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ABSTRACT

Single cell RNA sequencing approaches are instru-
mental in studies of cell-to-cell variability. 5′ selective
transcriptome profiling approaches allow simultane-
ous definition of the transcription start size and have
advantages over 3′ selective approaches which just
provide internal sequences close to the 3′ end. The
only currently existing 5′ selective approach requires
costly and labor intensive fragmentation and cell bar-
coding after cDNA amplification. We developed an
optimized 5′ selective workflow where all the cell in-
dexing is done prior to fragmentation. With our proto-
col, cell indexing can be performed in the Fluidigm C1
microfluidic device, resulting in a significant reduc-
tion of cost and labor. We also designed optimized
unique molecular identifiers that show less sequence
bias and vulnerability towards sequencing errors re-
sulting in an improved accuracy of molecule count-
ing. We provide comprehensive experimental work-
flows for Illumina and Ion Proton sequencers that
allow single cell sequencing in a cost range compa-
rable to qPCR assays.

INTRODUCTION

The cell is the minimal building block of any living organ-
ism. Investigating the properties of individual cells rather
than the average of a group of seemingly identical cells pro-
vided important insights in various domains such as cancer
(1), development (2,3), immunology (4) and neurobiology
(5–7). Single cell transcriptome sequencing is a key technol-
ogy to address this cellular heterogeneity.

Since the first sequencing of a single cell transcriptome
(8), advances in library preparation techniques greatly im-
proved both efficiency and throughput (9).

Most mammalian cells contain just a few hundred thou-
sand mRNA molecules (10). In consequence, efficient con-
version of mRNA into cDNA is crucial and was the focus
of several recent studies (1,10,11). Most current single cell

mRNA cloning techniques exploit the template switching
activity of reverse transcriptases (STRT-seq (12), Smart-seq
(1)) to efficiently clone full length cDNA, which is subse-
quently amplified by PCR. The approach was further re-
fined by Picelli et al. (11) (Smart-Seq2) and Islam et al. (10).
Alternate approaches that use isothermal cRNA amplifica-
tion were also developed (Mars-seq (13), CEL-seq (14,15)).

Early single cell profiling approaches processed single
cells in tubes or in plates. Performing cDNA synthesis in
tiny volumes either in microfluidic devices such as the Flu-
idigm C1 (2,3,10) or in microdroplets (16,17) was an impor-
tant further development which increased throughput and
reduced both reagent cost and labor. Single cell transcrip-
tome profiling in microfluidic devices was also shown to
yield increased transcript discovery rates and thus mRNA
cloning efficiencies when compared to manual processing in
tubes (18).

Amplification bias and library complexity are clearly is-
sues that need to be considered since single cell library
preparation requires huge amplification of tiny amounts (<
1pg) of cDNA. To address those issues, Islam et al. (10) and
Jaitin et al. (13) stochastically tagged cDNA molecules dur-
ing reverse transcription with short random nucleotide se-
quences (unique molecular identifiers, UMIs). The use of
UMIs largely improved data quality since it allows count-
ing of the initial unamplified cDNA molecules what is much
less biased than counting transcript read numbers in heavily
amplified cDNA.

UMIs are introduced during reverse transcription either
at the 5′ or 3′ end of the cDNA. In consequence, only the
UMI tagged extremity of the transcript is recovered and
sequenced after cDNA fragmentation. The vast majority
of currently used approaches introduce the UMI via the
oligo-dT reverse transcription primer and sequence the 3′
terminal, UMI tagged, fragment of the cDNA (14–17). Se-
quencing the actual 3′ end of a transcript would require se-
quencing through the poly-dT stretch of the reverse tran-
scription primer. Sequencing through such long repeats typ-
ically yields poor read qualities due to phasing issues and
homopolymer length heterogeneity within flow cell clusters
generated by polymerase slipping during amplification. In
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consequence, 3′ selective single cell sequencing approaches
don’t sequence the actual 3′ end of a transcript but rather
the 5′ end of the most 3′ fragment of the cDNA obtained
after cDNA fragmentation.

Conversely, 5′ selective approaches do not have this lim-
itation and allow sequencing of the actual 5′ end of the
cDNA and thus a simultaneous definition of mRNA ex-
pression levels and transcription start sites. However, the
only currently published 5′ selective approach (10) has es-
sentially two drawbacks: First, the cell index is introduced
during cDNA fragmentation with indexed transposons in-
dependently for each cell, what is labor intensive and costly
when commercial transposase is used. Secondly, only short
UMIs of 5 nucleotides were used, since extension of the tem-
plate switching oligonucleotide is thought to adversely af-
fect mRNA capture efficiency. However such short UMIs
get saturated for highly expressed transcripts and efficient
UMI sequencing error correction strategies (16) cannot be
used, since they would further decrease an already low UMI
complexity.

Another limitation of all current efficient single cell se-
quencing approaches is that they are only available for Il-
lumina sequencers and not for other low cost benchtop se-
quencers such as the Ion Proton.

We addressed those issues and developed a highly effi-
cient cost- and labor effective 5′ selective single cell tran-
scriptome profiling approach for both Ion Torrent and Illu-
mina sequencers. Our method introduces cell barcodes by
PCR prior to cDNA fragmentation and requires just one
fragmentation and library preparation for the pooled cD-
NAs from the individual cells. We also present a novel UMI
design that allows better error correction and thus more
reliable molecule counting. We show that our barcoding
strategy and UMI design allows robust and efficient single
cell transcriptome profiling with the Fluidigm C1 at just a
fraction of the cost of currently available commercial ap-
proaches.

MATERIALS AND METHODS

Cell culture

HEK293 cells were cultured in DMEM medium supple-
mented with glutamine and 10% fetal calf serum. Human
airway epithelial cells were isolated and cultured as de-
scribed by Marcet et al. (19).

cDNA synthesis, PCR amplification––tube controls

Concentrations of reagents and enzymes as well as the
reagent volume per cell were identical for tube controls and
the Fluidigm C1 microfluidic device. Primer sequences are
listed in Supplementary Table S1. A schematic workflow is
provided in Supplementary Figure S11.

