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Neuroprotection of Chrysanthemum indicum Linne 
against cerebral ischemia/reperfusion injury by 
anti-inflammatory effect in gerbils 

Introduction
Cerebral ischemic injury results from the interruption of 
cerebral blood flow that causes cell damage/death in the 
brain. The oxygen and glucose deprivation in ischemic state 
can trigger molecular pathways, including oxidative stress, 
glutamate excitotoxicity and inflammation, and ultimately 
neuronal death (Buffo et al., 2008; Sutherland et al., 2012).

Transient ischemic attack can cause neuronal death se-
lectively in several brain areas, such as the cerebral cortex, 
hippocampus and striatum (Crain et al., 1988; Butler et al., 
2002). Especially, the hippocampal CA1 region is highly 
susceptible to transient ischemic attack that can result in the 
death of pyramidal neurons in the stratum within several 
days (Kirino, 1982; Pulsinelli et al., 1982). This neuronal 

death is called “delayed neuronal death” (Kirino, 2000).
Chrysanthemum indicum Linne (CIL) which is used as 

a botanical drug in East Asia has been prescribed to cure 
inflammation, hypertension, respiratory diseases, head-
ache, ulcerative colitis, vertigo, and eye irritation (Yu et al., 
1992; Matsuda et al., 2002; Cheng et al., 2005; Shunying et 
al., 2005; Lee do et al., 2009; Wang et al., 2010). Chemical 
studies regarding CIL have identified major components of 
CIL such as 1,8-cineole, camphor, germacrene D, α-cadinol, 
camphene, β-caryophyllene, 3-cyclohexen-1-ol pinocarvone 
and γ-curcumene (Wang and Yang, 2006; Zhang et al., 2010). 
Recent studies regarding bioactivities of CIL such as anti-ox-
idative, anti-microbial and anti-inflammatory effects have 
been reported (Cheon et al., 2009; Pongjit et al., 2011).
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Recently, many researchers have focused on neuroprotective 
effects of extracts from medicinal plants against transient fo-
cal/global cerebral ischemia (Tang et al., 2010; Wu et al., 2010; 
Chen et al., 2012, 2013; Ghosh et al., 2014); however, little is re-
ported regarding the neuroprotective effect of CIL. Therefore, 
the aim of this study was to examine the neuroprotective effect 
of CIL against neuronal death using a gerbil model of cere-
bral ischemia/reperfusion injury (Min et al., 2012; Shcher-
bak et al., 2013; Liu et al., 2014); furthermore, we examined 
changes in inflammatory factors to understand a part of the 
mechanisms underlying the neuroprotection of CIL against 
cerebral ischemia/reperfusion injury in the gerbil.

Materials and Methods
Experimental animals
Twenty-eight male Mongolian gerbils (body weight 65–75 g, 
6 months of age) were provided by the Experimental Animal 
Center, Kangwon National University, Chunchon, Republic 
of Korea. These animals were housed conventionally at a 
temperature of 23°C and a relative humidity of 60%. All the 
experimental protocols were approved by the Institutional 
Animal Care and Use Committee (IACUC) at Kangwon 
National University (approval no. KW-130424-1) and for-
mulated in compliance with the Guide for the Care and Use 
of Laboratory Animals (the National Academies Press, 8th ed., 
2011).

Preparation of CIL extract
CIL was collected by Professor Jong Dai Kim from Division 
of Food Biotechnology, School of Biotechnology, Kangwon 
National University in Kangwon Province, Republic of Ko-
rea, in October 2013 and kept in a deep freezer (–70°C). The 
CIL was extracted with 70% ethanol at 70°C for 4 hours, 
which was repeated three times. After filtered via the What-
man filter paper (No. 2), the extracts were concentrated 
using a vacuum evaporator, and completely dried using a 
freeze-drier. Finally, the extraction yield was 14.5%.

CIL administration 
Twenty-eight gerbils were equally randomized into four 
groups, with seven animals in each group: (1) vehicle-sham 
group, which was treated with vehicle (0.9% saline) and re-
ceived sham operation; (2) vehicle-ischemia group, which 
was treated with vehicle and received ischemia operation; (3) 
CIL-sham group, which was treated with CIL and received 
sham operation; (4) CIL-ischemia group, which was treated 
with CIL and received ischemia operation.

