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ABSTRACT: The Long QT Syndrome (LQTS) is a group of genetically heterogeneous disorders that 
predisposes young individuals to ventricular arrhythmias and sudden death. LQTS is mainly 
caused by mutations in genes encoding subunits of cardiac ion channels (KCNQ1, KCNH2, 
SCN5A, KCNE1, and KCNE2). Many other genes involved in LQTS have been described recently 
(KCNJ2, AKAP9, ANK2, CACNA1C, SCNA4B, SNTA1, and CAV3). We created an online database 
(http://www.genomed.org/LOVD/introduction.html) that provides information on variants in 
LQTS-associated genes. As of February 2010, the database contains 1738 unique variants in 12 
genes. A total of 950 variants are considered pathogenic, 265 are possible pathogenic, 131 are 
unknown/unclassified, and 292 have no known pathogenicity. In addition to these mutations 
collected from published literature, we also submitted information on gene variants, including one 
possible novel pathogenic mutation in the KCNH2 splice site found in ten Chinese families with 
documented arrhythmias. The remote user is able to search the data and is encouraged to submit 
new mutations into the database. The LQTS database will become a powerful tool for both 
researchers and clinicians.  ©2010 Wiley-Liss, Inc. 
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INTRODUCTION 

Long QT Syndrome (LQTS) is a familial disorder characterized by prolongation of the QT-interval and a high 

OFFICIAL JOURNAL 

www.hgvs.org 



E1802  Zhang et al. 

incidence of sudden cardiac death mostly at a young age. Two phenotypic variants have been described: i) the 
more common autosomal dominant Romano-Ward syndrome (Romano, et al., 1963; Ward, 1964), and ii) the less 
common autosomal recessive Jervell and Lange-Nielsen syndrome, which is associated with sensorineural 
deafness (Jervell and Lange-Nielsen, 1957). The hereditary LQTS is a genetic channelopathy with variable 
penetrance that is associated with increased propensity for polymorphic ventricular tachyarrhythmias, particularly 
torsades de pointes, leading to syncope, seizures and sudden death in young patients with normal cardiac 
morphology. The disease is relatively infrequent, with variable prevalence estimated from 1:2000 to 1:5000 
(Goldenberg, et al., 2008; Schwartz, et al., 2009).  

QT prolongation is the hallmark of LQTS, and it may form via one of two pathways: reduction in the outward 
potassium current during phase 3 of the action potential (“loss of function”) or an augmented late entry of sodium 
or calcium ions into the cardiac myocytes (“gain of function”) (Goldenberg, et al., 2008; Moss and Kass, 2005). In 
1995, Curran et al. first found LQTS caused by KCNH2 gene mutations (Curran, et al., 1995). The rapidly 
activating potassium repolarization channel mutation (KCNH2; LQT2) results in a reduction in IKr current. Wang 
et al. reported SCN5A mutations associated with congenital cardiac arrhythmia and LQTS (Wang, et al., 1995). 
This sodium channel mutation (SCN5A; LQT3) results in an increase in late INa current. In 1996, the KCNQ1 
gene was identified as a cause of LQTS (Wang, et al., 1996). The slowly activating potassium repolarization 
channel mutation (KCNQ1; LQT1) results in a reduction in IKs current. LQTS has also been identified 
infrequently in patients with mutations involving the auxiliary β-subunits of KCNQ1 (mink, KCNE1; LQT5) 
(Splawski, et al., 1997) and of KCNH2 (MiRP1, KCNE2; LQT6 (Abbott, et al., 1999), respectively. Mutations in 
five genes (KCNQ1, KCNH2, SCN5A, KCNE1, and KCNE2) account for approximately 72% of clinically 
definite LQTS (Napolitano, et al., 2005). Mutations in three other ion-channel genes have been identified in some 
LQTS families: i) mutation of the KCNJ2 gene results in a reduction in Kir2.1 current, long QT interval and 
skeletal abnormalities (Andersen-Tawil’s syndrome) (LQT7; Plaster, et al., 2001); ii) mutation in the CACNA1C 
gene results in an increase in Cav1.2 current, QT prolongation, and multiorgan dysfunction, including webbing of 
fingers and toes, congenital heart disease, immune deficiency, intermittent hypoglycemia, cognitive abnormalities, 
and autism (Timothy syndrome) (LQT8; Splawski, et al., 2004); iii) mutation in the SCN4B gene causes an 
increase in late sodium current (LQT10; Medeiros-Domingo, et al., 2007). A summary of LQT1-12 genotypes, 
their affected ion-channel currents, and their variant distribution found in our database is presented in Table 1.  

