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Objective: The objective of this study was to reveal the potential crosstalk between
immune infiltration and N6- methyladenosine (m6A) modification in the placentas of
patients with gestational diabetes mellitus (GDM), and to construct a model for the
diagnosis of GDM.

Methods: We analyzed imbalanced immune infiltration and differentially expressed m6A-
related genes (DMRGs) in the placentas of patients with GDM, based on the GSE70493
dataset. An immune-related DMRG signature, with significant classifying power and
diagnostic value, was identified using a least absolute shrinkage and selection operator
(LASSO) regression. Based on the selected DMRGs, we developed and validated a
nomogram model using GSE70493 and GSE92772 as the training and validation
sets, respectively.

Results: Infiltration of monocytes was higher in GDM placentas than in control samples,
while the infiltration of macrophages (M1 and M2) in GDM placentas was lower than in
controls. A total of 14 DMRGs were strongly associated with monocyte infiltration, seven
of which were significant in distinguishing patients with GDM from normal controls. These
genes were CD81, CFH, FABP5, GBP1, GNG11, IL1RL1, and SLAMF6. The calibration
curve, decision curve, clinical impact curve, and receiver operating characteristic curve
showed that the nomogram recognized GDM with high accuracy in both the training and
validation sets.

Conclusions: Our results provide clues that crosstalk between m6A modification and
immune infiltration may have implications in terms of novel biomarkers and therapeutic
targets for GDM.

Keywords: gestational diabetes mellitus, N6-methyladenosine modification, immune infi ltration,
monocyte, nomogram
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INTRODUCTION

Gestational diabetes mellitus (GDM) is a form of diabetes that is
first diagnosed during pregnancy, with a worldwide prevalence of
9–21%. GDM frequently affects both short-term and long-term
health in the mother and offspring, because of the diverse genetic
background and epigenetic modifications that occur in response to
nutritional and environmental factors (1, 2). Currently, the precise
etiological mechanisms of GDM remain unclear; however,
numerous studies have found that GDM is a multifactorial
disease that involves genetic factors, lifestyle, and chronic
inflammation. Insulin resistance (IR) and pancreatic b-cell
dysfunction are regarded as essential for the pathogenesis of
GDM (2, 3). Although the exact mechanisms remain to be
clarified, chronic inflammation has been reported to participate
in the development of IR and pancreatic b cell failure, which in
turn leads to GDM (4). The placenta is a temporary organ formed
during pregnancy, which serves as the only bridge connecting the
mother and fetus, and has important endocrine function. Placenta-
derived inflammatory cytokines, such as interleukin-1 beta (IL-1b),
IL-6, IL-15, IL-10, IL-34, IL-38, and tumor necrosis factor alpha
(TNF-a), can stimulate immune cells and aggravate immune and
inflammatory responses, thereby exacerbating chronic
inflammation and maternal IR and inducing b cell failure during
pregnancy (5–11). Moreover, immune cells and inflammatory
cytokines are important components of the placental
microenvironment, which is essential for normal pregnancy (12,
13). Imbalanced immune infiltration in the placenta contributes to
the pathogenesis and development of pregnancy-specific diseases,
including GDM, and may affect GDM-related adverse pregnancy
outcomes and clinical prognosis (13–15).

Chemical modifications of cellular RNAs can result in
secondary structure modifications, splicing, degradation, or
molecular stability, which are emerging layers of post-
transcriptional gene regulation. More than 160 chemical
modifications have been identified (16). N6- methyladenosine
(m6A) RNA modification is the most prevalent type of RNA
epigenetic processing (17, 18). m6A modification is mediated by
its effector proteinsare in a dynamic and reversible pattern (17).
m6A occurs mainly in the 3’- UTR and the vicinity of the
termination codon mRNA, which is recogonized by “readers”
(YTH domain family (YTHDF]1–3, and insulin-like growth
factor 2 mRNA-binding proteins 1–3), catalyzed by methylases
[methyltransferase-like (METTL)3/14, and Wilms’ tumour 1-
associated protein], and removed by demethylases [fat-mass and
obesity-associated protein (FTO), and alkylation repair homolog
protein 5] (19). Recent evidence indicates that perturbations of
m6A modifications dysregulate mRNA metabolism, including
mRNA stability, mRNA splicing, RNA nucleation, RNA-protein
teractions and mRNA translation, thereby contributing to
various physiological and pathophysiological processes
(20–22). Numerous m6A modifications have been shown to
regulate adipogenesis, glucose metabolism, insulin resistance,
and the related chronic immune response (17, 21, 23). This
suggests that m6A modifications are implicated in the
development of metabolic diseases, although the specific
knowledge regarding GDM is still in its infancy.
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In this study, we aimed to reveal the imbalanced immune
infiltration in the placenta of patients with GDM, the
differentially expressed m6A-related genes (DMRGs) involved,
as well as the crosstalk between them, and also to develop a
nomogram model for the diagnosis of GDM.
MATERIALS AND METHODS

