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Much work has considered the evolution of pathogens, but little is known about how they respond to
changes in host behaviour. We build a model of sublethal disease effects where hosts are able to choose
to engage in prophylactic measures that reduce the likelihood of disease transmission. This choice is
mediated by utility costs and benefits associated with prophylaxis, and the fraction of hosts engaged
in prophylaxis is also affected by population dynamics. When prophylactic host behaviour occurs, we find
that the level of pathogen host exploitation is reduced, by the action of selection, relative to the level that
would otherwise be predicted in the absence of prophylaxis. Our work emphasizes the significance of the
transmission-recovery trade-off faced by the pathogen and the ability of the pathogen to influence host
prophylactic behaviour.
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1. Introduction

Mathematical study of infectious diseases has a long history
that predates even the well-known contributions of Ross (1916)
and Kermack and McKendrick (1927). Mathematical study of the
evolution of pathogens, however, is relatively recent. One avenue
of inquiry has explored the ways in which natural selection shapes
the virulent effects pathogens inflict on their hosts. Models have
provided insight into the ways in which various factors—such as
parasite reproductive rates (Bremermann and Pickering, 1983),
host density (Knolle, 1989), relatedness among co-infecting patho-
gen strains (Frank, 1992), and multiple types of hosts (Gandon,
2004)—modulate the expressed level of virulence. A key prediction
emerging from this body of work is that, in many cases, selection
acts to maximize the basic reproduction number (Anderson and
May, 1982; Day and Burns, 2003), i.e., the expected number of
new infections caused by a single infective host (Heffernan et al.,
2005). In particular, adaptive levels of pathogen virulence balance
a trade-off between the average duration of infection and the rate
of disease transmission (Alizon and Michalakis, 2015; Cressler
et al., 2016). As disease transmission rates slow, then, standard
theory predicts selection will respond by shaping virulence in a
way that decreases the duration of infection.

Mathematics has also contributed to our understanding of the
ways in which host traits impact the evolution of pathogen viru-
lence. Here, models have explored the effects of co-evolution with
innate host defences (Day and Burns, 2003; van Baalen, 1998), use
of antibiotics (Reluga, 2005), vaccines and vaccination behaviour
(Bauch and Earn, 2004; Murall et al., 2015), and other social factors
related to hosts themselves (Bauch and Galvani, 2013). It is this last
item—namely, the effect of host social behaviour on pathogen evo-
lution—on which we focus our attention in this paper. Schaller
(2011) discusses the idea of a ‘‘behavioural immune system” that
complements the standard physiological immune system in
humans. This behavioural immune system is comprised of various
prophylactic measures, such as social distancing (e.g., avoiding
handshakes when greeting) or improved personal hygiene (e.g.,
hand washing), that individuals may adopt to reduce the likelihood
of infection (Schaller, 2011). Importantly, individuals can start and
stop these behaviours as often as desired (e.g., as in Pharaon and
Bauch (2018)), as opposed to measures like vaccination that are,
in a sense, irreversible.

Unfortunately, little is known about how hosts’ behavioural
immune system impacts the evolution of pathogens. What work
has been done in this area predicts that prophylactic behaviour
exhibited by hosts can select for higher pathogen virulence, assum-
ing that the perceived severity is higher for the more virulent strain
and that the prophylactic measures are more effective against the
less virulent strain (Pharaon and Bauch, 2018). This work, however,
considers short-term evolutionary outcomes only, and does not
consider the effects on host behavioural changes of factors outside
of social learning. In particular, the model of host behavioural
dynamics in Pharaon and Bauch (2018) does not account for all
the ways in which host demographics and disease dynamics could
affect the proportion of susceptible individuals engaging in pro-
phylaxis. In order to assess additional risks posed by pathogen evo-
lution, then, different models are required.
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We devise a model that tightly couples changes in the host’s
behavioural immune system, host demographics, and disease
dynamics, in a way that allows us to make predictions about the
long-term evolution of pathogen host exploitation. We focus on
pathogen exploitation instead of virulence as we are considering
sublethal disease effects and low-risk host behaviours (e.g., hand
washing). An important aspect of the host behaviours studied here
is the relation between the utility cost associated with engaging in
that behaviour, which may take many different forms, and the ben-
efit in terms of a reduced likelihood of pathogen transmission. A
simple example would be more frequent hand washing, where
an individual engaging in this behaviour will benefit from a lower
risk of contracting the disease at the cost of some extra time out of
their day and having to spend more money on soap than they
would otherwise. Another, more compelling, example is social dis-
tancing, which again reduces disease transmission but can have
much more severe social and economic costs as can be seen in
the current COVID-19 pandemic (Anderson et al., 2020). We find
that prophylactic behaviour uniformly reduces the pathogen’s
exploitation below the level expected in the absence of such beha-
viour. Furthermore, we argue that the driving force behind our
result is the modified nature of the transmission-recovery trade-
off faced by the pathogen as a result of the inclusion of host pro-
phylactic behaviour.
2. Model

2.1. Disease dynamics

We begin with a version of an endemic SIR model of infectious-
disease dynamics (Britton, 2003) modified in a way that separates
a host population of total size N into two groups. Individuals in
group i ¼ 0 are those who do not take prophylactic measures that
limit (but do not completely prevent) disease transmission,
whereas those in group i ¼ 1 do take such measures. Individuals
in each group are further subdivided according to their disease sta-
tus. Let Si; Ii, and Ri denote the number of individuals in group i
who are susceptible to infection, infective, and recovered from
infection, respectively.

We assume that transmission is frequency-dependent. This is a
common assumption when modelling sexually transmitted infec-
tions (STIs) since contacts between individuals in those cases are
generally not the result of random mixing (Antonovics et al.,
1995; McCallum et al., 2001). While we are not considering STIs
here, some prophylactic behaviours may create similar contact
patterns within the population. For example, in the case of social
distancing, individuals intentionally limit their contact with others,
and adding more people to the population may not greatly affect
the average contact rate. This would make frequency-dependent
transmission a more appropriate model.

Each individual encounters another at a fixed rate and, given that
an encounter is between a susceptible and an infective, the likeli-
hood of disease transmission depends on the groups to which indi-
viduals belong. If bij denotes the product of the probability of disease
transmission froma j-infective to an i-susceptible and the per-capita
encounter rate, then SibijIj=N gives us the total rate at which new
infections are created in group i. Infective individuals recover at a
fixed per-capita rate, c, independent of their group. As a result of
recovery, individuals are imbued with life-long immunity to future
infection. Since we are considering sublethal disease effects, we do
not include disease-related mortality (virulence) in our model.

Individuals can also switch groups. For now, we use the con-
stants sij; /ij and gij to represent the per-capita rates at which sus-
ceptible, infective, and recovered individuals, respectively, switch
from group j to i. We expand on the details surrounding group
switching later. We can summarize the description above using a
system of differential equations. Scaling time so that the back-
ground death rate is unity (i.e., one time unit is equivalent to the
average lifetime of an individual in the population), and matching
birth and death rates, we get

dS0
dt

¼ N � S0
b00

N
I0 � S0

b01

N
I1 � S0 þ s01S1 � s10S0 ð1aÞ

dS1
dt

¼ �S1
b10

N
I0 � S1

b11

N
I1 � S1 � s01S1 þ s10S0 ð1bÞ

dI0
dt

¼ S0
b00

N
I0 þ S0

b01

N
I1 � 1þ cð ÞI0 þ /01I1 � /10I0 ð1cÞ

dI1
dt

¼ S1
b10

N
I0 þ S1

b11

N
I1 � 1þ cð ÞI1 � /01I1 þ /10I0 ð1dÞ

dR0

dt
¼ cI0 � R0 þ g01R1 � g10R0 ð1eÞ

dR1

dt
¼ cI1 � R1 � g01R1 þ g10R0: ð1fÞ

Here, we make the assumption that all newborns enter the S0
compartment. While realistically we might expect a fraction to
enter the S1 compartment (e.g., through cultural vertical transmis-
sion of prophylactic behaviours), the presence of the switching
terms allows individuals in the S0 compartment to immediately
move into the S1 compartment if they choose to do so, justifying
our choice of modelling births as entering only the S0
compartment.