 

Table 1. Summary of 12 LQTS-associated genes 
Phenotype LQT1 LQT2 LQT3 LQT4 LQT5 LQT6 LQT7 LQT8 LQT9 LQT10 LQT11 LQT12 
Gene KCNQ1 KCNH2 SCN5A ANK-2 KCNE1 KCNE2 KCNJ2 CACNA1C CAV3 SCN4B AKAP9 SNTA1 
Chromosome 11p15.5 7q35-

36 
3p21 4q25-

27 
21q22 21q22 17q23.1

-24.2 
12p13.3 3p25 11q23.3 7q21-

22 
20q11.2 

OMIM＃ 607542 152427 600163 106410 176261 603796 600681 114205 601253 608256 604001 601017 
No 
pathogenicity 

75 61 84 14 15 9 5 2 8 2 13 4 

Possible 
pathogenicity 

56 67 105 9 19 6 2 0 0 0 1 0 

Pathogenicity 333 433 189 7 16 13 45 5 6 1 1 1 
Unknown 
pathogenicity 

7 29 24 30 1 0 1 0 0 3 32 4 

Total unique 
mutations 

471 590 402 60 51 28 53 7 14 6 47 9 

 
 
 
Advances in molecular genetics have helped reveal a number of genes that may give rise to LQTS. In addition 

to these eight ion channel genes described above, mutations in non-ion channel genes can also affect ion-channel 
currents through direct or indirect interaction with the ion channel complexes. Thus far, four non-ion channel 
LQTS-susceptibility genes have been discovered: (1) the ankyrin-B gene, which encodes a protein that functions 
as a cytoskeletal membrane adapter and is involved with the sodium pump, the sodium/calcium exchanger, and the 
inositol-1,4,5-triphosphate receptors, and can cause LQT4 when mutated (Mohler, et al., 2003); (2) caveolin-3, 
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which alters gating kinetics in the cardiac sodium channel, and if mutated may result in an increase in sustained 
late sodium current (Nav1.5; LQT9)(Cronk, et al., 2007; Vatta, et al., 2006); (3) AKAP9 (LQT11), mutation of 
which reduces the interaction between KCNQ1 and AKAP9 (Yotiao), reduces the cAMP-induced phosphorylation 
of the channel, eliminates the functional response of the IKs channel to cAMP, and prolongs the QT interval 
(Chen, et al., 2007); (4) SNTA1 (LQT12), which when mutated increases direct nitrosylation of SCN5A and 
results in augmentation of late sodium current (Ueda, et al., 2008). Despite this progress in uncovering the genes 
responsible for LQTS, roughly 25% of patients with clinical LQTS are negative for mutations in the twelve LQTS-
associated genes, indicating that more genetic abnormalities remain to be identified. 

The variants that have been found in the identified LQTS-associated genes are of different types. To date, 
hundreds of nonsynonymous (amino-acid-altering, missense, nonsense, and frameshift) mutations and splice-site 
altering mutations have been found in these twelve LQTS-susceptibility genes. Out of 1738 published or reported 
unique variants, mutations in KCNQ1, KCNH2 and SCN5A genes account for almost 85% of total LQTS-
associated mutations collected in our database (See Table 1). However, discerning the clinical relevance and 
pathogenicity of individual mutations is still a challenge. Classification of LQTS-associated gene mutations is 
generally based on the following several criteria: 1) the electrophysiological abnormality of the ion-channel caused 
by the mutation; 2) the structure of the protein formed by frameshift, splice-site or nonsense mutations; 3) amino 
acid changes in the conserved domains of a gene due to missense mutation; 4) failure of protein trafficking due to 
mutation; 5) the relative frequency of the mutation in healthy individuals.  