Cell lysis

1000 HEK293 cells in 4.5 �l C1 wash buffer (Fluidigm) were
lysed with 9 �l of lysis buffer (0.2% w/v Tween 20, 1 U/�l
Promega RNAsin RNAse inhibitor, 2 �M reverse tran-
scription primer, 2.5 mM dNTPs, 1× C1 loading reagent

(Fluidigm), ERCC Spike-In Mix 1 at 20 000 molecules/cell
(Life Technologies). The sample was incubated for 10 min
at room temperature followed by 3 min at 70◦C and 3 min
at 10◦C.

Reverse transcription

Reverse transcription was adapted from (20). 18 �l of 1.75×
reverse transcription buffer (Thermo), 8.75 mM DTT, 1.75
M betaine, 10.5 mM MgCl2, 1.75 �M template switching
oligonucleotide, 0.5 U/�l Promega RNAsin, 5.5 U/�l Life
Technologies Superscript II reverse transcriptase, 1× C1
loading reagent were added to the lysed cells and the sample
was incubated for 10 min at 25◦C, 90 min at 42◦C, 15 min
at 70◦C and kept <10◦C until PCR amplification.

PCR amplification

One tenth of the reverse transcription (3.15 �l, 100 cells)
was mixed with 27 �l 1.15× KAPA HiFi HotStart Ready
Mix, 55 nM barcode primer and 1.1 �M biotinylated
PCR primer. For Illumina sequencing forward and reverse
primers for this PCR are distinct and an additional reverse
PCR primer was added (1.1 �M). For PCR amplification
samples were incubated 3 min at 98◦C followed by 18 cycles
at 98◦C for 20 s, 64◦C for 15 s, 72◦C for 6 min, and a final
extension at 72◦C for 5 min. Primers and small fragments
were removed by cleanup with 1 vol. SpriSelect beads. Typ-
ical cDNA size distributions are shown in Supplementary
Figure S13.

cDNA synthesis, PCR amplification – microfluidic device

Lysis, reverse transcription and PCR mixes were the same as
for the tube controls. Lysis (7 �l) and reverse transcription
mix (8 �l) were added to the wells of the microfluidic device
specified in the script for the C1. 6.5 �l of PCR mix with one
of the 96 barcodes was added to each of the outlet wells. The
PCR mixes were backloaded from the outlet wells into the
reaction chambers resulting in cell specific barcoding on the
microfluidic chip during the PCR amplification. The script
for the Fluidigm C1 has been submitted to the Fluidigm
C1 OpenApp script repository (https://www.fluidigm.com/
c1openapp).

Library preparation

Since Ion Torrent requires smaller fragment sizes than Illu-
mina sequencers and no suitable commercial kits were avail-
able, we adapted a tagmentation protocol of Picelli et al.
(21) for the Ion Proton. Assembly of transposomes was per-
formed following Wang et al. (22). Two reverse comple-
mentary oligonucleotides containing the Tn5 mosaic end
sequence (upper: 5′-AGA TGT GTA TAA GAG ACA-G
3′, lower: 5′-PhosCTG TCT CTT ATA CAC ATC T-3′)
were annealed at a concentration of 50 �M each in TE
(95◦C 3 min, 70◦C 3 min, cooling at 2◦C min−1 to 26◦C)
and subsequently diluted to 10 �M in 50% glycerol. An-
nealed oligonucleotides and Ez-Tn5 transposase (1 U/�l,
Epicentre) were mixed in a 4:1 ratio and incubated 30 min
at room temperature for transposon assembly. The trans-
posons were used immediately or stored at −20◦C.

https://www.fluidigm.com/c1openapp
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For the Fluidigm microfluidic chip, cDNA from the 96
output wells were pooled without quantification of the in-
dividual samples.

10 ng of cDNA in 9 �l water were mixed with 4 �l TAPS
Buffer (50mM TAPS-NaOH, pH8.5 @ RT, 25 mM MgCl2),
2 �l dimethylformamide and 5 �l of transposon. After a 7
min incubation at 55◦C, samples were cooled to 10◦C and 4
�l of 0.1% SDS was added, and the tubes were incubated for
10 min at 65◦C to detach the transposase, and then cooled
to 4◦C. For Illumina sequencing, tagmentation was done for
5 min at 55◦C. Alternatively, a commercial Nextera tagmen-
tation kit (Illumina) can be used for Illumina library prepa-
ration.

Terminal fragments that were biotinylated during the
PCR amplification were captured with 24 �l Dynabeads®

MyOne™ Streptavidin C1 beads (Life Technologies) and
washed following the manufacturer supplied protocol.
Beads were suspended in 10.5 �l water and 5′ terminal frag-
ments were amplified in 25 �l with KAPA HiFi HotStart
Ready mix and 0.5 �M reverse library primer, 0.5 �M for-
ward library primer and 0.125 �M extended forward library
primer. For Illumina sequencing an extended reverse library
primer was added (0.125 �M). A gap filing step was done at
72◦C during 3 min followed by 98◦C for 30 sec, 15 cycles of
98◦C for 10 s, 55◦C for 30 s and 72◦c for 30 s, and 72◦C for
2 min. Ion Torrent libraries were size selected (200–350 pb)
with SPRIselect® beads (Beckman Coulter) following the
manufacturer supplied protocol. 100 �l library in TE was
incubated with 75 �l of SPRIselect® beads to deplete frag-
ments >350 pb. Beads were discarded and an additional 15
�l of SPRIselect® beads were added to capture fragments
>200 pb. Beads were washed with 85% EtOH and bound
cDNA was eluted from the beads with 10 �l water.

Illumina libraries (100 �l) were just size selected for frag-
ments > 200 bp with 90 �l SPRIselect beads. Beads were
recovered, washed and eluted as described above.

Quality and yield was determined with an Agilent Bion-
alyzer (Supplementary Figure S13).