Note that the differential equations in (1) sum to zero, and so
total population size N is constant. This, along with the fact that
group membership among recovered individuals is of no conse-
quence, allows us to omit (1e) and (1f). We now use ui ¼ Si=N
and v i ¼ Ii=N to denote the fraction of susceptible and infective
individuals, respectively, in group i. Similarly, we use u ¼ u0 þ u1

and v ¼ v0 þ v1 to denote the total fraction of susceptible and
infective individuals, respectively. The dynamics of u and v can
then be modelled by the following set of differential equations:

du
dt

¼1� y b01 1�xð Þþb11xð Þþ 1�yð Þ b00 1�xð Þþb10xð Þ½ �uv�u ð2aÞ
dv
dt

¼ y b01 1�xð Þþb11xð Þþ 1�yð Þ b00 1�xð Þþb10xð Þ½ �uv� 1þcð Þv: ð2bÞ

We also track the fraction of susceptible and infected individu-
als taking prophylactic measures using x ¼ u1=u and y ¼ v1=v ,
respectively. Given this definition of x, we can derive the following
differential equation to describe how the proportion of susceptible
individuals engaging in prophylaxis changes due to various factors:

dx
dt

¼ � x
u

z}|{births

� s01xþ s10 1� xð Þ
zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{group switching

þ b00 1� yð Þv þ b01yvð Þ 1� xð Þx
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{infection of hosts not engaged in prophylaxis

� b10 1� yð Þv þ b11yvð Þx 1� xð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
infection of hosts engaged in prophylaxis

: ð2cÞ

The first term represents the fact that births increase the pool of
individuals not engaging in prophylactic measures, which in turn
reduces the relative proportion of susceptible individuals engaging
in prophylactic measures. The sij terms capture the effects of sus-
ceptible individuals switching between engaging and not engaging
in prophylaxis. The final two terms correspond to infection. In one
case, infection reduces the pool of individuals not engaging in pro-
phylaxis and subsequently increases the relative proportion of
individuals engaging in prophylaxis. Conversely, the proportion
of susceptible individuals engaging in prophylaxis is directly
reduced by infection of these individuals. Similarly, we can define
the differential equation for y as:
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dy
dt ¼ �/01yþ /10 1� yð Þ

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{group switching

� b00 1� yð Þ þ b01yð Þ 1� xð Þuy
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{infection of hosts not engaged in prophylaxis

þ b10 1� yð Þ þ b11yð Þxu 1� yð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
infection of hosts engaged in prophylaxis

:
ð2dÞ

The first term represents the effects of infective individuals
switching between engaging and not engaging in prophylaxis.
The latter two terms correspond to infection in the same vein as
in Eq. (2c).

Eqs. (2c) and (2d) capture dynamic features of the proportion of
hosts engaged in prophylaxis not found in previous work. The
switching terms in the modelling undertaken by Pharaon and
Bauch (2018) account for utility costs and benefits of prophylaxis,
but neglect changes due to demographics (births) and infection.
Our equations, therefore, combine multiple processes to establish
a more realistic model of changing host behaviour.

We now return to the issue of group switching and the details
surrounding the switching terms sij and /ij, ultimately replacing
these constants with functions of x; y, and v. Individuals do not
always adhere to beneficial measures such as taking medications
(Osterberg and Blaschke, 2005), exercise regimes (Robison and
Rogers, 1994), or dietary restrictions (Patton, 2011), so we include
group switching in our model to account for these types of
effects. Following Pharaon and Bauch (2018), we use the replica-
tor dynamic (Taylor and Jonker, 1978) to model the total rate at
which individuals move from one group to another. We assume
that the decision to switch groups is driven by utility, as dis-
cussed in Matessi and Di Pasquale (1996). Specifically, an individ-
ual’s utility will be determined by their risk of infection less the
utility cost of taking prophylactic measures. For an i-susceptible,
the risk of infection it faces will be quantified by the force of
infection,X
j

� bijIj
N

¼ � bi0 1� yð Þ þ bi1yð Þv:

Consequently, the utility of a susceptible individual adopting
prophylactic measures is

� b10 1� yð Þ þ b11yð Þv � v

where v is the utility cost to engaging in prophylaxis. Infective indi-
viduals have no risk of infection, so they only pay the utility cost of
the prophylactic measure should they choose to engage in it. Thus,
�v represents the utility of an infective individual engaging in pro-
phylaxis. A susceptible (resp. infective) individual will then choose
to switch into a given group when the utility of an individual in that
group exceeds the utility of the average susceptible (resp. infective)
in the population. This replicator-dynamics model of switching
gives us

�s01xþs10 1� xð Þ ¼ kx 1� xð Þ y b01 �b11ð Þþ 1� yð Þ b00 �b10ð Þ½ �v � kvx
ð3Þ

and

� /01yþ /10 1� yð Þ ¼ �kvy ð4Þ
where k is a constant that reflects the rate at which individuals
change their behaviour based on the behaviour of others in the pop-
ulation (see Appendix A for a more detailed derivation of equations
3 and 4). We note that our model of switching makes the simplifi-
cation (made in Pharaon and Bauch (2018)) of assuming individuals
have up-to-date information about the global state of the popula-
tion. Our final model of disease dynamics can now be stated as,
du
dt

¼ 1� y b01 1� xð Þ þ b11xð Þ þ 1� yð Þ b00 1� xð Þ þ b10xð Þ½ �uv � u

ð5aÞ
dv
dt

¼ y b01 1� xð Þþ b11xð Þ þ 1� yð Þ b00 1� xð Þþ b10xð Þ½ �uv � 1þ cð Þv
ð5bÞ

dx
dt

¼�x
u

þ kþ 1ð Þx 1� xð Þ y b01 � b11ð Þ þ 1� yð Þ b00 � b10ð Þ½ �v � kvx

ð5cÞ
dy
dt

¼� y b01 1� xð Þy� b11x 1� yð Þð Þ þ 1� yð Þ b00 1� xð Þyð½
�b10x 1� yð ÞÞ�u� kvy: ð5dÞ

A sample trajectory of this system is shown in figure 1, panel A.
Note that, if no individual in the population takes prophylactic

measures, then x ¼ y ¼ 0 and we recover the standard endemic SIR
model (Appendix B). When some fraction of the population takes
prophylactic measures, however, standard predictions of the SIR
model may or may not hold. The linear stability analysis presented
in Appendix B shows that the endemic equilibrium without indi-
viduals engaging in prophylaxis remains stable as long as

v > R0 � kþ 1
k

� �
b10

b00
R0 � 1ð Þ þ 1

� �
¼D vc; ð6Þ

where R0 ¼ b00= 1þ cð Þ is the basic reproductive number
(Heffernan et al., 2005) of the system in the absence of prophylactic
measures. Below this threshold, the cost to taking prophylactic
measures is low enough that the system moves towards a new
endemic equilibrium û; v̂ ; x̂; ŷð Þ at which some non-zero fractions
of susceptible and infective individuals adopt prophylactic mea-
sures (figure 1, panel B). It is this new endemic equilibrium that will
frame the evolutionary model we pursue in the next section.