CIL was dissolved in saline and administrated orally at dos-
es of 25, 50 or 200 mg/kg per day, respectively, using a feeding 
needle for 7 days prior to transient cerebral ischemia; the last 
treatment was implemented at 30 minutes prior to cerebral 
ischemia. In previous studies, significant neuroprotective ef-
fects were found in animals treated with 200 mg/kg of CIL, 
and therefore,  CIL at 200 mg/kg was preferred in this study.

Induction of transient cerebral ischemia
Transient cerebral ischemia was developed as described 

previously (Yu et al., 2012; Park et al., 2014a). Experimental 
animals were anesthetized with a mixture of 2.5% isoflurane, 
33% oxygen and 67% nitrous oxide. Common carotid arter-
ies were occluded bilaterally for 5 minutes. Then, the blood 
flow was restored under an ophthalmoscope. Body (rectal) 
temperature was maintained at 37 ± 0.5°C prior to, during 
and after the surgery until the animals were awakened com-
pletely. Except for common carotid artery occlusion, rats in 
sham groups were subjected to the same surgical procedures.

Histological observation
The animals (n = 7 at each time point in each group) were 
sacrificed with 30 mg/kg Zoletil 50 (Virbac, Carros, France) 
at 2 and 5 days after reperfusion. The animals were given in-
tracardially perfusion with 4% paraformaldehyde (Yu et al., 
2012). The brain tissues were cryoprotected by infiltration 
with 30% sucrose and serial coronal sections were cut on a 
cryostat (Leica, Wetzler, Germany). The sections were 30 µm 
in thickness.

Fluoro-Jade B (F-J B) histofluorescence 
To investigate the neuronal death in the ischemic hippocam-
pal CA1 region, F-J B histofluorescence staining as a high-af-
finity fluorescent marker for locating neuronal degeneration 
was conducted according to a modified method by Schmued 
and Hopkins (2000). The brain sections were immersed in 
1% sodium hydroxide solution, then transferred to 0.06% 
potassium permanganate solution and finally to a 0.0004% 
F-J B staining solution (Histochem, Jefferson, AR, USA). Af-
ter that, the sections were observed under an epifluorescent 
microscope (Carl Zeiss, Göttingen, Germany) with blue ex-
citation light (450–490 nm) and a barrier filter.

Immunohistochemistry for neuronal nuclei (NeuN), glial 
fibrillary acidic portein (GFAP), ionized calcium-binding 
adapter molecule-1 (Iba-1), interleukin (IL)-2 and IL-13
As previously described (Park et al., 2014b), the sections were 
incubated with diluted mouse anti-NeuN (1:800, Chemicon 
International, Temecula, CA, USA), mouse anti-GFAP (1:800, 
Chemicon International), rabbit anti-Iba-1 (1:800, Wako, 
Osaka, Japan), rabbit anti-IL-2 (1:200, Santa Cruz Biotech-
nology, Santa Cruz, CA, USA) as pro-inflammatory cytokines 
and rabbit anti-IL-13 (1:200, Santa Cruz Biotechnology) as 
anti-inflammatory cytokine overnight at 4°C. Thereafter, the 
sections were incubated with biotinylated horse anti-mouse 
and goat anti-rabbit IgG (Vector, Burlingame, CA, USA) 
Streptavidin peroxidase complex (1:200, Vector). Staining was 
developed by 3,3′-diaminobenzidine tetrahydrochloride in 0.1 
M Tris-HCl buffer (pH 7.2). To establish the specificity of the 
immunostaining, a negative control test was performed with 
the pre-immune serum rather than the primary antibody. 
Absence of immunoreactivity in all structures occurred in the 
negative control test. 