Two earlier LQTS-variant databases have been set up, one of which collected 232 mutations and 27 
polymorphisms through 2003 (including KCNQ1, KCNH2, SCN5A, KCNE1 and KCNE2) 
(http://www.ssi.dk/graphics/html/lqtsdb/lqtsdb.htm); the other database collected over 798 mutations and 122 
polymorphisms through 2007 (including LQT1-LQT9) (http://www.fsm.it/cardmoc/). Both databases have their 
own unique features, though neither has been updated. Clinicians and researchers need more comprehensive and 
timely information about genes associated with LQTS. Thus, we here established this LQTS-variant database 
(http://www.genomed.org/LOVD/LQTs/home.php) to allow researchers and physicians access to comprehensive 
and current mutation information. 

 

DATABASE STRUCTURE 

 

Data Collection and Submission 
 
The bulk of the data on gene variants is derived from published papers and the NCBI SNP database; we also 

included our own data on the mutations found in ten Chinese families with arrhythmias. For the compiled 
mutations extracted from the literature, we searched Entrez PubMed (www.ncbi.nlm.nih.gov/sites/entrez) using 
“Long QT syndrome”, “Sudden unexplained cardiac death”, and the names and abbreviations of genes published 
as related to LQTS (KCNQ1, KCNH2, SCN5A, KCNE1, KCNE2, KCNJ2, AKAP9, ANK2, CACNA1C, 
SCNA4B, SNTA1, and CAV3) as key words. English and Chinese papers matching these search results were 
collected, as well as papers in other languages that had English abstracts. From the selected papers and abstracts, 
we compiled the mutations, including the details of DNA and amino acid changes, and judged the classification of 
pathogenicity reported by the authors. In general, silent mutations and mutations reported in healthy controls were 
designated as “not known pathogenicity” (Ackerman, et al., 2003; Gouas, et al., 2005; Jongbloed, et al., 2002). 
Missense mutations found as a result of large screenings of patients with LQTS or Sudden Infant Death Syndrome, 
and which lack sufficient data to support their pathogenicity, were categorized as “possible pathogenicity” 
(Jongbloed, et al., 2002; Kapplinger, et al., 2009; Napolitano, et al., 2005; Splawski, et al., 2000; Tester, et al., 
2005). The mutation names comply with the accepted guidelines proposed by the Human Genome Variation 
Society(HGVS)(www.hgvs.org/mutnomen ) (den Dunnen and Antonarakis, 2000). We also searched the NCBI 
SNP database (www.ncbi.nlm.nih.gov/SNP) and included these SNPs in our database. However, we uniformly 
classified the pathogenicity of these SNPs as “unknown”, except for those SNPs already described in other 
published papers.  
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Because of the large volume of LQTS-related articles, we organized an Human Virome Project(HVP) student 
club to recruit volunteers interested in genetic and genomic medicine at Zhejiang University. After being trained, 
these volunteers were divided into several groups to upload the data in the Leiden Open Variation Database 
(LOVD) format (Fokkema, et al., 2005). Once submitted, the uploaded data were checked by curators before being 
released for access by the public. 