2.2. Evolutionary dynamics

We consider the evolution of the level of pathogen exploitation
of its host, denoted n > 0. Exploitation affects disease transmission,
with a greater n value corresponding to a greater bij. To reflect this,
we now write bij nð Þ where

bij nð Þ ¼ bmax 1� �ð Þiþjn
jþ n

: ð7Þ

In words, we are treating bij as an increasing function of n that

saturates at a value of bmax 1� �ð Þiþj, where � is the probability that
the prophylactic measures prevent disease transmission. We
assume that prophylactic measures taken by individuals fail inde-

pendently, so 1� eð Þ2 gives the probability that the disease is
transmitted between two individuals engaging in prophylaxis.
The rate at which transmission saturates is controlled by j > 0,
with larger values of this constant corresponding to a reduced rate
of saturation.

Exploitation also affects recovery. To reflect this assumption, we
write c nð Þ, where c nð Þ ¼ cn for a constant c with units of inverse
time (the exploitation level n is dimensionless). Without loss of
generality, we take c ¼ 1. Here, increased exploitation acts to
reduce the expected duration 1= 1þ c nð Þð Þ of an infection. This pen-
alty of larger n, then, trades off against the transmissibility benefits
described above. Previous authors have either assumed (or shown)
that such trade-offs exist, though they are often mediated by
disease-related mortality (Anderson and May, 1982; Day, 2002;
Ewald, 1983) or viral load (Fraser et al., 2014). Here, we follow
Úbeda and Jansen (2016) and Alizon (2008) by assuming the
trade-off faced by the pathogen involves recovery. For example,



Fig. 1. Panel A shows a sample trajectory for the resident system (5). As described in the main text, time has been rescaled so that one time unit is equivalent to the average
lifetime of an individual in the population. Panel B shows a bifurcation plot indicating the cost threshold (dotted red line) at which the endemic equilibrium without
prophylaxis (dashed blue line) and the endemic equilibrium with prophylaxis (solid black line) undergo an exchange of stability.
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through increased viral load making it more likely that the patho-
gen is detected by the host’s immune system, or increased
exploitation leading to more antigens presented on the surfaces
of target cells.

We use an adaptive dynamics approach to model the evolution
of pathogen exploitation under the primary influence of natural
selection (Dercole and Rinaldi (2008); Dieckmann and Law, 1996;
Metz et al., 1992; and see Day and Burns, 2003; Úbeda and
Jansen, 2016; Hurford et al., 2010 for examples specifically related
to virulence evolution). We introduce a rare mutant pathogen with
exploitation trait nm into a resident pathogen population with
exploitation trait n. It is assumed that the resident system has
reached equilibrium prior to introducing the mutant, that there
is no co-infection, and that the prophylactic measures are equally
effective at preventing transmission of both strains.

Let vm denote the fraction of individuals in the population
infected with the mutant strain. While the mutant is rare, its
dynamics are well approximated by

dvm

dt
¼ ym b01 nmð Þ 1� �xð Þ þ b11 nmð Þ�xð Þ þ 1� ymð Þ b00 nmð Þ 1� �xð Þð½
þb10 nmð Þ�xÞ��uvm � 1þ c nmð Þð Þvm; ð8aÞ

where overbars denote equilibrium values of the respective vari-
ables. As we do with the resident population, we can also track
the proportion of individuals infected with the mutant strain engag-
ing in prophylaxis. Denoting this proportion by ym, we can describe
its dynamics by

dym
dt

¼� ym b01 nmð Þ 1��xð Þym�b11 nmð Þ�x 1�ymð Þð Þ½
þ 1�ymð Þ b00 nmð Þ 1��xð Þym�b10 nmð Þ�x 1�ymð Þð Þ��u�kvym: ð8bÞ

If the mutant strain becomes common and the mutant-free
equilibrium becomes unstable, we say that the mutant has suc-
cessfully invaded the resident population. Provided the system is
sufficiently close to an evolutionarily steady state, a mutant who
successfully invades will become the new resident (Dercole and
Rinaldi, 2008). Since vm does not appear in (8b), we can first solve
for the equilibrium value �ym of ym, substitute that value into (8a),
and study (8a) alone. If the right-hand side of (8a) is positive (resp.
negative), the mutant invades (resp. is eliminated) because it is
favoured (resp. disfavoured) by natural selection. The sign of the
right-hand side of (8a) is the same as the sign of the difference
between

W nm; nð Þ ¼ bavg nm; nð Þ �u nð Þ
1þ c nmð Þ ð9Þ

and unity, where

bavg nm; nð Þ ¼ 1� �x nð Þ �x nð Þ½ � b00 nmð Þ b01 nmð Þ
b10 nmð Þ b11 nmð Þ

� �
1� �ym nmð Þ
�ym nmð Þ

� �
represents an average transmission rate taking into account the dif-
ferent groups of susceptible and infective individuals. W then has a
clear biological interpretation, made in previous work (Day and
Burns, 2003), in terms of the basic reproductive number of the
mutant strain. In particular, an infection with the mutant strain
lasts an average of 1= 1þ cð Þ time units and an average of bavg�unew
infections are created during this time. If this quantity is larger than
one (resp. smaller than one), then the mutant population will grow
(resp. shrink). Writing W as we have done in Eq. (9) also highlights
the transmission-recovery trade-off described above, captured
through the bavg and c terms. Through the �ym terms, the pathogen
is also able to influence whether a new infection occurs in an indi-
vidual engaging or not engaging in prophylaxis. We can, therefore,
useW as an invasion fitness function in the adaptive dynamics anal-
ysis, even though the derivation of the function proceeded in a non-
standard way.

Following the discussion above, the direction of evolution of n
that is favoured by natural selection is given by the sign of
@W=@nmjnm¼n. Consequently, the selective process is at equilibrium

whenever n ¼ �n where �n satisfies

@W
@nm

jnm¼n¼�n ¼ 0: ð10Þ

An equilibrium value �n, i.e., one that satisfies condition (10),
may or may not be stable. If the equilibrium value �n attracts nearby
resident populations, then
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d
dn

@W
@nm

jnm¼n

� �
n¼�n

6 0 ð11Þ

and we say that �n is convergence stable (Christiansen, 1991). If the
equilibrium �n resists invasion from nearby mutants, then

@2W

@n2m
jnm¼n¼�n 6 0 ð12Þ

and we say that �n is evolutionarily stable (sensu Maynard Smith
(1982)). A sufficient condition for either type of stability is obtained
by replacing the weak inequality with a strict one. It is the strict suf-
ficient versions that we use here. When �n is both convergence stable
and evolutionarily stable, we say it is a continuously stable strategy
(CSS) (Eshel, 1983).

3. Results

3.1. Simple cases

There are two special cases that can be analyzed with relative
ease. The first special case assumes the cost of prophylaxis exceeds
the threshold vc . In this case, no one in a population supporting the
resident endemic disease is adopting prophylactic measures and so
�x ¼ �y ¼ 0. The equilibrium value of ym can be shown to be �ym ¼ 0
(see Appendix C) and so the fitness function simplifies to

W nm; nð Þ ¼ b00 nmð Þ�u nð Þ
1þ c nmð Þ ¼ R0 nmð Þ

R0 nð Þ : ð13Þ

The mutant strain is then able to invade (resp. is eliminated) if
W nm; nð Þ exceeds (resp. is less than) unity; equivalently, if R0 nmð Þ
exceeds or is less than R0 nð Þ. More importantly, the CSS level of
exploitation, �n, will maximize R0 nð Þ and so �n ¼ ffiffiffiffi

j
p

. This will serve
as a benchmark against which more general results will be
compared.