Western blot analysis
According to a method by Yoo et al. (2012), CA1 tissues (n = 
7 at each time point in each group) were homogenized and 
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centrifugalized, and a Micro BCA protein assay kit was used 
to detect the protein level in the supernatants. Bovine serum 
albumin acted as a standard (Pierce Chemical, Rockford, IL, 
USA). The gels were electrophoretically separated and trans-
ferred to nitrocellulose membranes (Pall Crop, East Hills, 
NY, USA). To reduce background staining, the membranes 
were incubated with PBS containing 5% non-fat dry milk 
and 0.1% Tween 20 for 45 minutes, followed by incubation 
with rabbit anti-IL-2 (1:1,000, Santa Cruz Biotechnology) 
or rabbit anti-IL-13 (1:1,000, Santa Cruz Biotechnology), 
peroxidase-conjugated goat anti-rabbit IgG (Sigma) and an 
ECL kit (Pierce Chemical).

Data analysis
In order to quantitatively analyze F-J B-positive and 
NeuN-immunoreactive cells, digital images of the hippo-
campus were captured with an AxioImager.A2 light micro-
scope (Carl Zeiss) equipped with a digital camera (Axiocam, 
Carl Zeiss) connected to a PC monitor (Yoo et al., 2012; 
Park et al., 2014b). The positive cells were counted in a 250 × 
250 µm2 area approximately at the center of the CA1 region 
using Optimas 6.5 (CyberMetrics, Scottsdale, AZ, USA). Ac-
cording to the anatomical landmarks corresponding to AP 
–1.4 to –1.9 mm of the gerbil brain atlas, the tissue sections 
were selected with an interval of 300 µm, and the cell num-
ber calculated by averaging the counts from each animal: A 
ratio of the count was calibrated as %, with vehicle-sham 
group or vehicle-ischemia group designated as 100%. 

In addition, images of  al l  GFAP, Iba-1, IL-2 and 
IL-13-immunoreactive structures were taken from the CA1 
region through an AxioImager to quantitatively analyze 
GFAP, Iba-1, IL-2 and IL-13 immunoreactivity (Yoo et al., 
2012; Park et al., 2014b). An AxioImager. A2 light micro-
scope (Carl Zeiss) equipped with a digital camera (Axiocam, 
Carl Zeiss) was connected to a PC monitor. Images were cal-
ibrated into an array of 512 × 512 pixels corresponding to a 
tissue area of 140 × 140 µm2 (40-fold magnification) includ-
ing the stratum pyramidale. The densities of all GFAP, Iba-
1, IL-2 and IL-13-immunoreactive structures were evaluated 
based on the optical density (OD), which was obtained after 
the transformation of the mean gray level using the formu-
la: OD value = log (256/mean gray level). The OD value of 
background was taken from areas adjacent to the measured 
area. After the background density was subtracted, the OD 
value of image file was calibrated as % (relative optical den-
sity, ROD) using Adobe Photoshop version 8.0 and then 
analyzed using NIH Image 1.59 software. The ROD was cali-
brated as %, with vehicle-sham group designated as 100%. 

Western blot results were scanned and quantified using 
Scion Image software (Scion Corp., Frederick, MD, USA), 
and then used to calculate the ROD that was calibrated as %.

Statistical analysis 
Data are expressed as the mean ± SEM and were analyzed 
using SPSS 18.0 (IBM Corporation, New York, USA). In-
tergroup comparisons were made using parametric two-
way analysis of variance. Further comparisons were assessed 

using Duncan’s multiple-range test. P < 0.05 was considered 
statistically significant.

Results
Neuroprotective effects
NeuN-immunoreactive neurons
In the vehicle-sham group, NeuN-immunoreactive neurons 
were distributed through all the hippocampal sub-regions 
(Figure 1A), but mainly concentrated in the stratum py-
ramidale in the CA1 region (Figure 1B). In the CIL-sham 
group, the distribution pattern and population of NeuN-im-
munoreactive neurons in the hippocampus were similar to 
that in the vehicle-sham group (Figure 1D–E), and the mean 
number of NeuN-immunoreactive neurons was not altered 
(Figure 1M). In the vehicle-ischemia-group and CIL-isch-
emia group, 2 days after ischemic injury, NeuN immunore-
activity had no changes in the hippocampal CA1 region, and 
the mean number of NeuN immunoreactive neurons was 
similar to that in the vehicle-sham group (Figure 1M). In the 
vehicle-ischemia group, a few NeuN-immunoreactive neurons 
were found in the CA1 region at 5 days post-ischemia (Figure 
1G–H), and the mean number of NeuN-immunoreactive 
neurons was reduced by about 92% compared to the vehi-
cle-sham group (Figure 1M). However, in the CIL-ischemia 
group, many NeuN-immunoreactive neurons were found in 
the CA1 region compared with the vehicle-ischemia group 
(Figure 1J); the survival rate of NeuN-immunoreactive neu-
rons was 63.6% of the vehicle-sham group (Figure 1K and M).