    We have also screened 10 Chinese families with various clinical arrhythmias, including 3 with LQTS, 2 
with Brugada syndrome, 3 with sudden death syndrome, and 2 with Sick Sinus syndrome for mutations in 
KCNQ1, KCNH2, SCN5A, KCNE1 and KCNE2. Several common polymorphisms were identified, including 
p.Ser38Gly in KCNE1 and p.Arg1193Gln in SCN5A. Interestingly, a novel splice mutation c.2690A>C in SCN5A 
was discovered in a Sick Sinus syndrome patient with compound mutations c.1141-3C>A (homozygous) and 
p.His558Arg in SCN5A. This novel mutation has not been previously reported and we categorized the mutation as 
“possible pathogenicity”; a functional analysis is still ongoing. Two pathogenic mutations were found in two 
families: p.81_82delIleAlaGln in KCNH2 and p.Asp1275Asn in SCN5A, which have both been previously 
described. All this data have been included in the database. 

 

Database Structure 
 
The database is based on the Leiden Open Variation Database system, which is a web-based database format 

designed to collect and display DNA variants in specific genes (Fokkema, et al., 2005). 
Our database website is http://www.genomed.org/LOVD/introduction.html . On the homepage is a simple table, 

with the left row showing the 12 total LQTS-associated genes. Each gene links to its own home database (see 
Figure 1). For example, the web page for the KCNQ1 variant database consists of four sections: general 
information, sequence variant tables, database search, and links to other resources. Each section provides useful 
information through a user-friendly interface. At the top of the web page are function buttons designated “Home”, 
“Variants”, “Submitters”, “Submit” and “Document”. The remote user is able to search the data and is encouraged 
to submit new mutations into the database after registering as a submitter. 

 

Database Content 
 
In the KCNQ1 variant home database, there are 943 total variants reported (see Figure 1), which are separated 

into 471 unique DNA variants. Each entry contains two categories of information: patient data and variant data 
(see Figure 2). The patient data contains the following items: disease, reference, template, technique, remarks, 
mutation origin, gender, occurrence, de novo origin, geographic origin, ethnic origin and population. The section 
for variant data is likewise separated into subcategories as follows: allele, reported pathogenicity, concluded 
pathogenicity, exon, DNA change, DNA published, RNA change, protein, restriction site, frequency, patients, 
control, DB-ID, type, location and variant remarks.  

The data for each gene is based on the published literature, but many published articles do not provide all the 
details that are available for input in the database, as described above. For example, many papers only describe the 
amino acid changes that result from DNA mutations. Thus, it is left to the database inputter to check the wildtype 
DNA sequence, fill in the “DNA change” item as appropriate for that amino acid mutation, and then to mark the 
“DNA published” item as “No”. For complicated amino acid changes, such as frameshifts, we have opted to add 
“c.?” in the “DNA change” category if the DNA sequence is not already published (Makita, et al., 2007; Mank-
Seymour, et al., 2006; Meregalli, et al., 2009; Moss, et al., 2002; Struijk, et al., 2006; Westenskow, et al., 2004).  

One gene in particular, ANK-2, does not have a consensus DNA sequence. For this gene, which is associated 
with LQT4 syndrome, we have downloaded a reference sequence from NCBI (NM00127493.1). Some published 
articles, however, use a reference sequence different from our selected reference sequence; in these cases, we 
respect the authors’ choice by submitting the DNA change as described in those papers (Mank-Seymour, et al., 
2006; Mohler, et al., 2007; Mohler, et al., 2004; Sherman, et al., 2005). 
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DISCUSSION 

 
We have set up a publicly accessible online database for variants in genes associated with LQTS. The database 

contains the most comprehensive variant data available from the published literature, including the entire corpus of 
Chinese literature on the subject. The database will not only assist clinical geneticists in counseling families found 
to have a variant of these genes, but will also aid genetic scientists investigating the function of the mutations, 
which should reduce the time spent searching the literature and help to predict the possible pathogenetic nature of 
the variant. 

 
 

 
 

Figure 1. Homepage of the KCNQ1 database. The main function menu, shown on the left side, 
contains the four options provided for the users, which is available at the website 
http://www.genomed.org/LOVD/LQTs/home.php?select_db=KCNQ1. 