The second special case assumes that prophylactic measures are
cost-free, i.e., v ¼ 0. Since v < vc , the system moves towards an
endemic equilibrium where some non-zero proportions of suscep-
tible and infective individuals are engaging in prophylaxis. While
the replicator dynamics predict that all individuals will begin
adopting prophylactic measures in the absence of cost, the terms
noted in equations (2c) and (2d) relating to demographics and dis-
ease dynamics counteract this effect. This will result in the evolu-
tion of intermediate levels of the proportions of susceptible and
infective individuals engaging in prophylaxis. Under the assump-
tion of zero cost, the distribution of the mutant strain, captured
by �ym, does not depend on the mutant exploitation level and so
the pathogen is not able to influence whether new infections occur
in individuals engaging or not engaging in prophylaxis. In this case,
the selection gradient simplifies and results in a CSS of �n ¼ ffiffiffiffi

j
p

(see
Appendix C). This is the same result as the benchmark established
in our first special case, despite the presence of individuals taking
prophylactic measures. Absence of cost, it seems, decouples the
pathogen’s evolution from the evolution of host behaviour due to
the pathogen no longer being able to influence the relative propor-
tions of infections in individuals engaged or not engaged in
prophylaxis.

3.2. Evolution near the critical cost

In general, the model cannot be explored analytically. However,
there are certain analytical results we can derive for cost values
other than those discussed in the previous section. In particular,
we can show that for any cost value, there is a unique stable equi-
librium value of ym on the interval 0;1½ �. Moreover, we can show
that the derivative of this equilibrium value with respect to the
mutant exploitation nm is always positive, and that this compli-
cates the relationship between pathogen exploitation and trans-
missibility (see Appendix D for a derivation of these results). This
leads to a change in the evolutionarily stable level of pathogen
exploitation away from that which would be expected in the
absence of prophylaxis.

If we are near the critical cost vc we can derive quasi-analytic
results to predict the direction of this change in the CSS value of
n. When the cost v is slightly below its critical threshold vc , we
can approximate the CSS exploitation level as �n � ffiffiffiffi

j
p þ r v� vc

� 	
where v� vc < 0 and r is a constant such that

r / � @

@ x
�

@W
@nm






nm¼n

" #
v¼vc
n¼ ffiffi

j
p

: ð14Þ

If r is positive (resp. negative), then �n is below (resp. above) the
benchmark value of

ffiffiffiffi
j

p
. As Eq. (14) shows, whether we are above

or below this benchmark depends on how small changes in cost
lead to small changes in the proportion of susceptible individuals
engaged in prophylaxis which, in turn, lead to changes in the selec-
tion gradient acting on exploitation (see Appendix E for a derivation
of Eq. (14)).

We can show with a quasi-analytic approach that Eq. (14) is
always positive. Our evidence relies on first choosing feasible val-
ues of our parameters. In particular, we need R0 > 1. If R0 > 1,
then we need also to choose the probability � > 1

kþ1
R0

R0�1, thus

ensuring that vc > 0. To ensure that � < 1, we then need to choose
k > 1

R0�1.

Using feasible parameters and working to zeroth order in
v� vc , we use the computer algebra software (CAS) Maple (version
2019.1) to investigate the sign of r as described in Eq. (14). We find
that the requirement that R0 > 1 necessarily restricts our choices
of maximal transmissibility, bmax, to values that lie above the curve

traced out by 1þ ffiffiffiffi
j

p� 	2 (Fig. 2, panel A). The CAS shows that null-

clines of the partial derivative in (14) never exceed the 1þ ffiffiffiffi
j

p� 	2
curve for the wide range of feasible parameters we investigated
(Fig. 2, panel B). Thus, the sign of r does not change provided the
R0 > 1 restriction is met. Moreover, test points show that the sign
of r itself is positive when feasible model parameters are chosen.
Based on CAS investigations described in Appendix F, then, we con-
clude that, just below the critical cost, selection acts to reduce the
CSS level of host exploitation exhibited by the pathogen.

3.3. Evolution for arbitrary cost

Our results can be extended numerically for costs that are pos-
sibly much smaller than the critical value, vc , using a Matlab (ver-
sion R2019a) procedure detailed in Appendix G. We build the
procedure around the observation that locally asymptotically
stable equilibrium solutions to dn=dt ¼ @W=@nmð Þjnm¼n are also
convergence-stable evolutionary equilibria as defined by condi-
tions (10) and (11), respectively. As a result, numerical iteration
of this differential equation can be used to find candidate CSS
strategies. The evolutionary stability of candidate CSS strategies
can be confirmed with a centred finite-difference approximation
of (12). Since the error is on the order of the square of the distance
between n values used in the approximation, we consider any
value within this error to satisfy the ESS condition (12).

The results of our numerical procedure confirm that the bench-
mark CSS level of �n ¼ ffiffiffiffi

j
p

is obtained when v ¼ 0 and v ¼ vc . Sec-
ond, numerical results confirm the reduction in the CSS level of
pathogen exploitation for v slightly smaller than vc . Third, and
most important, numerical results indicate that the CSS exploita-
tion level �n changes in a simple way as cost is reduced from its



Fig. 2. Panel A shows the curve vc ¼ 0 (dashed grey) overlaying the curve R0 ¼ 1 (solid black), and the region of parameter space where vc > 0 and R0 > 1. Dotted grey
curves represent the roots of the partial derivative on the right-hand side of Eq. (14) and panel B shows that these all occur on or below the black and dashed grey curves (note
that vertical dotted grey lines are an artifact of jump discontinuities). Choosing parameter values in the region above the curves in panel A results in the partial derivative on
the right-hand side of equation (14) being negative, as noted in panel B. The implication is that the parameter r is positive and so pathogen exploitation will decrease relative
to the benchmark level of

ffiffiffiffi
j

p
close to the cost threshold vc .
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critical value to its natural lower limit at zero (Fig. 3). In particular,
as cost is reduced �n decreases monotonically from the benchmark
value until it reaches a minimum. Once at the minimum, the direc-
tion of selection changes and �n increases monotonically, ultimately
returning to the benchmark when cost disappears.

This pattern holds for awide range of parameter values chosen to
satisfy the conditions described in the previous section. Specifically,
we investigate four different values of j : j ¼ 0:1; j ¼ 1;j ¼ 10,
and j ¼ 100. For each of these values, we choose five values of

bmax above the 1þ ffiffiffiffi
j

p� 	2 threshold: bmax ¼ 1þ ffiffiffiffi
j

p� 	2 þ 5; bmax ¼
1 þ ffiffiffiffi

j
p� 	2 þ 10; bmax ¼ 1 þ ffiffiffiffi

j
p� 	2 þ 50; bmax ¼ 1 þ ffiffiffiffi

j
p� 	2 þ 100,

and bmax ¼ 1 þ ffiffiffiffi
j

p� 	2 þ 500. We then choose five values of
k (k¼1= R0�1ð Þþ5;k¼1= R0�1ð Þþ10;k¼1= R0�1ð Þþ50; k¼1=
R0�1ð Þþ100, and k¼1= R0�1ð Þþ500) and five values of � spread
evenly between the threshold R0= kþ1ð Þ R0�1ð Þð Þ and 1, for a total
of 500 combinations of parameter values.