F-J B-positive cells
In the vehicle-sham and CIL-sham groups, F-J B positive 
cells of jade color disppeared in the CA1 region (Figure 1C 
and F). In the vehicle-ischemia group, a large number of 
F-J B positive cells were observed in the stratum pyramidale 
of the CA1 region (Figure 1I). In the CIL-ischemia group, 
however, the number of F-J B positive cells was 22.2%, which 
was lower than that in the vehicle-ischemia group (Figure 
1L and N). 

Glial activation
GFAP-immunoreactive astrocytes
GFAP, an astrocyte marker, is one of the major intermediate 
filament proteins of mature astrocytes (Cho et al., 2010). In 
this study, the change of astrocyte activation in the ischemic 
CA1 region was examined by GFAP immunohistochemistry. 
In the vehicle-sham group, GFAP-immunoreactive astrocytes 
showed a thread-like shape throughout the CA1 region; in 
the CIL-sham group, astrocytes were not changed compared 
with those in the vehicle-sham group (Figure 2A and B). 
Two days after ischemic injury, the cytoplasm and processes 
of GFAP-immunoreactive astrocytes became a little thicker 
in the vehicle-ischemia group, but were not significantly 
changed in the CIL-ischemia group (Figure 2E, F and M). 
At 5 days post-ischemia, GFAP-immunoreactive astrocytes 
showed severer cytoplasmic hypertrophy with thicker pro-
cesses in the vehicle-ischemia group compared with the 
CIL-ischemia group (Figure 2I, J and M).
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Iba-1-immunoreactive microglia
Iba-1 is a calcium-binding protein that is expressed in macro-
phage/microglia (Kolenda-Roberts et al., 2013). In this study, 
the change of microglia activation in the ischemic CA1 region 
was examined by Iba-1 immunoreactivity. In the vehicle-sh-
am group, Iba-1-immunoreactive microglia with ramified 
thin processes were inactivated throughout the CA1 region, 
similar to those in the CIL-sham group (Figure 2C and D). At 
2 days post-ischemia, both in the vehicle-ischemia group and 
CIL-ischemia group, Iba-1-immunoreactive microglia had 
highly branched processes (Figure 2G, H and N). In the ve-
hicle-ischemia group, Iba-1-immunoreactive microglia were 
much more activated and stronger in their immunoreactivity 
at 5 days post-ischemia than those at 2 days post-ischemia 
(Figure 2K and N); especially, many activated microglia 
were aggregated in the stratum pyramidale. However, in the 
CIL-ischemia group, there were less activated Iba-1-immuno-
reactive microglia than those in the vehicle-ischemia group at 
5 days after ischemic injury (Figure 2L and N).

Inflammatory cytokine expression
IL-2 immunoreactivity
IL-2 immunoreactive neurons were highly expressed in the 
stratum pyramidale of the CA1 region of the vehicle-sham 
group (Figure 3A), as well as in the CA1 pyramidale of the 
CIL-sham group (Figure 3B). At 2 days post-ischemia, IL-2 
immunoreactive neurons in the stratum pyramidale of the 
vehicle-ischemia group were decreased in number; however, 
IL-2 immunoreactive neurons of the CIL-ischemia group 
were not altered compared with the CIL-sham group (Figure 
3E, F and M). At 5 days post-ischemia, IL-2-immunoreactive 
cells were significantly decreased (about 19% of the vehi-
cle-sham group) in the CA1 region (Figure 3I and M); how-
ever, in the CIL-ischemia group, IL-2-immunoreactive cells 
in the stratum pyramidale were slightly decreased compared 
with the CIL-sham group (Figure 3J and M). 