Data Collection
The human expression dataset GSE70493 was downloaded from the
Gene Expression Omnibus database (https://www.ncbi.nlm.nih.gov/
geo/). The expression data in GSE70493 contained 63 samples of the
maternal placenta (GDM; n = 32 and normal glucose tolerance
[NGT]; n = 31). We obtained 17,661 m6A-related genes by crossing
data from the RMBase (24) and RMvar (25) databases. The
expression data in GSE92772 were obtained for validation and
contained RNA profiles of maternal whole blood cells from eight
GDM and eight NGT pregnant women in their second trimester.
The workflow of this research is shown in Figure 1.

Screening of Differentially Expressed
m6A-Related Genes
Using the R software ‘limma’ package, we identified differentially
expressed genes (DEGs) in the GSE70493 dataset, based on the
criteria of |log2 fold change| > 0.1 and P value < 0.01. Heatmaps
were generated using the R software ‘pheatmap’ package. In the
case of multiple probes corresponding to the same gene, we
selected the probe with the lowest P value. Genes without official
symbols were removed, and all symbols were converted to
symbols approved by the HUGO Gene Nomenclature
Committee. We then crossed the DEGs with m6A-related
genes to obtain the DMRGs.

Functional-Enrichment Analysis
To determine the potential functions and enriched pathways of
DMRGs in GDM, Gene Ontology (GO) and Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathways were analyzed using
the R software ‘enrichplot’ package. A P value of < 0.05 was set as
the cutoff.

Evaluation of Immune Cell Infiltration
in Placenta
CIBERSORTx (26) was utilized to quantify the abundance of 22
immune cell types in each sample by imputing the gene
expression profiles of GSE70493. We then compared the
differences in immune cell infiltration between GDM patients
and healthy subjects.

Selection of Core DMRGs Correlated
With Immune Infiltration
Pearson correlation coefficient (PCC) analysis was conducted to
identify the DMRGs correlated with the differentially infiltrated
immune cells between GDM and healthy patients. LASSO
analysis, a linear regression model penalized with the L1 norm,
was used to further narrow down the variables owing to its
tendency to prefer solutions with fewer non-zero coefficients. A
March 2022 | Volume 13 | Article 853857
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tuning parameter, lambda, was used to control the number of
coefficients with a value of zero. The 10-fold K cross-validations
for the centralization and normalization of selected variables to
select the optimal lambda value using R software. The core
DMRGs that correlated with immune infiltration were
identified using LASSO analysis.

Construction and Validation of the
Nomogram Model for GDM Diagnosis
A logistic regression model was considered to evaluate the
performance the core m6A-related genes selected by LASSO to
estimate the probability of GDM. Based on this model, we
constructed a nomogram for individual predictions of GDM
using R software. To validate the classification ability of the
nomogram model, calibration was analyzed using a
bootstrapping approach and randomly repeated 1,000 times
with replacement. Decision curve analysis and clinical impact
curves were used to determine clinical usefulness. The receiver
operating characteristic (ROC) curve was used to evaluate the
sensitivity and specificity of the nomogram. To externally validate
Frontiers in Endocrinology | www.frontiersin.org 3
the nomogram, we then applied the calibration, decision curve,
clinical impact curve, and ROC curve analysis on GSE92772.