Sequencing

Libraries were sequenced either on a Proton Ion PI™ Chip
v3 (Thermo) or on a Nextseq 500 MID output flowcell (Il-
lumina). For Illumina Nextseq sequencing, the custom se-
quencing primers listed in Supplementary Table S1 were
added to the reagent cartridge following the ‘NextSeq®

System Custom Primers Guide’ (Illumina Part # 15057456).
Instructions for the use of custom sequencing primers with
Illumina HiSeq sequencers are in Illumina document #
15061846. Our protocol for Illumina sequencers uses sin-
gle indexing and either single or paired end sequencing. For
Illumina sequencers, sequencing more libraries from more
than 96 cells is possible. This can be done by adding a plate
index during the final library preparation using an indexed
extended reverse library primer (see Supplementary Table
S1) and sequencing the plate index as ‘index 2’.

Read alignments and gene-expression analysis

Ion Torrent sequencers generate just one read that contains
the barcode and the insert sequence. In consequence, the

read after barcode trimming starts with the TSO sequence
(Supplementary Figure S3). We first examined whether the
TSO sequence including the UMI [(ATCG)4(ATC)4] and
the three Guanines following the UMI were correctly for-
matted and free of substitutions or indels (Supplementary
Figure S3). Only reads with correctly formatted TSO se-
quences were processed further. UMI sequences were ex-
tracted and the TSO sequence was trimmed from the reads.
Trimmed reads that were shorter than 26 nt were discarded.
Typically 80 – 85% of the reads passed those filters.

In the case of Illumina sequencing, reads start with the
UMI sequence and were just filtered for correct UMI for-
matting and the presence of three Guanines after the UMI.

Trimmed reads were mapped against the human genome
(hg19) and ERCC sequences using STAR aligner (v2.4.0a),
with default parameters. STAR indices were generated us-
ing Ensembl GTF file (release 75).

For molecule counting based on UMI counts, we used
the Dropseq Core Computational Protocol version 1.0.1
(dropseq.jar) (16). Unless indicated otherwise, we used the
uniq option (identical UMIs at two different transcript po-
sitions are only counted once) and edit distance = 1 (UMIs
for a transcript that are potentially a substitution mutant of
another UMI with higher read coverage of the same tran-
script are discarded).

Single cell quality filters

Capture sites were visually inspected for the presence and
viability of cells after staining with the LIVE/DEAD®
Viability/Cytotoxicity Kit for mammalian cells (Thermo)
at 10× magnification. Only capture sites with one live cell
were retained for analysis. Additional quality control of
the remaining libraries was performed using the R pack-
age ‘Single-cell analysis toolkit for gene expression data
in R’ (scater version 1.0.4, https://www.bioconductor.org).
Briefly, a set of cell quality indicators, such as the total num-
ber of UMIs for the cell, the total number of detected genes
and the percentage of UMIs corresponding to mitochon-
drial genes was computed for each cell (23). Then, all cells
flagged as outlier in a principal component analysis based
on these quality measures were excluded. Furthermore, we
excluded cells with a percentage of counts on ERCC spike-
ins greater than the median + 4 times the median absolute
deviation for the batch (isOutlier function of the scater R
package). Special cases, such as identification of rare qui-
escent cells with low transcript numbers in a heterogeneous
cell population might require fine-tuning of those filters.

Statistical analysis

Statistical analysis was performed using the statistical pack-
age R version 3.3.1. ERCC capture efficiency was estimated
as the intercept of a regression line with a constrained slope
of 1 fitted between the expected number of ERCC molecules
and the number of ERCC molecules counted. Only ERCC
for which at least 10 molecules were spiked in were used for
analysis. Correlation coefficients are calculated using Pear-
son’s method. Single cell UMI count data were normalized
for sequencing depth differences using the normalize func-
tion from the scran package version 1.0.4.

https://www.bioconductor.org
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Down-sampling of reads

After mapping, cell index and UMI extraction, a BAM file
with reads for 47 single cells (mean = 1.43 × 106 reads/cell)
was down-sampled to 0.05, 0.1, 0.2 0.4, 0.5, 0.75, 1.0, 1.25
million mean reads per cell. mRNA molecule counting was
done with the dropseq.jar java pipeline (16).

Analysis of public single cell RNAseq data

Data were downloaded from Gene Expression Omnibus,
reads were matched to the reference genomes and UMIs
were counted as described above.

HEK293 Dropseq data are from GEO accession
GSE63473 (16). 259 cells were selected for further analysis
using the same quality filtering as described above.

CEL-seq2 data of 96 cells processed in the Fluidigm
C1 are from GEO accession GSE 78779 (samples GSM
2076519–GSM2076614) (14). The UMIs in this dataset
have just five nucleotides and not six nucleotides as stated
in Hashimshony et al. (14).

Accession codes

Data were deposited in Gene Expression Omnibus
(GSE79136).

RESULTS

Library preparation strategy

We sought to design a 5′ selective library preparation strat-
egy that uses UMIs and fulfills the following criteria: (i) un-
biased introduction of cell indices before the costly and la-
bor intensive fragmentation step; (ii) compatibility with the
Fluidigm C1 microfluidic device design; (iii) essentially se-
quencing platform independent; (iv) cost and labor effec-
tive.

A simple option for pre-fragmentation barcoding is to in-
troduce cell indices during reverse transcription. All current
3′ selective single cell profiling approaches use this strategy
and barcode via indexed reverse transcription primers. A
similar strategy was also used in an early version of a 5′
selective protocol by Islam et al. (12) who used barcoded
TSOs to introduce the cell index at the 5′ end of the cDNA
during reverse transcription. However, introducing the cell
index via barcoded TSOs has essentially two major disad-
vantages. First, an increase in TSO length has a negative
impact on capture efficiency (10,24), a critical parameter in
single cell transcriptome profiling. Secondly, use of differ-
ent TSOs during reverse transcription was shown to cause
differential capture of transcripts (24). Thus, the use of bar-
coded TSOs during reverse transcription would likely intro-
duce bias that cannot be corrected with UMIs since UMIs
are introduced during this step.