Although the decline in the CSS value of exploitation shown in
Fig. 3 appears modest, recall that one time unit is equivalent to the
average lifetime of an individual in the population. This means that
the change in the duration of infection as �n changes is on the order
of years. For example, if the average lifespan of an individual in the
population is 79 years, then a decrease from �n ¼ 1 to �n ¼ 0:86 (as
seen in Fig. 3, panel B) corresponds to an increase in the duration
of infection of approximately three years.

4. Discussion

We study the impact of measures taken by hosts to limit disease
transmission. Here, the willingness among hosts to engage in these
prophylactic behaviours responds to changing utility costs and
benefits. We focus on long-term evolution of a pathogen, defined
by successive mutations until an equilibrium state is reached
(Matessi and Di Pasquale, 1996), alongside the rapid evolution of
host behaviour. We find that when prophylactic behaviour among
hosts occurs, pathogen host exploitation is always lower than it is
in the absence of prophylaxis. Moreover, we find that stable
exploitation is lowest for an intermediate frequency of prophylac-
tic behaviour among hosts (indirectly, intermediate cost of
prophylaxis).

This study contributes to the growing body of work that shows
host behaviour, in general, influences pathogen evolution. Much of
this work has considered vaccination behaviour, in particular, and
has described both beneficial and detrimental evolutionary out-
comes. In the case of humanpapillomavirus (HPV), for example, the-
oretical work predicted HPV vaccinationwill select for higher levels
of virulence (Murall et al., 2015). By contrast, empirical evidence
suggests that vaccination can actually limit the ecological opportu-
nity open to certain HPV types (Poolman et al., 2008). In keeping
with the mixed nature of results, Gandon et al. (2001); Gandon
et al., 2003find that thedirectionof selectionactingonpathogenvir-
ulence depends on the mechanism by which vaccination works.

More closely related to the current study are the conclusions of
Pharaon and Bauch (2018). They show that host prophylactic beha-
viour in response to an endemic disease can allow for the invasion
of a pathogen strain that is more virulent than the resident, and
that the conditions for such a result are an increased perceived
severity for the more virulent strain and more effective prophylac-
tic measures against the less virulent strain. While our model con-
siders sublethal disease effects and does not explicitly include
virulence, the positive relationship between pathogen exploitation
and virulence allows us to predict that such an outcome cannot
occur in our model. This is a result of the fact that our benchmark
result, established in the absence of prophylactic behaviour, is our
worst case scenario. For example, consider a mutant pathogen with
an exploitation level n >

ffiffiffiffi
j

p
. When the cost is above its critical

value so that no one is engaging in prophylaxis, then this mutant
cannot invade a resident population at the CSS �n ¼ ffiffiffiffi

j
p

. If we then
decrease the cost below its critical value so that individuals begin
to take prophylactic measures, the CSS exploitation level decreases
away from �n ¼ ffiffiffiffi

j
p

and so the mutant is still unable to invade the
resident population.



Fig. 3. Plots of the CSS level of pathogen exploitation found using the numerical procedure described in the main text. Panel A contains sample results for j ¼ 0:1, panel B for
j ¼ 1, panel C for j ¼ 10, and panel D for j ¼ 100. Inset figures show the equilibrium values of the epidemiological variables u;v ; x, and y. The cost values presented are all
below the critical cost threshold vc . In all cases, the CSS level of exploitation is lower than the benchmark value �n ¼ ffiffiffiffi

j
p

, plotted as a dashed black line, observed in the absence
of prophylaxis.
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The discrepancy between our predictions and those of Pharaon
and Bauch (2018) is due to the differences in how we model the
dynamics of host behaviour. In addition to looking at actual risk
instead of perceived risk (as in Pharaon and Bauch (2018)), the evo-
lution of host behaviour in our work is not governed solely by the
replicator dynamics. Our model consists of additional terms to rep-
resent the effects of births and infection on the proportion of indi-
viduals engaging in prophylactic behaviour. Moreover, we track
the proportion of infective individuals taking prophylactic mea-
sures, which adds an extra layer of complexity to the relationship
between pathogen exploitation and transmissibility (Appendix D).
These key differences are missing from previous work (Pharaon
and Bauch, 2018) and lead us to the conclusion that, for all feasible
sets of parameter values, we expect a decrease in pathogen
exploitation away from the benchmark value found in the absence
of prophylactic behaviour. To obtain a more direct comparison to
previous work, future iterations of our model should explicitly
include virulence and explore the subsequent predictions on
pathogen evolution.
To get some intuition into the decrease in exploitation that
we find in this paper, we need to understand two things. In
the absence of prophylaxis, standard theory (e.g., Day and
Burns (2003); Úbeda and Jansen, 2016; Alizon, 2008) predicts
that increased pathogen exploitation results in a decrease in
the duration of infection and an increase in transmission, lead-
ing to a balance between these two competing effects at evolu-
tionary equilibrium. In our model, increasing exploitation still
reduces the duration of infection, but it affects transmission
in a more complicated way. This more complicated effect on
tranmissibility disrupts the balance that would be achieved in
standard models. As we show in Appendix D, there is a benefit
to increased exploitation through a direct increase in transmis-
sion, but also a marginal cost through increased exposure to the
host behavioural immune system. In fact, the marginal cost is
indirect as it results in fewer mutant infections in hosts not
engaging in prophylaxis (i.e., smaller 1� �ym). Ultimately, this
added cost tips the scales in favour of lower pathogen
exploitation.



8 E. Mitchell, G. Wild / Journal of Theoretical Biology 503 (2020) 110388
We have already pointed to specific differences between our
work and similar work of others (Pharaon and Bauch, 2018). While
those differences will undoubtedly affect the model predictions,
the intuition developed above suggests amore concrete explanation
for the contrast is possible. In particular, Pharaon and Bauch (2018)
do not expose mutant infectives to host prophylactic behaviour in a
way that differs from resident infectives. Granted, Pharaon and
Bauch (2018) do allow for the efficacy of prophylaxis to differ
between resident and mutant strains, but the host landscape looks
the same fromboth resident andmutant perspectives in thatmodel.
In our model, mutant infections in individuals engaging in prophy-
laxis happen in different proportions than resident infections (i.e.,
�ym – �y in general). Simply put, the host landscape in our model dif-
fers meaningfully between resident and mutant infectives.

Arguably, our main result is reminiscent of other pathogens that
control host behaviour for their own gain. While our model patho-
gens are not directly controlling hosts like the pathogen Ophio-
cordyceps unilateralis does with the ant Camponotus leonardi
(Hughes et al., 2011) (or Schistocephalus solidus with the stickle-
back fish Gasterosteus aculeatus (Øverli et al., 2001), or Leucochlo-
ridium paradoxum with the snail Succinea putris (Wesołowska and
Wesołowska, 2014)), one might speculate that ours indirectly
manipulate the hosts’ economic agency. This suggests that there
may be some cryptic parasite manipulation to further investigate.

As with any modelling endeavour, we have made some simplify-
ing assumptions to reduce the mathematical complexity of our
model. For example, we have assumed that individuals instantly
update their behaviour when receiving new information about the
progression of the disease. In reality, there is a time delay between
receiving information and deciding to modify behaviour. Previous
workhas studied the effects of including adelay in the formofwaning
immunity either independently (Hethcote et al., 1989) or together
with a delay in the form of a latent period following infection
(Cooke and van den Driessche, 1996), and found that this can create
periodicity in the model solutions. Other work has also investigated
the effects of these delays on effective vaccination strategies (Gao
et al., 2006). Future work could extend our model to include the lag
in informationgainandbehaviourmodification,with the expectation
that this would cause oscillations in the predicted exploitation level.