IL-13 immunoreactivity
In the vehicle-sham group, weak IL-13 immunoreactivity 
was found in the stratum pyramidale of the CA1 region (Fig-
ure 3C); however, IL-13 immunoreactivity was increased in 
the CA1 pyramidal neurons of the CIL-sham group (Figure 
3D and N). At 2 days after ischemia, IL-13-immunoreactive 
neurons in the stratum pyramidale were slightly decreased in 
the vehicle-ischemia group; however, IL-13-immunoreactive 
neurons in the CIL-ischemia group were increased (Figure 
3G, H and N). At 5 days post-ischemia, IL-2-immunoreac-
tive cells were rarely observed in the CA1 region of the vehi-
cle-ischemia group (Figure 3K); however, many IL-2-immu-
noreactive cells were detected in the stratum pyramidale of 
the CIL-ischemia group (Figure 3L and N). 

IL-2 and IL-13 protein levels
Change patterns in IL-2 and IL-13 protein levels were gen-
erally similar to the immunohistochemical data (Figure 4). 
There was no difference in the protein level of IL-2 between 
the CIL-sham group and the vehicle-sham group. In the vehi-

cle-ischemia group, the IL-2 level was significantly decreased 
with time after ischemia/reperfusion (P < 0.05); however, in 
the CIL-ischemia group, it was not significantly altered with 
time after ischemia/reperfusion. Additionally, IL-13 level in 
the CIL-sham group was significantly higher than that in the 
vehicle-sham group (P < 0.05). In the vehicle-ischemia group, 
IL-13 level was very low at 5 days post-ischemia; however, 
the level of IL-13 in the CIL-ischemia group was significantly 
higher than that in the vehicle-ischemia group (P < 0.05).

Discussion
Transient cerebral ischemia leads to neuronal death in var-
ious brain regions such as the cortex, cerebellum, stratum 
and hippocampus. Of these brain regions, pyramidal neu-
rons in the hippocampal CA1 region are particularly vul-
nerable to ischemic injury and die starting from 4 days after 
ischemia in gerbils (Kirino, 1982, 2000; Kirino et al., 1984). 
In the present study, neuronal death was evaluated by NeuN 
immunohistochemistry and F-J B histofluorescence 5 days 
after ischemic injury, and the administration of CIL protect-
ed CA1 pyramidal neurons (the survival rate was about 64% 
of the vehicle-sham group) from ischemic damage.

Although the exact mechanism of neuronal death is 
unclear, the delayed death of CA1 pyramidal neurons is 
associated with inflammation following transient cerebral 
ischemia (Wang et al., 2007). Ischemia/reperfusion activates 
and accumulates inflammatory cells such as microglia with-
in ischemic tissue, thereby resulting in inflammatory injury 
(Benakis et al., 2014). In addition, molecular cues induced by 
ischemia/reperfusion injury activate components of innate 
immunity, increase inflammatory signaling, and develop tis-
sue damage after ischemia (Iadecola and Anrather, 2012).

In this study, microglia and astrocytes were strongly acti-
vated in the CA1 region of the vehicle-ischemia group 5 days 
after ischemic injury because of the neuronal death of CA1 
pyramidal neurons. However, in the CIL-ischemia group, 
the occurrence of reactive gliosis was significantly decreased 
with the attenuation of neuronal death in the CA1 region 5 
days after ischemia.

