycle.
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