One could also relax the assumption that individuals sample
from all other individuals in the population when deciding
whether or not to take prophylactic measures. Epidemic models
have previously been extended to include spatial structure through
the use of networks, with different types of networks providing
qualitatively different predictions (Pastor-Satorras and
Vespignani, 2001). Others have studied the interaction between
network models and host heterogeneities in the case of STIs
(Newman, 2002), and the effects of adaptive networks where indi-
viduals may build and sever connections during the progression of
a disease (Gross et al., 2006). Networks could be incorporated here
to explore the decoupling of social interactions related to disease
transmission and those related to information transmission. Based
on previous work (Wild et al., 2009), it is expected that this decou-
pling could lead to a lower level of pathogen exploitation.

It is tempting to use our evolutionary predictions to inform pub-
lic–health policy. While pathogen exploitation does reach a mini-
mum value for an intermediate level of cost of prophylaxis, our
results (Fig. 3) also show that lowering the cost even farther below
this level leads to fewer infections even if those infections are from
a more exploitative pathogen strain. Moreover, the pathogen’s
exploitation is always below the level predicted in the absence of
individuals engaging in prophylactic behaviour. There is a balance,
then, between the level of cost that is optimal forminimizing preva-
lence and the level optimal forminimizing pathogen exploitation. It
is important to recognize that efforts tominimize the cost of prophy-
laxis will result in a pathogen strain that is more exploitative of its
host than it otherwise might be. More broadly, our work suggests
that conversations about diseasemanagement and infection should
be more inclusive towards the effects of human behaviour.
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Appendix A. Details of the replicator dynamics

Here, we present the details of the derivation of equations (3)
and (4). The replicator dynamic tells us that an individual’s deci-
sion to start or stop engaging in prophylaxis is proportional to
the utility difference between the focal susceptible (resp. infective)
individual and the average susceptible (resp. infective) individual
in the population, taking into account the utility cost that the focal
individual must pay to engage in the prophylactic behaviour.
Specifically, the replicator dynamic equation allows us to replace
the sij terms in our model with the following:

� s01xþ s10 1� xð Þ ¼ kx Ufoc � vð Þ � Uavg
� 	

; ð15Þ
where Ufoc represents the utility of the focal susceptible individual,
Uavg represents the utility of the average susceptible individual in
the population, and k is a constant that reflects the rate atwhich indi-
viduals change their behaviour based on the behaviour of others. As
described in the main text, we measure utility by the force of infec-
tion so that the benefit gained by an individual choosing to engage
in prophylaxis is a reduced force of infection relative to the average
individual. The utility of a focal susceptible individual engaging in
prophylaxis, then, is given by

Ufoc ¼ � b10 1� yð Þ þ b11yð Þv; ð16Þ
while the utility of the average susceptible individual in the popu-
lation is given by

Uavg ¼ � x b10 1� yð Þ þ b11yð Þ þ 1� xð Þ b00 1� yð Þ þ b01yð Þ½ �v : ð17Þ
Substituting these into the replicator dynamic equation gives

�s01xþs10 1�xð Þ¼kx 1�xð Þ y b01�b11ð Þþ 1�yð Þ b00�b10ð Þ½ �v�kvx; ð18Þ

which is equation (3) in the main text.
We can derive equation (4) in a similar way. Since there is no

force of infection acting on an infective individual, the utility of
both a focal infective individual engaging in prophylaxis and an
average infective individual in the population is zero. However,
an infective individual who decides to engage in prophylaxis must
still pay the cost of that behaviour. In this case, then, the replicator
dynamic equation gives

� /01yþ /10 1� yð Þ ¼ �kvy: ð19Þ
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Appendix B. Linear stability analysis

The full resident system of our model (5) in the main text is
built on the standard two-dimensional SIR model. This standard
two-dimensional model has a Jacobian matrix of

J ¼ �b00v � 1 �b00u

b00v b00u� 1� c

� �
ð20Þ

which, when evaluated at the disease-free equilibrium (DFE)
�u; �vð Þ ¼ 1;0ð Þ, has eigenvalues k1 ¼ �1 and k2 ¼ b00 � 1� c. The
DFE is stable when both eigenvalues are negative, which leads us
to the condition that R0 ¼ b00= 1þ cð Þ < 1 for stability. When R0

exceeds this threshold, the DFE becomes unstable and the standard
two-dimensional system moves towards an endemic equilibrium
�u; �vð Þ ¼ 1=R0; 1� 1=R0ð Þ= 1þ cð Þð Þ. To determine the region in
which this equilibrium remains stable after we incorporate the host
behavioural dynamics, we need to consider the Jacobian matrix of
our four-dimensional system (5) evaluated at
�u; �v ; �x; �yð Þ ¼ 1=R0; 1� 1=R0ð Þ= 1þ cð Þ;0;0ð Þ:
�b00�v � 1 �1� c � �

b00�v 0 � �
0 0 k vc � v

� 	
0

0 0 b10 1þcð Þ
b00

�1� c� kv

2
66664

3
77775; ð21Þ

where vc ¼ R0 � kþ1
k

� 	 b10
b00

R0 � 1ð Þ þ 1
� �

and asterisks denote entries

that arepossiblynon-zero. Since thismatrix is blockupper triangular,
the eigenvalues are given by the eigenvalues of the 2� 2matrices on
the diagonal. The 2� 2matrix in the upper left is the Jacobianmatrix
of the standard two-dimensional SIRmodel evaluated at the endemic
equilibrium �u; �v ; �x; �yð Þ, which we know has negative eigenvalues
wheneverR0 > 1. The 2� 2matrix in the bottom right is lower trian-
gular, so its eigenvalues are the entries on themain diagonal. The sec-
ond of these entries is always negative, while the first is negative as
long as v > vc . This defines a critical cost threshold where for
v > vc the endemic equilibrium �u; �v; �x; �yð Þ is stable, while for v < vc

our system tends towards an endemic equilibriumthat contains indi-
viduals engaging in prophylaxis in some non-zero quantities.
Appendix C. Evolutionary analysis of simple cases

Two simple cases, where evolutionary analysis is possible ana-
lytically, were discussed in Section 3.1 of the main text. Here, we
outline the details of that analysis.

The first special case is when the cost of prophylaxis exceeds the
threshold vc. In this case, our linear stability analysis shows that the
stable endemic equilibrium is �u; �v ; �x; �yð Þ ¼
1=R0; 1� 1=R0ð Þ= 1þ cð Þ;0;0ð Þ, where R0 ¼ b00= 1þ cð Þ. We can
then solve equation (8b) to find two possible equilibria for
ym : �ym ¼ 0 or �ym ¼ 1=�þ kv= � 1þ nmð Þð Þð . Since � 6 1, the second
of these values is always larger than one and so is not biologically
sensible, as ym is defined to be a proportion. Checking the sign of
ðd=dymÞ dym=dtð Þ at the first of these equilibrium values shows that
�ym ¼ 0 is the stable equilibrium. From this, the fitness function in
equation (9) reduces to

W nm; nð Þ ¼ b00 nmð Þ�u nð Þ
1þ c nmð Þ ¼ R0 nmð Þ

R0 nð Þ ; ð22Þ

and so to find the CSS we need to solve the equation

@W
@nm

jnm¼n¼�n ¼
dR0 nmð Þ

dnm
jnm¼�n ¼ 0: ð23Þ

This results in a CSS value of �n ¼ ffiffiffiffi
j

p
.