Statistical Analysis
Data processing and statistical analyses were performed using R
software (version 4.0.3). Associations between quantitative
variables were assessed using the Student’s t-test. Spearman’s
rank correlation analysis was used to explore the correlations
between different variables. LASSO regression, logistic
regression, and nomogram development were conducted using
“glmnet”, “survival”, and “rms” packages, respectively. P values <
0.05 were considered significant.
RESULTS

Landscape of DMRGs in
GDM Pregnancies
Based on the criteria described above, we identified 207 DEGs in
GSE70493 and obtained 106 DMRGs by crossing the DEGs with
FIGURE 1 | Flowchart of the research workflow. Abbreviations are defined as follows: differentially expressed gene (DEG), gestational diabetes mellitus (GDM),
differentially expressed m6A-related gene (DMRG), Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), Pearson correlation coefficient (PCC),
least absolute shrinkage and selection operator (LASSO).
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17,661 m6A-related genes. A heatmap of the DMRGs is shown in
Figure 2. The list of all DMRGs is shown in Table S1. To elucidate
the functions and pathways of the 106 DMRGs, we conducted
enrichment analysis using R software. Based on the GO category
biological process, DMRGs were mainly enriched for the terms
interferon-gamma-mediated signaling pathway, antigen
processing and presentation of endogenous antigen, positive
regulation of leukocyte-mediated immunity, positive regulation
of T cell-mediated cytotoxicity, cellular response to interferon-
gamma, and cell killing (Table S2 and Figure 3A). KEGG
pathways were mainly enriched in viral myocarditis, type 1
diabetes mellitus (T1DM), phagosomes, cell adhesion molecules,
and autoimmune thyroid disease (Table S3 and Figure 3B).

Immune Cell Infiltration in the Placenta
We further explored differential immune cell infiltration in the
placenta between GDM and control cases by quantifying the
abundance of 22 immune cell types (Supplementary File 1).
The results indicated that the infiltration of monocytes was
higher in GDM placentas than in control samples, while the
infiltration of macrophages M1 and M2 in GDM placentas were
lower. No significant differences were observed among the other
immune cells (Figure 4A). Higher propotion of M2 than M1
phenotype in GDM compared to controls was observed
(Supplementary Figure 1).

Identification of the DMRGs Signature
Related to Monocyte Infiltration
Considering the obviously high infiltration of monocytes in the
GDM placentas, we calculated the PCCs of the abundance of
monocytes and the expression levels of DMRGs. Fourteen DMRGs
(methanethiol oxidase [SELENBP1], fatty acid-binding protein 5
[FABP5], G-protein coupled receptor 183 [GPR183], inhibitor of
differentiation 4 [ID4], G-protein-coupled receptor 65 [GPR65], G-
protein subunit g 11 [GNG11], guanylate binding protein 1 [GBP1],
complement factor H [CFH], tetraspanin [CD81], interleukin-1
receptor-like 1 [IL1RL1], cathepsin K [CTSK], sterile alpha motif
domain-containing protein 9-like [SAMD9L], spermatogenesis
associated serine-rich 2-like [SPATS2L], and signaling
lymphocytic activation molecule family 6 [SLAMF6]), with a |
PCC| > 0.3 and P value < 0.01, were selected from 106 DMRGs for
further analysis (Figure 4B). Based on LASSO regression analysis,
seven DMRGs (CD81, CFH, FABP5, GBP1, GNG11, IL1RL1, and
SLAMF6) had nonzero coefficients, with a lambda coefficient of
0.1059 (Figures 5A, B). The count of the potential m6A
modification sites are shown in Figure 5C. The expression
matrix of the seven key DMRGs, based on the 63 samples, was
extracted from the dataset GSE70493. The expression levels of
CD81, CFH, GBP1, IL1RL1, and SLAMF6 in GDM samples were
lower than those in control samples, while expression levels of
FABP5 and GNG11 were higher in GDM placentas than those in
controls (Figures 5D, E). As shown in Figure 4B, these seven
DMRGs were significantly correlated with each other.