 
 
The 12 genes contained in the database appear not only to be associated with LQTS, but also with other 

syndromes. Mutations in the SCN5A gene, for instance, are also found in patients with Brugada syndrome, cardiac 
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conduction defects, sudden infant death syndrome, arrhythmogenic right ventricular cardiomyopathy, and sick 
sinus syndrome (Makita, et al., 2005; Miyoshi, et al., 2005; Priori, et al., 2002; Priori, et al., 2000). Even within a 
single family, the same variant may present different phenotypes in different family members (Bezzina, et al., 
1999; Smits, et al., 2005). Our database includes this valuable data by listing the other associated diseases in the 
patient data section. Moreover, patients carrying two or three mutations in these 12 genes (especially in the 
KCNQ1, KCNH2, SCN5A, KCNE1 and KCNE2 genes) may have severe clinical symptoms (Shim, et al., 2005; 
Westenskow, et al., 2004; Ning, et al., 2003b). We also present this information in our database under the rubric 
for ”Remarks” (Figure 2) . 
 

 
 

Figure 2. Details of mutation KCNH2: p.Lys525Asn. In addition to the p.Lys525Asn mutation, the 
patient carries another mutation KCNH2: p.Arg528Pro. The page also contains the articles reporting 
the two variants, with a link to their corresponding Pubmed entries. This page is available at 
http://www.genomed.org/LOVD/LQTs/variants.php?select_db=KCNH2&action=view&view=0001
836%2C0000205%2C0 

 
 
The distribution of mutations is not always random. Marjamaa et al revealed four founder mutations which 

constitute up to 70% of the known genetic spectrum of LQTS in 6,334 Finnish subjects (Marjamaa, et al., 2009). 
The four founder mutations are KCNQ1 p.Gly589Asp, KCNQ1 c.1033-2A>G (IVS7-2A>G), KCNH2 
p.Leu552Ser and KCNH2 p.Arg176Trp, which have a prevalence estimate of 0.4% (95% CI 0.3%–0.6%) in the 
Finnish population (Marjamaa, et al., 2009). A comprehensive mutational analysis involving 744 apparently 
healthy individuals from four race/ethnicity groups (black, white, Asian and Hispanic) revealed that even the 
common polymorphisms were not equally distributed; p.Lys897Thr-KCNH2 was more common in whites, while 
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p.Pro448Arg-KCNQ1 was almost absent in whites and more often in Asians (Ackerman, et al., 2003). The 
proportion of the different types of mutations from the five major LQTS-associated genes (KCNQ1, KCNH2, 
SCN5A, KCNE1 and KCNE2) is represented in a pie chart demonstrating that missense and frameshift mutations 
account for 79% (Figure 3). 

 

 
Figure 3. Pie chart showing the proprotion of  KCNQ1,KCNH2,SCN5a,KCNE1 and KCNE2 
mutation types. “Others” includes mutations in introns, the 5’UTR and 3’ UTR, and silent 
mutations. 

 
The 12 LQTS susceptible genes have been shown to account for about 36% to 72% of identified variants in 

LQTS patients (Berge, et al., 2008; Kapplinger, et al., 2009; Napolitano, et al., 2005; Splawski, et al., 2000; Tester, 
et al., 2005; Ning, et al., 2003a). There remain 30% or more LQTS patients without a documented pathogenic 
variation in these genes. There may be other genes involved in these patients, or the mutations may be in the 
introns or other so-called junk sequences of the 12 known genes, which can affect their expression or translation 
procession. Crotti et al identified a c.2399-28A>G (IVS9-28A/G) mutation in KCHN2 that disrupted the acceptor 
splice site definition by affecting the branch point (BP) sequence and thereby promoting intron retention (Crotti, et 
al., 2009). In other LQTS patients, a large segment duplication or deletion has been identified, which were not 
easily screened for by current polymerase chain reaction-based exon-scanning methods (Eddy, et al., 2008; 
Koopmann, et al., 2006).  

 Our database provides the most complete and universal format published variants for LQTS, although further 
investigation will likely yield more data. As new variant are identified, we will update the database with the help 
of remote users and scholars, who may submit their own variants. 
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