To avoid any barcode induced bias we opted for bar-
coding during PCR amplification of the cDNA, as even-
tual barcode dependent amplification bias can easily be de-
tected and corrected by counting Unique Molecule Identi-
fiers (UMIs) introduced during reverse transcription.

Performing reverse transcription in tiny volumes in Flu-
idigm microfluidic devices was shown to yield superior

mRNA capture than carrying out the same protocol in
tubes or microtiter plates (18). Although the cost of the dis-
posable microfluidic device is substantial, it is compensated
by the >100-fold lower amount of required reagents and en-
zymes.

We designed a 5′ single cell transcriptome sequencing
workflow that is compatible with the Fluidigm C1 microflu-
idic device (Figure 1). We initially performed pilot experi-
ments in tubes that mimicked the reaction conditions in the
microfluidic device to select the optimal UMI and TSO de-
sign. The proposed protocol is therefore highly versatile and
can easily be adapted to other instruments.

TSO and UMI design

Rather short UMIs with five degenerate nucleotides were
previously used by others for 5′ selective single cell mRNA
sequencing (7,10). However, the 1024 distinct sequences of a
N5 UMI are clearly insufficient to uniquely tag each copy of
an abundant transcript with one and only one UMI. Several
strategies were used by others to count abundant transcripts
with short UMIs. One approach considers two reads with
identical UMI of a given transcript as distinct molecules
if both reads start at different positions on the transcript
(10). Theoretical considerations of UMI usage saturation
or UMI collision were also used to extrapolate the number
of molecules for abundant transcripts (25). The used equa-
tions contain logarithms that tend to infinity and exaggerat-
edly overestimate the number of molecules when the num-
ber of detected UMIs approaches the maximal complexity
of the UMI: they are thus not reliable for highly abundant
transcripts.

To overcome the limitations of short UMIs, we rather in-
creased the length of the UMI to 7 nucleotides. The com-
plexity of a N7 UMI (n = 16 384) should be sufficient to tag
each copy of even abundant transcripts in a single cell with
a unique UMI.

Ideally, UMIs should be introduced randomly, with-
out bias for particular UMI sequences. However, we no-
ticed that UMIs that are G-rich, particularly at the 3′
end of the UMI, were highly enriched. Fifteen % of the
UMI::transcript combinations were associated with a lim-
ited subset of just 100 G-rich UMIs (Figure 2a). This G-
bias is likely due to the variable number of template inde-
pendent nucleotides that are added by the reverse transcrip-
tase. Previous studies showed that mainly three to four but
sometimes up to six nucleotides, mainly cytosines, are added
to the end of a cDNA (24) by the intrinsic terminal trans-
ferase activity of Superscript II. In the TSO, the seven Ns of
the UMI are followed by three guanosines to allow anneal-
ing to the 3′ terminal cytosines of the cDNA. When more
than three cytosines are added by the reverse transcriptase, a
TSO with a longer stretch of 3′ terminal Gs and thus UMIs
that have Gs at their 3′ terminus are likely selected, leading
to a G bias at the 3′ of the UMI.

To overcome such a G bias, we tested a N4H4 UMI where
the last four nucleotides are constrained to either A, T or C.
The new UMI design resulted in a far better balanced usage
of UMI sequences than the initial N7 UMI (Figure 2B and
C).
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Figure 1. On chip barcoding workflow. After cell lysis in 4.5 nl poly-adenylated RNA is reverse-transcribed in 31.5 nl with an anchored oligodT primer.
A PCR primer sequence and unique molecular identifiers (UMIs) are added to the 3′ end of the cDNA via reverse transcriptase template switching. The
cDNA is subsequently amplified and cell index sequences (barcode) as well as terminal biotins are introduced by PCR in the microfluidic device. The
barcoded cDNAs are pooled, fragmented by tagmentation with Tn5 transposase and the biotinylated terminal fragments are isolated on streptavidin
beads. 5′ terminal fragments are selectively amplified and additional sequences required for Ion Torrent sequencers are introduced by PCR. For a detailed
protocol see Supplementary Figure S11 and for Illumina sequencers see Supplementary Figure S8.

In single cell transcriptome profiling efficient transforma-
tion of a limited number of mRNA molecules into ampli-
fied cDNA is crucial. Most currently used highly efficient
single cell transcriptome sequencing approaches exploit the
template switching activity of reverse transcriptases to add
a priming site required for subsequent PCR amplification
to the 3′ end of the cDNA (10,11,16). Different TSO de-
signs were recently proposed for efficient template switch-
ing. Islam et al. (12) used a TSO with three 3′ terminal ri-
boguanosines (TSO rG3) while Picelli et al. (11) claimed
superior template switching efficiency when the 3′ terminal
nucleotide of the TSO is a LNA base (TSO LNA). Con-
versely, another study reported superior efficiency of TSOs
with three terminal riboguanosines over TSOs with LNA
bases (26). In our experimental conditions both TSO de-
signs performed rather similarly (cDNA yield TSO rG3/
TSO LNA = 1.03 ± 0.26 S.E.M., n = 3 means of tripli-
cates). Since the UMI usage was slightly better balanced
with the TSO rG3 (Figure 2B and C), we used this TSO

for all further experiments. The final protocol is highly re-
producible with pools of HEK293 (correlation coefficients
> 0.96, Figure 2D).

We next examined how our on chip barcoding protocol
performs with single HEK293 cells in the Fluidigm C1 96
cell integrated fluidic circuit (IFC). The 96 amplified cD-
NAs were pooled without normalization, libraries were pre-
pared and sequenced on an Ion Proton sequencer (Figure
1, Supplementary Figure S11, Materials and Methods sec-
tion).