Glial cells are involved in the modulation of immune 
response (microglia), the maintenance of homeostasis (as-
trocytes) and the myelination of axon (oligodendrocytes) in 
the central nervous system (Buffo et al., 2008) and they are 
increased in number and activated by central nervous system 
injuries (Giulian and Vaca, 1993; Sofroniew, 2005). This re-
sponse is referred to as “reactive gliosis” and mainly involves 
activated microglia and astrocytes (Giulian, 1993; Sofroniew, 
2005; Fitch and Silver, 2008). Although detrimental and ben-
eficial effects of activated microglia and astrocyte are unclear 
yet, these cells in an activated state commonly produce and 
release inflammatory mediators and cytotoxic molecules (re-
active oxygen species, nitric oxide synthesis, protease, etc.). 
These factors can lead to cell damage or death (Schubert 
et al., 2000; Nowicka et al., 2008; Ceulemans et al., 2010). 
Many reports have suggested that inflammatory reaction in 
the brain is related with a balance between pro- and anti-in-
flammatory cytokines and the breakdown of this balance by 
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Figure 1 NeuN- (left and middle columns) 
and F-J B (right column)-positive cells in 
the vehicle-sham (A–C), CIL-sham (D–F), 
vehicle-ischemia (G–H) and 
CIL-ischemia (J–L) groups at 5 days 
post-ischemia.
(A–L) In the vehicle-ischemia group, a few 
NeuN- (arrows) and many F–J B-positive 
cells (asterisk) were shown in the stratum 
pyramidale (SP) of the CA1 region; in the 
CIL-ischemia group, many NeuN- and a 
few F-J B-positive cells were observed. Scale 
bars: 200 µm (A, D, G, J) and 50 µm (B, C, 
E, F, H, I, K, L). (M, N) Quantification of 
NeuN- and F–J B-positive cells. Data are 
expressed as the mean ± SEM. *P < 0.05, vs. 
the corresponding sham group, respective-
ly; #P < 0.05, vs. the corresponding vehicle 
group; †P < 0.05, vs. the respective pre-
time point group (one-way and two-way 
analyses of variance followed by Duncan’s 
multiple-range test). NeuN: Neuronal nu-
clei; F–J B: Fluoro-Jade B histofluorescence; 
CIL: Chrysanthemum indicum Linne; SO: 
stratum oriens; SR: stratum radiatum. 

Figure 2 GFAP and Iba-1 immunoreactivities 
in the CA1 region of the vehicle-sham (A 
and C), CIL-sham (B and D), vehicle-
ischemia (E, I, G and K) and CIL-ischemia (F, 
J, H and L) groups. 
(A–L) In the CIL-ischemia group, GFAP- and 
Iba-1-immunoreactive glial cells (arrows) 
were less activated. Scale bars: 50 µm. (M, N) 
Relative optical density (ROD) of GFAP- and 
Iba-1-immunoreactive structures. Data are 
expressed as the mean ± SEM. *P < 0.05, vs. 
the corresponding sham group; #P < 0.05, 
vs. the corresponding vehicle group; †P < 
0.05, vs. the respective pre-time point group 
(one-way and two-way analyses of variance 
followed by Duncan’s multiple-range test). 
GFAP: Glial fibrillary acidic portein; Iba-1: 
ionized calcium-binding adapter molecule-1; 
CIL: Chrysanthemum indicum Linne; SO: 
stratum oriens; SP: stratum pyramidale; SR: 
stratum radiatum.
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Figure 4 Western blot detection of interleukin (IL)-2 and IL-13 levels in the CA1 tissue derived from the vehicle-sham, CIL-sham, vehicle-
ischemia and CIL-ischemia groups. 
(A) Representative blot bands of IL-2 and IL-13 proteins. (B, C) Quantification of protein expression of IL-2 (B) and IL-13 (C). Relative optical 
density (ROD) as the mean percentage value of immunoblot bands is represented. Data are expressed as the mean ± SEM (n = 7 per group). *P < 
0.05, vs. the corresponding sham group; #P < 0.05, vs. the corresponding vehicle group; †P < 0.05, vs. the respective pre-time point group (one-way 
and two-way analyses of variance followed by Duncan’s multiple-range test). 