Development of the Nomogram Model
We extracted the expression matrix of the seven core DMRGs
based on the training set of 63 samples extracted from dataset
Frontiers in Endocrinology | www.frontiersin.org 4
GSE70493. A model incorporating the DMRGs CD81, CFH,
FABP5, GBP1, GNG11, IL1RL1, and SLAMF6 was developed and
presented as a nomogram (Figure 6A). The probability of GDM
was accurately predicted using a calibration curve (Figure 6B).
The decision curve (Figure 6C) and clinical impact curve
(Figure 6D) revealed that our model demonstrated a positive
net benefit without increasing the number of false positives. In
addition, ROC curve analysis revealed that the area under the
curve (AUC) was 83% (Figure 6E), indicating a good
classification ability of the nomogram model.

Diagnostic Value of the DMRGs Signature
Related to Monocyte Infiltration
Considering that screening for GDM is usually performed during
24–28 weeks of gestation, we selected GSE92772 as the validation
set to evaluate the diagnostic value of the core DMRG signature,
which is based on blood samples extracted during the second
trimester. GSE92772 contains the expression matrix of SLAMF6,
FABP5, GBP1, GNG11, IL1RL1, and CD81, without CFH present.
In the validation set, the calibration curve (Figure 7A), decision
curve (Figure 7B), and clinical impact curve (Figure 7C) also
exhibited good performance. Moreover, the nomogram model
exhibited high diagnostic value in distinguishing patients
with GDM from those with NGT, with an AUC value of
85.9% (Figure 7D).
DISCUSSION

GDM is a common complication of pregnancy, adversely
affecting both the mother and fetus (1, 2). The etiology of
GDM, which involves genetic background and epigenetic
modifications, remains unclear . Chronic low-grade
inflammation during pregnancy can contribute to the
pathogenesis of GDM by exacerbating maternal IR and
inducing b cell failure (4). As an endocrine organ, the placenta
derives inflammatory cytokines that stimulate immune cells and
aggravates the immune/inflammatory response (12, 13).
Moreover, the disturbance of immune cell infiltration in the
placenta is attributed to pregnancy-specific diseases, including
GDM, as well as GDM-related adverse outcomes (13–15). In this
study, we found that the infiltration of monocytes was higher in
GDM placentas than in control samples, while the infiltration
level of macrophages (M1 and M2) in GDM placentas was lower
than that in the controls. Monocyte infiltration has been shown
to be crucial during inflammation. As important mediators of the
innate immunity, monocytes circulate in the bloodstream and
pass into tissues during the steady state and in increased
quantities during inflammation (27). GDM is considered as a
low-degree inflammation, and elevated levels of monocytes in
the peripheral blood of patients with GDM have been previously
reported (28). Based on the expression of superficial CD14 and
CD16 in flow cytometry, monocytes can be divided into three
subsets: classical (CD14++CD16-), intermediate (CD14+CD16++)
and non-classical (CD14+CD16+) (29). Angelo et al. (28) observed
increased percentage of classical monocytes, decreased frequency of
intermediate monocytes in the peripheral blood of patients with
March 2022 | Volume 13 | Article 853857
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FIGURE 2 | Heatmap of differentially expressed m6A-related genes. The up- and down-regulation of genes are indicated with red and blue color, respectively.
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GDM compared to controls. By contraries, an increase in the
intermediate subset and a decreased frequency of classical
monocytes were detected in healthy pregnancy compared to non-
pregnant women (30). Considering that the variation in levels of
monocyte subsets may contribute to the development of
inflammation in GDM, it is essential to develop new studies on
this topic to validate these findings. During gestation, bone marrow-
derived monocytes can migrate from the bloodstream to the uterus
and differentiate into decidua-specific macrophages upon exposure
to this local microenvironment (31–34). A proportion of tissue-
resident macrophages is constantly replaced by blood monocytes,
and the mechanisms behind these differential renewal patterns are
not fully understood and may be controlled by the tissue specific
microenvironment (27, 35, 36). Inflammatory stimuli often depleted
macrophages and induce monocyte recruitment; these monocytes
might potentially contribute to tissue-resident macrophages upon
Frontiers in Endocrinology | www.frontiersin.org 6
the resolution of inflammation (27). Therefore, the decrease in
macrophages and increased monocytes may be due to the
inflammation during GDM. Decidual macrophages are highly
plastic (37). It is generally accepted that macrophages are mainly
the M1 (pro-inflammatory) phenotype during the pre-implantation
period, and change to M2 (anti-inflammatory) phenotype following
trophoblast attachment and invasion; macrophages seem to revert
to M1 phenotype at the time of delivery (37–39). Inappropriate
macrophage polarization may cause adverse pregnancy outcomes
(30, 37). There are controversies regarding the use of placental
macrophages in describing GDM. An imbalance of M2 to M1
macrophages has been observed in the placentas of diabetic patients
and rats (40), as well as in placentas of GDM patients (41).
Opposing conclusions have been reported in other studies, in
which macrophages maintain the M2 phenotype in GDM
compared to controls (42–44). In the present study, we also
A