The second special case is when the prophylactic measures are
cost-free, i.e., v ¼ 0. As noted in the main text, the system moves
towards an endemic equilibrium where some non-zero propor-
tions of susceptible and infective individuals are engaging in pro-
phylaxis. While we do not have exact analytic expressions for
these equilibrium values, we can still solve for �ym analytically.
Under the assumption of zero cost, solving equation (8b) gives
two possible equilibrium values for ym : �ym ¼ 1=� and
�ym ¼ ��x� �xð Þ= ��x� 1ð Þ. Since � 6 1 and �x 6 1, the first of these is
always larger than one and the second is always on the interval
0;1½ �. Substituting the second of these values into
d=dymð Þ dym=dtð Þ shows that �ym ¼ ��x� �xð Þ= ��x� 1ð Þ is the stable
equilibrium. Notably, this equilibrium value is independent of
the mutant exploitation nm and so the fitness function has the form

W nm; nð Þ ¼ nm
jþ nmð Þ 1þ c nmð Þð ÞB nð Þ�u nð Þ; ð24Þ

where B nð Þ represents what remains from bavg nm; nð Þ after factoring
out the terms involving nm. To find the CSS value, we then solve

@W
@nm

jnm¼n¼�n ¼
j� �n2

jþ �n
� 	2 1þ �n

� 	2 B �n
� 	

�u �n
� 	 ¼ 0: ð25Þ

This results in a CSS value of �n ¼ ffiffiffiffi
j

p
.

Appendix D. Evolutionary analysis in the case of arbitrary cost

While a full evolutionary analysis of the model in the case of an
arbitrary cost value is possible only numerically, we expand here
on some analytical details of this case discussed in the main text.
In particular, we show that there is a unique stable equilibrium
value of ym on the interval 0;1½ �, and that the derivative d�ym=dnm
evaluated at nm ¼ n is always positive and discuss the implications
of this on the fitness function.

In order to numerically perform the evolutionary invasion analysis,
we first need to know that there is a unique equilibriumvalue of ym on
the interval of 0;1½ � and that this value is stable. Tofind the equilibrium
values of ym,weneed to solve equation (8b). The right-hand side of this
equation is a quadratic polynomial in ym, so we know there are two
possible equilibrium values for ym. Evaluating (8b) at ym ¼ 0 gives

dym
dt

¼ bmax 1� �ð Þnm�x�u
jþ nm

; ð26Þ

which is positive since � 2 0;1½ �. If we then evaluate (8b) at ym ¼ 1,
we find that

dym
dt

¼ � �u 1� �ð Þ 1� �xð Þbmaxnm þ kvnm þ kvj
jþ nm

; ð27Þ

which is negative since � 2 0;1½ � and �x 2 0;1½ �. By the Intermediate
Value Theorem and the fact that the right-hand side of (8b) is quad-
ratic in ym, this then shows that there is a unique equilibrium value
of ym in the interval 0;1½ �. Moreover, since the derivative dym=dt is
positive at ym ¼ 0 and negative at ym ¼ 1, this equilibrium value is
stable.

With this knowledge, we are able to solve (8b) and get an expli-
cit expression for the equilibrium value �ym. To understand how this
value interacts with the fitness function (9), we need to understand
how �ym changes with nm. Differentiating with respect to nm, we are
able to get an explicit expression for d�ym=dnm and evaluate when
nm ¼ n. Doing so results in an expression of the form

d�ym
dnm

jnm¼n ¼
a�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b

p

c
; ð28Þ

where a ¼ kv jþ nð Þ þ bmax 1� �2�x
� 	

�u; b ¼ 4b2
max� 1� �ð Þ 1� ��xð Þn2�u2�x,

and c ¼ 2bmax� 1� ��xð Þn2�u
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b

p
=kvj. The fact that � 2 0;1½ � and
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�x2 0;1½ � allows us to conclude that a;b, and c are all positive. Some simpli-
fication of the radicand also shows that a2�bP0, so we are guaranteed

that equation (28) is real-valued. This proves that
ffiffiffiffiffiffiffiffiffiffiffi
a2�b

p
6a and, thus,

d�ym=dnmð Þjnm¼nP0.

To see how this affects the evolution of pathogen exploitation,
we need to pull apart the fitness function in equation (9). Finding
a potential CSS value of n involves first solving
@W=@nmð Þjnm¼n¼�n ¼ 0. Using equation (9), this gives

0 ¼ @W
@nm

jnm¼n¼�n ¼
b0
avg 1þ cð Þ � bavgc0

� �
�u

1þ cð Þ2
; ð29Þ

where primes denote derivatives with respect to nm evaluated when
nm ¼ n ¼ �n. This further reduces to solving the equality

b0
avg

bavg
¼ c0

1þ c
¼ 1þ cð Þ0

1þ c
: ð30Þ

In the absence of individuals engaging in prophylaxis, bavg ¼ b00 and

so solving for the CSS value �n amounts to balancing the standard
trade-off between transmission and recovery. However, when indi-
viduals take prophylactic measures, bavg becomes more compli-
cated. To understand how bavg responds to changes in exploitation
in this case, we take a closer look at b0

avg. Using the definition of
bavg given in the main text, we have that

b0
avg ¼ 1� �x �x½ � b0

00 b0
01

b0
10 b0

11

" #
1� �ym
�ym

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

I

� �y0m
b00 � b01

b10 � b11

� �
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

II

0
BBB@

1
CCCA: ð31Þ

It follows from the fact that b00 P b01 ¼ b10 P b11 and the above
proof that �y0m P 0 that terms I and II in equation (31) are non-
negative. Accounting for individuals engaging in prophylaxis—in
particular, infective individuals engaging in prophylaxis—reduces
b0
avg below the level we would expect in the absence of those mea-

sures. If the pathogen increases its exploitation, it leads to an
increase in the proportion of infective individuals engaging in pro-
phylactic measures due to the fact that �y0m P 0. This increases the
likelihood that the rate of transmission between a susceptible indi-
vidual and an infective individual will be one of b01 or b11, instead of
b00 or b10. Since b01 and b11 are always smaller than b00 and b10, this
leads to a reduction in the rate of change of the average transmis-
sion rate in the population. This influence on the rate of change of
transmission intertwines with the more standard trade-off between
transmission and recovery, and reduces the evolutionarily stable
level of pathogen exploitation below what we would expect in
the absence of prophylaxis.

Appendix E. Perturbation analysis

Letting r ¼ u;v ; x; yð Þ and s ¼ n, we can express the four equa-
tions governing the epidemiological dynamics of our system as
the vector-valued function F r; s;vð Þ and the equation describing
the evolutionary dynamics of pathogen exploitation as the scalar-
valued function G r; s;vð Þ. We know that below the critical cost

threshold vc the endemic equilibrium r̂; ŝð Þ ¼ û; v̂ ; x̂; ŷ; n̂
� �

is stable,

while above this threshold our system tends towards the endemic
equilibrium �r;�sð Þ ¼ �u; �v;0;0; �n

� 	
where individuals engaging in

prophylaxis are absent. The critical cost level represents a bifurca-
tion point where these two equilibria coincide and undergo an
exchange of stability. To study how our system reacts as we
decrease the cost away from this threshold, we introduce a pertur-
bation parameter d ¼ v� vc and take a first-order approximation
to our new equilibrium point r̂; ŝð Þ ¼ �uþ q1d; �v þ q2d;q3d;ð
q4d; �nþ rdÞ. Knowing that this equilibrium point must satisfy
F r̂; ŝ;vð Þ ¼ 0 and G r̂; ŝ;vð Þ ¼ 0, our goal is to find expressions for
the perturbation coefficients q1;q2;q3;q4, and r.