Figure 3 Interleukin (IL)-2 and IL-13 immunoreactivities in the CA1 region of the vehicle-sham (A and C), CIL-sham (B and D), 
vehicle-ischemia (E, I, G and K) and CIL-ischemia (F, J, H and L) groups. 
(A–L) In the CIL-sham, CIL-ischemia and vehicle-ischemia groups, IL-2 immunoreactivity (asterisk) is similar to that in the vehicle-sham group. 
In the CIL-sham and vehicle-ischemia and CIL-ischemia groups, IL-13 immunoreactivity (asterisks) is increased. Scale bars: 50 µm. (M, N) Rela-
tive optical density (ROD) of IL-2 and IL-13 immunoreactive structures. Data are expressed as the mean ± SEM. *P < 0.05, vs. the corresponding 
sham group; #P < 0.05, vs. the corresponding vehicle group; †P < 0.05, vs. the respective pre-time point group (one-way and two-way analyses of 
variance followed by Duncan’s multiple-range test). CIL: Chrysanthemum indicum Linne; SO: stratum oriens; SP: stratum pyramidale; SR: stratum 
radiatum; d: days.
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ischemic injuiry leads to inflammation or a recovery from 
inflammation (Pahan et al., 2000; Perini et al., 2001; Huang 
et al., 2006; Wong and Crack, 2008).

In the present study, IL-2 immunoreactive neurons were 
highly expressed in the CA1 pyramidale of the vehicle-sham 
group. This finding is consistent with previous results that 
IL-2 is expressed in the hippocampus of the human, rat and 
gerbil (Araujo et al., 1989; Hwang et al., 2006). In addition, 
we found that IL-2 immunoreactivity in the CA1 pyramidal 
neurons was significantly decreased with time after ischemia 
in accordance with a previous report by Hwang et al. (2006); 
however, the immunoreactivity was maintained in the 
CIL-ischemia group after ischemic injury. Previous studies 
have reported that pro-inflammatory cytokines such as IL-2 
are involved in the development of neuronal damage due 
to brain ischemia and that an abnormal expression of these 
cytokines raises a risk of neuronal damage induced by brain 
ischemia (Vila et al., 2000; Iadecola and Alexander, 2001; 
Yan et al., 2012). Therefore, our results indicate that the neu-
roprotective effects of CIL may be related to not increasing 
IL-2 immunoreactivity by cerebral ischemia.

IL-13 immunoreactivity, in the present study, was also 
significantly deduced in the CA1 pyramidal neurons of the 
vehicle-ischemia group (Yu et al., 2010; Yan et al., 2012); how-
ever, IL-13 immunoreactivity in the CIL-sham group was sig-
nificantly higher than that in the vehicle-sham group, and the 
immunoreactivity was maintained in the CIL-ischemia group. 
IL-13 as an anti-inflammatory cytokine is related to  a recovery 
from inflammation in the brain (Ledeboer et al., 2000; Pahan 
et al., 2000). Therefore, our present finings indicate that the in-
crease and maintenance of IL-13 by the treatment of CIL may 
be associated with protective effect against ischemic injury. 

Some recent studies have shown that CIL has anti-micro-
bial, anti-oxidative and anti-inflammatory activities (Cheon 
et al., 2009; Pongjit et al., 2011). Especially, CIL can inhibit 
inflammatory mediators including nitric oxide, prostaglan-
din E2, IL-1β and tumor necrosis factor-α through suppress-
ing mitogen-activated protein kinases and nuclear factor-κ 
B-dependent pathways (Yu et al., 1992; Cheng et al., 2005; 
Lee do et al., 2009). In addition, Cheon et al. (2009) demon-
sterated that CIL could inhibit the lipopolysaccharide-in-
duced production of inflammatory cytokines via down-reg-
ulating nuclear factor-κB and mitogen-activated protein 
kinases in RAW264.7 macrophages, and Kim et al. (2012) 
reporetd that the inhibition of nuclear factor-κB was associ-
ated with suppressed activation of inhibitors of nuclear fac-
tor κB kinase α and β. Besides, CIL treatment decreased Bax 
expression and increased Bcl-2 expression dose-dependently 
(Kim et al., 2011). The overexpression of Bcl-2 is known to 
protect cells from the apoptosis mediated by reactive oxygen 
species; however, Bax, which is another member of Bcl-2 
protein family, accelerates the rate of apoptosis (Hockenbery 
et al., 1993; Tsujimoto and Shimizu, 2002). On the basis of 
these papers, the protective effect of CIL is partly related to 
inhibition of apoptotic signaling pathways.

In conclusion, CIL treatment can protect CA1 pyramidal 
neurons from transient cerebral ischemia, which may be relat-
ed to the increasing levels of anti-inflammatory cytokines.
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