B

FIGURE 3 | Functional enrichment analysis. (A) The top 10 GO biological process categories. (B) The top 10 KEGG pathways.
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observed higher propotion of M2 than M1 phenotype in GDM
compared to controls (Supplementary Figure 1).

m6A methylation plays a vital role in glucose/lipid
metabolism as well as its related chronic inflammatory
processes (23, 45–47). FTO moduates glucose metabolism via
regulating forkhead box protein O1 and activating transcription
factor 4 of m6A modification (46, 48). FTO also regulates
adipogenesis by controlling cell cycle progression in an
YTHDF2 dependent mechanism (45). METTL3 regulates lipid
metabolism via mediating JAK1 mRNA stability an m6A-
YTHDF2 dependent manner (47), and regulating NF-kB and
MAPK via meditating m6A modification of TNF receptor
associated factor 6 (49). Due to the dynamic and reversible
nature, m6A methylation can be reversed by environmental
stressors, including changes in nutrition. High-fat diet affecs
METTL3 and FTO mRNA expression, and fasting state leads to
Frontiers in Endocrinology | www.frontiersin.org 7
the reduced FTO mRNA expression and increases m6A levels
(50, 51). It remains unknown whether m6A modifications play a
role in GDM. Exploration of the crosstalk between m6A
modification and GDM may provide a potential strategy for
the diagnosis, prognosis and treatment. We obtained m6A-
related genes from the RMBase and RMvar databases and
identified DMRGs based on the GSE70493 dataset. Enrichment
analysis was conducted to determine the biological functions of
the DMRGs. Notably, several pathways, such as type 1 diabetes
mellitus and autoimmune thyroid disease, were closely correlated
with the development and mal outcome of GDM. Recent studies
have revealed that a small but significant population of patients
with GDM develop postpartum T1DM (52, 53). Emerging
evidence suggests that perturbations of the thyroid hormone
signaling pathway and antibodies are associated with GDM
development and adverse outcomes (54, 55). In terms of the
A

B

FIGURE 4 | Differentially expressed m6A-related genes (DMRGs) related to monocyte infiltration in GDM Pregnancies. (A) Landscape of immune infiltrations in GDM
Pregnancies. (B) Correlation among the abundance of monocytes and 14 correlated DMRGs. Asterisks denote statistical significance (ns, no significance; *p < 0.05;
**p < 0.01).
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A B

C

E

D

FIGURE 5 | Differentially expressed m6A-related genes (DMRGs) signature selection through LASSO regression analysis. (A) LASSO coefficient profiles of 14
differentially expressed m6A-related genes (DMRGs). The coefficient profile plot was produced against the log (lambda). (B) The partial likelihood deviance (binomial
deviance) curve was plotted versus log (lambda) to verify the optimal lambda value. Dotted vertical lines were drawn based on the 1-SE criteria. Seven DMRGs with
non-zero coefficients were selected by optimal lambda. (C) Counts of potential m6A modification sites of the selected DMRGs. (D) Relative expression levels of
CD81, CFH, FABP5, GBP1, GNG11, IL1RL1, and SLAMF6. (E) Hierarchical clustering of the expression pattern of CD81, CFH, FABP5, GBP1, GNG11, IL1RL1, and
SLAMF6. Asterisks denote statistical significance ( *p < 0.05; **p < 0.01).
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GO biological process category, the DMRGs were closely related
to inflammatory- and immune-related biological processes.
Therefore, we suggest that, in addit ion to chronic
inflammation, the immune response may also contribute to the
pathophysiology of GDM.