Introducing UMIs during cDNA synthesis theoretically
allows correction of all bias induced by steps downstream
of cDNA synthesis (e.g. PCR). However UMI counting and
error correction strategies need to be critically considered to
avoid bias.
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Figure 2. UMI optimization and reproducibility of the protocol. (A–C) Impact of the TSO design on UMI usage bias. We examined TSOs with either a
N7N6 UMI (A) and N4H4 UMI (HUMI) (B, C). The 3′ terminal nucleotide of the TSO was either a LNA-guanosine (A, B) or a ribo guanosine (C). The
weblogos represent the frequency at which we found each nucleotide at the given positions of the UMI in our genome matched sequencing reads. The bar
graphs below show the percentage of the total transcript molecules associated with the top 10 and top 100 most frequently found UMI sequences. Data
are from 100 pooled HEK293 cells processed in tubes. (D) Pairwise correlations of transcript (UMI) counts for three biological replicates of 100 HEK293
cells with the TSO-HUMI-rG3 (C). Data shown are log2(counts+1), R: Pearson correlation coefficient.

UMI counting

Different UMI counting strategies were previously used. Is-
lam et al. (10) used a N5 UMI with a maximal complexity
of 1024. To count abundant transcripts they considered two
identical UMIs as distinct molecules when the read start po-
sitions on the transcript were distinct. Conversely, Macosko
et al. (16), who used a high complexity N8 UMI (n = 65
536), simply eliminated all duplicate UMIs for a given gene.
We frequently noted identical UMIs at different start po-
sitions even for low expressed transcripts. For example, for
TCEB2 we found 50 distinct UMIs with one UMI at three
distinct start positions and seven UMIs at two start posi-
tions (Supplementary Figure S1). This is statistically highly
unlikely with our N4H4 UMI (complexity = 20 736) and we
rather suspect this start position heterogeneity results from
soft clipping of the 5′end of some lower quality reads by
the read mapper. To avoid any counting of fake UMIs we
counted UMIs only once for a given gene.

UMI error correction

PCR amplification errors and sequencing errors can gener-
ate novel UMI sequences, which would be falsely counted
as distinct molecules.

The impact of PCR errors is probably small with high fi-
delity polymerases such as the Kappa HiFi polymerase we
used. PCR error rates are far below 10−6 and PCR amplifi-
cation of an 8 nucleotide UMI for 30 cycles will introduce
PCR errors in <0.024% of the amplified UMIs. Sequencing

errors are a more serious issue, since benchtop sequencers
have substitution rates >0.1%, meaning that >0.8% of the
sequenced 8 nucleotide UMIs have at least one substitution
(>8000 erroneous UMIs per million reads). In consequence,
efficient identification and elimination of such false UMIs
is critical for reliable molecule counting. We examined var-
ious options to correct those errors and deduce molecule
counts from UMI counts. Since sequencing errors affect a
minority of reads, real UMIs should, on average, be cov-
ered by far more reads than UMIs generated by sequencing
errors. Islam et al. (10) exploited the anticipated low read
coverage of fake UMIs to correct for UMI sequencing er-
rors, using a ‘percentile filtering’ approach. For each gene,
they discarded UMIs with a read coverage <1% of the me-
dian coverage for all UMIs of the respective gene. However,
this approach requires a quite high UMI sequencing depth
to reliably identify 100-fold differences in read coverage. In
our dataset, with a mean UMI sequencing depth of 12.6 (be-
fore filtering), only 0.01% of the transcript molecules were
eliminated (Figure 3A), a rate far below the expected num-
ber of UMI sequencing errors. A more stringent filtering
where UMIs with <10% of the mean UMI read coverage
were discarded only increased the number of filtered UMIs
to 0.2% (Figure 3A). A further increase of the cutoff to 20%
had a pronounced impact on the number of retained UMIs.
However, such stringent cutoffs (≥20%) capped the number
of detected molecules, which barely increased when more
reads were generated (Supplementary Figure S2a).
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Figure 3. Single cell sequencing. (A) Impact of UMI error filtering strategies. Percentage of filtered UMIs for different UMI error correction strategies.
Filtering strategies were: Percentile, UMIs with a read coverage of less than the indicated fraction (P 1%, P 10%, P 20%, P 50%) of the average UMI read
coverage of the corresponding gene were discarded; Edit distance (ED) = 1, UMIs that differ in just one nucleotide were merged into a single UMI. The
percentages of eliminated UMIs were: P1%, 0.01%; P10%, 0.20%; P20%, 14.25%; P50%, 40.43%; ED = 1, 22.61%. Data are from one cell. (B, C) Number
of ERCC (B) and transcript molecules (C) detected for each cell (means (dashed lines)/c.v.: ERCCs, 3558/15.7%; transcripts, 62 841/36.7%). (D) Number
of genes detected for each cell (mean = 6679 (dashed line); c.v. = 16.9%). (E) Scatter plot showing the number of input ERCCs vs. the number of detected
ERCCs (means ± SD). The capture efficiency (26%) was calculated from the intercept of the regression line and the y-axis. (F) Distribution of read starts
on annotated transcripts in one % bins between the 5′ (0%) and the 3′ end (100%). Data are means ± SD (red bars) for 47 cells. (G) Heatmap of the pairwise
correlation of ERCC molecules for 47 cells. (H) As (G) but for mRNAs. (I) Correlation between transcript (UMI) counts (log2(counts + 1)) for pools of
100 HEK293 cells sequenced on an Ion Proton or Illumina Nextseq 500, respectively. Data are means from two pools of 100 HEK293 cells processed in
tubes. (J) Correlation of HEK293 single cell transcript (UMI) counts (log2(counts+1)) between our Fluidigm C1 data and previously published Dropseq
data (16). Transcript counts are means from 47 cells (Fluidigm) or 259 cells (Dropseq). Average numbers of transcript molecules detected per cell were:
Fluidigm, 62,841; Dropseq, 36,746. R: Pearson correlation coefficient.

An alternative approach that does not rely on high se-
quencing depths was recently introduced (16). This ap-
proach, called ‘edit distance filtering’, merges UMIs of a
given transcript when they differ by just one base and elim-
inates UMIs generated by substitution errors during PCR
or sequencing. With our dataset, this filtering method elimi-
nates 22.6% of the UMIs (Figure 3A) and is already effective
at low sequencing depths. Edit distance filtering eliminated
preferentially UMIs with low read coverage and increased
the average UMI sequencing depth from 12.6 to 16.3 (Sup-
plementary Figure S2b).