If we treat r̂; ŝð Þ as a function of v, we can make a first-order
Taylor series approximation centred around vc:

F �r;�s;vc

� 	þd Dr̂F �r;�s;vc

� 	
dr̂þFŝ �r;�s;vc

� 	
dŝþFv �r;�s;vc

� 	
 �¼0 ð32aÞ
G �r;�s;vc

� 	þd Gr̂ �r;�s;vc

� 	
dr̂þGŝ �r;�s;vc

� 	
dŝþGv �r;�s;vc

� 	
 �¼0; ð32bÞ

where subscripts denote partial derivatives and dr̂ ¼ q1;q2;q3;q4ð Þ
and dŝ ¼ r are the derivatives with respect to v of r̂ and ŝ, respec-
tively. We know that �r;�sð Þ is an equilibrium point, so the first term
in Eqs. (32a) and (32b) evaluates to zero. We also observe that every
term in F and G involving v is multiplied by at least one of x or y,
and so the partial derivatives with respect to v vanish when we
evaluate at �r;�sð Þ. This simplifies (32) to:
Dr̂F �r;�s;vc

� 	
dr̂þ Fŝ �r;�s;vc

� 	
dŝ ¼ 0 ð33aÞ

Gr̂ �r;�s;vc

� 	
dr̂þ Gŝ �r;�s;vc

� 	
dŝ ¼ 0: ð33bÞ

We can write (33) more succinctly as J dr̂
dŝ

� �
¼ 0 where the

matrix J has the following structure:

J¼

� � � � �
� � � � 0
0 0 0 0 0
0 0 � � 0
0 0 @

@ x
� @W

@nm
jnm¼n

h i
v¼vc ; n¼

ffiffiffi
j

p 0 @
@n

@W
@nm

jnm¼n

h i
v¼vc ; n¼

ffiffiffi
j

p

2
66666664

3
77777775
; ð34Þ

with asterisks denoting entries that are possibly non-zero. Since J is
a block triangular matrix, the eigenvalues are given by the eigenval-
ues of the matrices on the main diagonal. The 2� 2 matrix in the
upper left is the Jacobian matrix arising from the linearization of
the standard SIR model around the endemic equilibrium �r;�sð Þ. Since
the lower-right 3� 3 block is lower triangular and has a zero entry
on its main diagonal, we can see that zero is an eigenvalue of J. This

allows us to interpret dr̂
dŝ

� �
as the eigenvector of J associated with

the zero eigenvalue, and so shows that there is a non-trivial solution
for our perturbation coefficients.

While an analytic expression for this eigenvector can be found,
it is unwieldy. Of more interest is the sign of the perturbation coef-
ficient r, as this tells us in which direction �n moves as we decrease
the cost below its critical value. The third row of (34) tells us that �x
is a free variable, and the last row tells us that there is a simple
relationship between this free variable and �n. In particular, if we

consider finding the eigenvector dr̂
dŝ

� �
by solving the expression

J dr̂
dŝ

� �
¼ 0, then the last row of (34) tells us that

r ¼ �
@

@ x
� @W

@nm
jnm¼n

h i
v¼vc ; n¼

ffiffiffi
j

p

@
@n

@W
@nm

jnm¼n

h i
v¼vc ; n¼

ffiffiffi
j

p
q3: ð35Þ

We know that the denominator of (35) is always negative since
�n ¼ ffiffiffiffi

j
p

is convergence stable (see (11)). Furthermore, the propor-
tion of susceptible individuals engaging in prophylaxis increases
as the cost is decreased below its critical value and
d ¼ v� vc < 0 below this cost threshold, so we must have that
q3 < 0. It follows, then, that the sign of r is controlled only by
the numerator of (35) and so we arrive at Eq. (14) in the main text.
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Appendix F. Maple code

Here, we present the Maple code, described in Section 3.2 of the main text, used to check the sign of the perturbation coefficient r for a
range of parameter values near the critical cost threshold. Using d ¼ v� vc as our perturbation parameter, we first define the differential
equation for ym and solve for the equilibrium value:

Solving this equation returns two possible equilibrium values:

These equilibrium values are of the form a�
ffiffiffi
b

p� �
=c. Knowing that 0 6 � 6 1 and 0 6 �x 6 1 allows us to conclude that a 6 0; b P 0, and

c 6 0. Furthermore, some algebra shows that b 6 a2 and so
ffiffiffi
b

p
6 jaj. This allows us to conclude that 0 6 ym 1½ � 6 ym 2½ �. We now check

the derivative of the differential equation to find the stable equilibrium:

Since the first of these quantities is negative and the second is positive, this shows that the first root ym[1] is the stable equilibrium. The
proof in Appendix D shows that there is a unique stable equilibrium on the interval 0;1½ �, and so we are guaranteed that ym[1] is on 0;1½ �.
Thus, we define this as the equilibrium value of ym:
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We now define the differential equations for u;v ; x, and y, as well as the partial derivative of the fitness function with respect to the
mutant pathogen exploitation level nm:
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Using this, we put together the matrix J described in Appendix E:
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We then extract the entry of J corresponding to the partial derivative in (14). We also define the critical cost threshold vc:

If we choose bmax and j values so that R0 > 1, we get the following curve (where above the curve R0 > 1 and below the curve R0 < 1):

If we also choose � values so that vc > 0 and k values so that � < 1, we can generate a series of bmax-j curves and plot them together with
the previous curve for R0:

This generates the plot in panel A of Fig. 2 and suggests that all of the vc ¼ 0 curves overlap with the R0 ¼ 1 curve, meaning that the
region in which R0 > 1 coincides with the region in which vc > 0. We can confirm this by looking at the difference between these two
curves; running the following line of code will show that this difference is always exactly zero:
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If we use the � and k values chosen above, we can also look at the value of the partial derivative in Eq. (14). This gives a second set of
bmax-j expressions that we can plot over top of the expressions for vc and R0 above:

This produces the plot shown in panel B of Fig. 2 and shows that all of these curves that represent the roots of the partial derivative in
(14) lay below the curve for R0 ¼ 1. So for all sensible sets of parameter values (i.e., all parameter values that satisfy vc > 0 and R0 > 1),
(14) has the same sign. We can take a test point in this region of parameter space to show that this sign is always positive, meaning that in a
neighbourhood below the critical cost value the CSS pathogen exploitation level will decrease below its benchmark value.
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Appendix G. Matlab code

Here, we present the Matlab code, described in Section 3.3 of the main text, used to numerically find the CSS pathogen exploitation
level. We start by defining functions for the transmission rates and the recovery rate:

Listing 1:Matlab function b00.m that computes the transmission rate b00 nð Þ.

Listing 2: Matlab function b01.m that computes the transmission rate b01 nð Þ.

Listing 3: Matlab function b10.m that computes the transmission rate b10 nð Þ.

Listing 4: Matlab function b11.m that computes the transmission rate b11 nð Þ.

Listing 5: Matlab function g.m that computes the recovery rate c nð Þ.

We also need functions to define the resident system and the partial derivative with respect to nm of the fitness function:
Listing 6: Matlab function resident.m that computes the system of ODEs for the u;v ; x; y system.
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Listing 7: Matlab function dFitness.m that computes the partial derivative with respect to nm of the fitness function.

Finally, we use all of these to define a function that numerically approximates the CSS level of pathogen exploitation:
Listing 8: Matlab function findCSS.m that approximates the CSS level of pathogen exploitation.
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