As stated above, monocyte infiltration is aberrant in the
placentas of patients with GDM. We obtained DMRGs related
to monocyte infiltration, of which seven DMRGs (CD81, CFH,
FABP5, GBP1, GNG11, IL1RL1, and SLAMF6) were selected
through LASSO regression analysis to construct a nomogram.
Frontiers in Endocrinology | www.frontiersin.org 9
FABP5 belongs to the calycin superfamily and fatty-acid binding
protein family, and serves as a gatekeeper for mitochondrial
integrity to modulate regulatory T cells (Treg) and subdue
immune responses (56). It has been reported that increased
intra-tumoral FABP5 contributes to CD8+ T-cell infiltration
and is linked to overall and recurrence-free survival, indicating
that FABP5 could be an immunometabolic marker in
hepatocellular carcinoma (57). Moreover, FABP5 has been
observed to be enriched in classical monocytes of heart failure
patients, suggesting that FABP5 contributes to monocyte
A

B C

D E

FIGURE 6 | Development and internal validation of a nomogram model for GDM based on GSE70493. (A) Nomogram model for patients with GDM. (B) Calibration
curve for predicting possibility of GDM. Decision curve (C) and clinical impact curve (D) for assessing the net benefit of the nomogram. (E) ROC curve to assess
classifying ability of the nomogram model.
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activation (58). CD81 is a tetraspanin that participates in
adaptive immunity and host-virus interactions (59, 60). As an
inhibitor of the alternative complement pathway, CFH protects
self-surfaces from immune attacks, thereby engaging in host-
virus interactions and innate immunity (61–63). GBP1 is
involved in macrophage apoptosis and pyroptosis (64).
Interleukin-33 (IL-33) is the only known ligand of IL1RL1, and
IL1RL1/IL-33 signaling participates in various inflammatory
diseases (65). SLAMF6 is expressed in a variety of immune
cells and may be involved in crosstalk between different
microenvironments (66–68). Finally, GNG11, a member of the
guanine nucleotide-binding protein family, is involved in various
transmembrane signaling systems (69, 70). The nomogram
showed a robust performance in distinguishing GDM patients
from normal controls in the training set (GSE70493), with an
AUC of 83%. GDM diagnosis is usually confirmed by a 75 g-oral
glucose tolerance test during the second trimester. GSE92772,
which is based on blood samples extracted during 24–28 weeks of
gestation, was selected to externally validate the diagnostic
capacity of the nomogram. The nomogram model exhibited a
high diagnostic value with an AUC value of 85.9%, although it
Frontiers in Endocrinology | www.frontiersin.org 10
lacked the expression matrix of CFH. Therefore, our findings
suggest that this m6A-related signature, correlated with
monocyte infiltration, can be regarded as a novel biomarker
and potential therapeutic target for GDM.

This study had a few limitations. A comprehensive analysis of
the placenta and peripheral blood is warranted to verify the
mRNA expression, protein expression and m6A-modification
status of CD81, CFH, FABP5, GBP1, GNG11, IL1RL1, and
SLAMF6. The diagnostic ability of the nomogram model may
require further validation using a larger sample size. For
subsequent research, more clinical parameters regarding
valuable prognosis risk characteristics should be incorporated
to verify the predictive ability of the nomogram.
CONCLUSION

In this study, we analyzed the immune landscape and DMRGs in
the placentas of patients with GDM. Some DMRGs were strongly
associated with monocyte infiltration, which was higher in GDM
placentas than in the control group. Based on seven selected
A B

C D

FIGURE 7 | Diagnostic value of the monocyte infiltration related DMRGs signature based on GSE92772. (A) Calibration curve to identify the diagnostic value for
GDM. Decision curve (B) and clinical impact curve (C) for assessing the clinical usage. (D) ROC curve used for assessing the sensitivity and specificity of the model.
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DMRGs linked to monocyte infiltration in GDM placentas, we
developed and validated a highly accurate nomogram for
recognizing GDM.
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