Despite an average UMI sequencing depth of 12.6 before
filtering, 18% of the UMI::transcript combinations were
read just once (Supplementary Figure S2b). A similar het-
erogeneity in UMI sequencing depth was reported by oth-
ers (7). Yet, 66% of the UMIs covered by just one read are
retained by the ‘edit distance’ filtering, an approach that
eliminates UMIs with single substitution errors. In conse-

quence, the majority of those single read UMIs are likely
not erroneous UMIs but rather correspond to real mRNA
molecules. Conversely, those single read coverage UMIs are
preferentially (10) or completely (7) discarded with UMI
error filtering strategies that are simply based on UMI se-
quencing depth. Both the higher sensitivity at reasonable
sequencing depths and the higher selectivity for erroneous
UMIs led us to select the ‘edit distance’ filtering for UMI er-
ror correction. The Ion Proton sequencer adds a particular
challenge since it generates a pretty high number of indel er-
rors (up to 0.5%) which are hardly detected by the ‘edit dis-
tance’ UMI error filtering. To eliminate UMIs erroneously
generated by indels, we took advantage of our UMI design
where no guanosine is present in the last four bases of the
UMI (Supplementary Figure S3). Any insertion or deletion
in the UMI sequence thus results in a right or left shift of
the first G following the UMI, respectively and can thus be
filtered out.
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Performance and reproducibility

Analysis of the 47 cells that passed our quality filters (see
methods section, Supplementary Table S2) showed that
reads were preferentially located close to the 5′ end of tran-
scripts (27.3% of the reads started within the first percent of
the mRNA, Figure 3F) what is consistent with our 5′ selec-
tive library preparation strategy (Figure 1).

Individual ERCCs were highly correlated between cells
(average R = 0.94, Figure 3G), gross ERCC molecule
counts (Figure 3B) and UMI counts for individual ERCC
spike in RNA (Figure 3E, Supplementary Figure S4) were
similar for all cells indicating that mRNA was captured with
comparable efficiency. The average ERCC cloning efficiency
was 26% (Figure 3E), close to the efficiencies recently re-
ported after stringent UMI error correction (7,16).

Conversely, gross counts for mRNA molecules (Figure
3C) and reads (Supplementary Figures S4b and S5) were
more heterogeneous. The cell-to-cell differences in UMI
and read counts likely represent real differences in the num-
ber of mRNA molecules rather than experimental variabil-
ity: (i) ERCC cloning efficiencies were similar among cells
(Figure 3B); (ii) while the number of transcript reads var-
ied by as much as a factor of 6.8 between cells, the average
transcript sequencing depth varied <2-fold (Supplementary
Figure S5). In consequence, library normalization and gen-
eration of the same number of reads for each cell would
likely lead to a higher heterogeneity in sequencing depth for
the individual cells than simple library pooling without nor-
malization.

Despite the rather high cell-to-cell heterogeneity of
mRNA molecule (UMI) counts we observed a good cor-
relation of mRNA expression between all cells (average R
= 0.77, Figure 3H). The correlation between single cells
was, as expected, somewhat lower than between pools of 100
HEK293 cells (Figure 2D) where cell-to-cell variations (e.g.
cell cycle, etc.) are averaged out.

We performed two additional HEK293 cell single cell se-
quencing experiments to test the reproducibility of our pro-
tocol. Mean mRNA expressions from the three experiments
correlated well (Supplementary Figure S6), despite the fact
that the experiments were performed over a period of six
months with HEK293 cells at different passage numbers.

To test our protocol in a biologically relevant context,
we profiled human airway epithelial cells cultured at an air-
liquid interface, a model that contains several distinct cell
populations. The data from two independent primary cul-
tures, which slightly differed in their cell culture conditions
correlated well (R = 0.95, Supplementary Figure S7b). We
anticipated the detection of at least two cell populations,
namely multiciliated and basal cells. Hierarchical cluster-
ing of RNA sequencing data from two independent IFC
runs (one for each cell culture) identified three main clus-
ters that were further characterized based on the expres-
sion of specific markers (Supplementary Figure S7a). One
cluster clearly corresponded to multiciliated cells, as evi-
denced by the expression of ciliated cells markers such as
TPPP3, FOXJ1 and ROPN1. A second cluster was remi-
niscent of basal cells, as evidenced by a robust expression
of basal cell markers such as KRT5, KRT6A, KRT17 or
S100A2. A third cluster is characterized by high levels of

BPIFA1 and BPIFB1, which are associated to the innate
immune response. Further experiments will be necessary to
understand the cell types in this cluster. A secondary sub-
clustering by cell culture / donor within those clusters is
likely due to the different differentiation state of both cul-
tures (culture 1, 52 days; culture 2, 33 days).

Taken together, the high reproducibility shown for pools
of 100 HEK293 cells, for single HEK 293 cells and for pri-
mary epithelial cultures illustrates well the robustness of our
SmartSeq based single cell library preparation technique.

While all other current single cell transcriptome profil-
ing approaches were specifically designed for Illumina se-
quencers, our approach is essentially platform independent.
After replacement of some oligonucleotides, the protocol
designed for Ion Torrent sequencers was adapted for se-
quencing on Illumina sequencers (Supplementary Table S1,
Supplementary Figure S8). Interestingly, the correlation be-
tween two distinct biological replicates sequenced on two
different sequencers (R = 0.95; Figure 3i) is close to what
we obtained when replicates were sequenced on the same
platform (R = 0.96-0.97; Figure 2D). The precision of UMI
based molecule counting is further illustrated by the high
correlation (R = 0.90) between our data and Dropseq single
cell transcriptome data previously published for HEK293
cells (Figure 3J). This is particularly noteworthy, consider-
ing the use of two distinct single cell isolation approaches
(Dropseq vs. microfluidic device), two different sequencing
strategies (3′ versus 5′ end sequencing) and two different se-
quencer specific library preparations (Illumina versus Ion
torrent).

Our on chip barcoding strategy reduces library prepara-
tion cost for the Fluidigm 96 cell IFC to essentially the cost
of the microfluidic chip. With decreasing library prepara-
tion cost, sequencing of the libraries becomes the major cost
factor in single cell transcriptome profiling. To estimate how
many sequencing reads are required for profiling, we exam-
ined the impact of the number of sequencing reads on the
number of detected transcript molecules and genes (Supple-
mentary Figure S9). With an average of 1.43 million reads
per cell, transcript and gene discovery rates approached a
maximum with 62841 transcript molecules and 6679 ex-
pressed genes per HEK293 cell. The transcript detection
rate is principally capped by the mRNA cloning efficiency,
which is slightly above 26% with our protocol. (Figure 3e).
Increasing further the sequencing depth would bring the
transcript discovery rate somewhat closer to this limit but
would also increase sequencing cost drastically. The num-
ber of required sequencing reads depends on the question
to be addressed. Shallow sequencing with just 50 000 reads
per cell was shown to be sufficient for cell type classifica-
tion and biomarker identification (5). With 50 000 reads
per cell we detect 54% and 28% of the maximally detected
genes and transcript molecules, respectively. Reliable iden-
tification of expression changes for weakly expressed tran-
scripts will require more reads. With 0.5–1 million reads we
detect 80–93% of the transcript molecules and 90–97% of
the expressed genes that we find at our maximal, almost sat-
urating sequencing depth (Supplementary Figure S9). This
should be sufficient for most routine single cell transcrip-
tome profiling studies.
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DISCUSSION

We present a robust cost and labor effective 5′ selective
single cell transcriptome profiling approach where all the
barcoding is done prior to fragmentation. This is to our
knowledge the first 5′ selective single cell mRNA sequenc-
ing protocol that allows pooling of the amplified, barcoded
cDNA before fragmentation and does not require labor in-
tensive and costly fragmentation of the individual libraries.
We adapted the workflow for the Fluidigm integrated fluidic
circuit (C1) and we detail workflows for Ion Torrent Proton
and for Illumina sequencers. Yet, the method could likely be
adapted for any other sequencing platform including long
read sequencers. Adapters and barcodes that are used dur-
ing cDNA amplification have just to be replaced by ad hoc
sequences required for respective specific sequencer.

Most current single cell transcriptome profiling ap-
proaches use UMIs, which are introduced during reverse
transcription. In consequence, any cell barcode bias intro-
duced during reverse transcription remains uncorrected and
should be avoided. Unlike all other currently popular sin-
gle cell transcriptome profiling approaches that use UMIs
(10,16,17), our method does not use barcoded primers dur-
ing reverse transcription to exclude any barcode induced
bias during this first highly critical step of mRNA capture
and UMI tagging.

Another source of bias comes from false UMIs gener-
ated by sequencing errors. Such false UMIs can even out-
number real UMIs in heavily over-sequenced samples, for
instance in experiments with low capture efficiency or for
leaky cells with few mRNA molecules when the read num-
ber is boosted by library normalization. Since current UMI
error correction strategies (16) hardly eliminate indel errors,
we developed a novel UMI design that allows reliable iden-
tification and elimination of erroneous UMIs with indels
(Supplementary Figure S3). This improved UMI design will
be of interest not just for transcriptome profiling but also
for the increasing number of NGS applications that rely on
UMI based molecule counting or identification (27,28).

ERCC spike-in RNAs combined with UMIs were used to
probe mRNA capture efficiencies in several studies. How-
ever, UMI lengths and UMI error correction strategies dif-
fer widely. We used an error correction strategy for our
N4H4 UMI that merges UMIs that differ in just one nu-
cleotide (edit distance 1) and obtain 26% ERCC capture ef-
ficiency. Jaitin et al. (13) used the same UMI error filter-
ing for a N4 UMI in a 3′ selective isothermal amplification
based approach in microplates (Mars-seq) and claimed just
1–2% capture efficiency. This is likely highly underestimated
since a N4 UMI has a complexity of just 256 and edit dis-
tance filtering reduces the effective complexity even further,
resulting in elimination of UMIs that correspond to real
RNA molecules. Conversely, 22% capture efficiency was re-
cently reported with a isothermal amplification approach
(CEL-seq2) which is similar to the Mars-seq approach in a
microfluidic device (14). However the authors did not cor-
rect for UMI errors and used UMI collision extrapolations
to correct the UMI counts for abundant transcripts up-
wards. We reanalyzed the CEL-seq2 data (see methods sec-
tion) with ‘edit distance 1’ UMI error filtering, the error cor-
rection used in our and previous studies (16) and obtained

13.8% capture efficiency. The highest capture efficiency re-
ported for single cell transcriptome sequencing was 48%.
(10). However this value was obtained with the low strin-
gency percentile filtering that barely filters any UMIs in our
data. A more recent study by the same group used the same
approach with more stringent UMI error filtering and re-
ported 22% capture efficiency (7). Those differences in UMI
design and error correction make any direct comparison of
capture efficiencies reported in different studies difficult.

Our protocol and other published high efficiency sin-
gle cell transcriptome profiling techniques (10,11,16) use a
Smartseq based mRNA cloning strategy that relies on the
template switching activity of reverse transcriptase, a pro-
cess which is thought to favor capped RNAs, since reverse
transcriptase preferentially adds non template dependent
nucleotides to the cDNA when the RNA is capped (29).
Thus, capture of mRNAs is likely cap selective but defini-
tively not cap specific since the uncapped ERCC spike-in
RNAs are also cloned with high efficiency by us (Figure 3)
and others (10). ERCC RNAs (NIST #2374, https://www-s.
nist.gov/srmors/view cert.cfm?srm=2374) are in vitro tran-
scribed RNAs that all start with the same pT7T318 plasmid
sequence including three 5′ terminal Gs. The resulting cD-
NAs have 3′ terminal Cs which are complementary to the 3′
terminal Gs of the TSO. This might explain why template
switching on uncapped ERCCs is efficient.

In our opinion, the ERCC capture efficiency should not
be used to extrapolate absolute mRNA molecule counts
from cDNA (UMI) counts since: (i) it is currently unknown
whether those uncapped ERCCs are captured with the same
efficiency as capped cellular mRNAs. (ii) Although cap-
ture of individual ERCCs (Figure 3E) and mRNAs (Fig-
ures 2D, and 3H–J) was highly reproducible in replicated ex-
periments, the capture efficiency of two distinct but equally
abundant ERCC molecules can vary almost by a factor of
four in one sample (Figure 3E). Yet, the use of spike-in
RNAs is crucial for the comparison of different protocols
and the identification of badly performing samples or chan-
nels in a microfluidic device.

The transcript discovery rate did not completely satu-
rate with an average of 1.43 million reads per cell (Sup-
plementary Figure S9). This is essentially due to the high
UMI sequencing depth heterogeneity. After UMI error fil-
tering, 16% of the UMI::transcript combinations were se-
quenced just once despite a mean UMI sequencing depth of
16.3 (Supplementary Figure S2b). One likely reason for this
broad heterogeneity is PCR amplification bias (30). Isother-
mal cRNA amplification, which is typically less biased than
PCR, was recently proposed as an alternative to PCR in a
3′ selective single cell sequencing approach (CEL-Seq, (15);
Mars-Seq, (13), CEL-seq2 (14)). However, comparison of
our data (PCR based approach) with recently published
CEL-seq2 data (Isothermal amplification) reveals a similar
UMI sequencing depth heterogeneity and thus amplifica-
tion bias for both approaches (Supplementary Figure S10).
Although bias downstream of reverse transcription is effi-
ciently corrected by UMIs, reducing amplification and li-
brary preparation bias remains an important future chal-
lenge since this would profoundly reduce the required se-
quencing depth and sequencing cost. This will be of par-

https://www-s.nist.gov/srmors/view_cert.cfm?srm=2374
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ticular importance for high throughput droplet based ap-
proaches where thousands of cells are analyzed.

Recent developments in single cell transcriptome profil-
ing focused on an increased throughput mainly with droplet
based techniques. However, ERCC capture efficiencies are
apparently lower for droplet based approaches (12.8% (16),
7.1% (17) than for the Fluidigm microfluidic device (26%
(this study), 22% (7)). The lower capture efficiency is not
restricted to ERCC spike-in RNAs and was also observed
for mRNAs. Macosko et al. (16) reported a mean Dropseq
mRNA capture efficiency of 10.7%. Our observations are
consistent with this. With our microfluidic approach we de-
tected an average of 62 841 transcript molecules in a single
HEK293 cell (Figure 3). In a published HEK293 Dropseq
dataset (16) we identified 36 746 mRNA molecules per cell
(Figure 3j).

While droplet based techniques are currently clearly the
method of choice when thousand of cells are analyzed, mi-
crofluidic devices are in our opinion better suited for small
to medium size projects. With the on chip barcoding strat-
egy we present, the Fluidigm C1 96 cell IFC allows a robust
and highly efficient capture of the single cell transcriptome
with little hands on time and negligible reagent cost. For
routine single cell transcriptome profiling one Proton P1
chip (108 reads) should be sufficient for a 96 cell microflu-
idic device. This reduces the overall cost of a 96 single cell
transcriptome profiling study to about 1400 USD (Supple-
mentary Table S3) and thus into a cost range where single
cell transcriptome profiling becomes highly accessible and
competitive with qPCR assays.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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Cancéropôle PACA and the Commissariat aux Grands
Investissements [ANR-10-INBS-09-03 and ANR-10-
INBS-09-02]; Fondation pour la Recherche Médicale
[DEQ20130326464 to P.B.]; Vaincre la Mucoviscidose
[RF20140501158/1/1/70]; Agence Nationale pour la
Recherche [ANR-12-BSVI-0023-02]; labex Signalife
[ANR-11-LABX-0028-01]; Conseil Départemental 06.
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Bähr,M., Wolf,S., Shendure,J., Eils,R. et al. (2013)
Tagmentation-based whole-genome bisulfite sequencing. Nat.
Protoc., 8, 2022–2032.

23. Ilicic,T., Kim,J.K., Kolodziejczyk,A.A., Bagger,F.O., McCarthy,D.J.,
Marioni,J.C. and Teichmann,S.A. (2016) Classification of low
quality cells from single-cell RNA-seq data. Genome Biol., 17, 29.

24. Zajac,P., Islam,S., Hochgerner,H., Lönnerberg,P. and Linnarsson,S.
(2013) Base Preferences in Non-Templated Nucleotide Incorporation
by MMLV-Derived Reverse Transcriptases. PLoS One, 8, e85270.

25. Fu,G.K., Hu,J., Wang,P.-H. and Fodor,S.P.A. (2011) Counting
individual DNA molecules by the stochastic attachment of diverse
labels. Proc. Natl. Acad. Sci. U.S.A., 108, 9026–9031.

26. Harbers,M., Kato,S., de Hoon,M., Hayashizaki,Y., Carninci,P. and
Plessy,C. (2013) Comparison of RNA- or LNA-hybrid
oligonucleotides in template-switching reactions for high-speed
sequencing library preparation. BMC Genomics, 14, 1–6.

27. Borgstrom,E., Redin,D., Lundin,S., Berglund,E., Andersson,A.F.
and Ahmadian,A. (2015) Phasing of single DNA molecules by
massively parallel barcoding. Nat. Commun., 6, 7173.

28. Kinde,I., Wu,J., Papadopoulos,N., Kinzler,K.W. and Vogelstein,B.
(2011) Detection and quantification of rare mutations with massively
parallel sequencing. Proc. Natl. Acad. Sci. U.S.A., 108, 9530–9535.

29. Schmidt,W.M. and Mueller,M.W. (1999) CapSelect: A highly
sensitive method for 5′ CAP-dependent enrichment of full-length
cDNA in PCR-mediated analysis of mRNAs. Nucleic Acids Res., 27,
e31.

30. Kebschull,J.M. and Zador,A.M. (2015) Sources of PCR-induced
distortions in high-throughput sequencing data sets. Nucleic Acids
Res., 43, e143.


