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ABSTRACT
Use of pneumococcal conjugate vaccines (PCVs) has greatly reduced the incidence of invasive pneumococcal 
disease (IPD). V114 (VAXNEUVANCE™, Merck Sharp & Dohme Corp. a subsidiary of Merck & Co. Inc. Kenilworth, 
NJ, USA) is a 15-valent PCV currently approved in adults in the United States, containing the 13 serotypes in 
licensed PCV13 and 2 additional serotypes (22F and 33F) which are important contributors to residual 
pneumococcal disease. This study quantified the health and economic burden of IPD attributable to V114 
serotypes in hypothetical birth cohorts from Korea and Hong Kong. A Markov model was used to estimate the 
case numbers and costs of IPD in unvaccinated birth cohorts over 20 years. The model was applied to 3 
scenarios in Korea (pre-PCV7, pre-PCV13, and post-PCV13) and to 2 scenarios in Hong Kong (pre-PCV7 and 
post-PCV13). For Korea, the model predicted 62, 26, and 8 IPD cases attributable to V114 serotypes in the 
pre-PCV7, pre-PCV13, and post-PCV13 scenarios, respectively. Costs of V114-type IPD fell from 
$1.691 million pre-PCV7 to $.212 million post-PCV13. For Hong Kong, the model estimated 62 V114- 
associated IPD cases in the pre-PCV7 scenario and 46 in the post-PCV13 scenario. Costs attributed to all 
V114 serotypes were $2.322 million and $1.726 million in the pre-PCV7 and post-PCV13 periods, 
respectively. Vaccine-type serotypes are predicted to cause continuing morbidity and cost in Korea 
(19A) and Hong Kong (3 and 19A). New pediatric pneumococcal vaccines must continue to protect 
against serotypes in licensed vaccines to maintain disease reduction, while extending coverage to non- 
vaccine serotypes.
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Introduction

Streptococcus pneumoniae is a gram-positive bacterium that 
causes both invasive and noninvasive pneumococcal disease. 
Noninvasive manifestations include otitis media and non- 
bacteremic pneumococcal pneumonia (NBPP), while invasive 
pneumococcal disease (IPD) syndromes include bacteremic 
pneumonia, bacteremia without focus, and meningitis.1,2 

Despite a substantial epidemiologic decline at the beginning of 
the 21st century, pneumococcal disease remains a significant 
source of morbidity and mortality in infants and children world-
wide, causing an estimated 318,000 deaths in children <5 years in 
2015.3 In East Asia, incidence data for IPD are somewhat sparse, 
but reported incidence values in children <5 years range from 
13/100,000 in Japan from 2003–20054 to 422/100,000 in Taiwan 
in 2006.5 Case fatality rates in this region range from 1.6% in 
Japan to 8.1% in Taiwan.4 In Hong Kong, the incidence of IPD in 
children ≤5 years was reported to be 15.6/100,000,6 and the risk 
of death was found to be significantly increased (odds ratio 3.26) 
among children admitted to a pediatric intensive care unit 
(PICU) with pneumococcal disease compared to those without 
pneumococcal disease.7 A 10-year analysis of data from this 
PICU showed a mortality rate of 20% among patients with IPD.8

Global surveillance has shown that, among the more than 90 
known pneumococcal serotypes, only a small number cause 
a majority of IPD.9,10 These are the serotypes contained in past 

pediatric pneumococcal conjugate vaccines (PCVs), which were 
introduced to the market in the early 2000s. The first PCV was 
heptavalent (PCV7) and contained serotypes 4, 6B, 9 V, 14, 18C, 
19F, and 23F.2 Since then, PCV13, a 13-valent vaccine, which 
contains all the PCV7 serotypes plus an additional 6 serotypes: 1, 
3, 5, 6A, 7F, and 19A (“PCV13-specific” serotypes) has been 
introduced.2 The introduction of PCVs via infant immunization 
schedules has led to substantial decreases in IPD associated with 
vaccine-targeted S. pneumoniae serotypes in children, and has 
indirectly benefited adult populations.11 However, the emer-
gence of non-PCV serotypes has been observed,12–16 and select 
vaccine-targeted serotypes, such as 38,17and 19A,12,13 continue to 
persist in East Asian populations.

In a recent global systematic review including results from 27 
countries published between 2010–2015, serotypes 22F and 33F 
were two of the most commonly observed non-PCV13 serotypes 
in children with IPD,16 and a new 15-valent PCV, V114 
(VAXNEUVANCE™, Merck Sharp & Dohme Corp., a subsidiary 
of Merck & Co., Inc., Kenilworth, NJ, USA), includes serotypes 
22F and 33F as well as the PCV7- and PCV13-specific serotypes. 
V114 has been approved by the United States Food & Drug 
Administration for use in adults aged ≥18 years and is undergoing 
clinical trials in pediatric populations. To demonstrate the need 
for continued protection against established serotypes while also 
expanding serotype coverage, this study quantified the health and 
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economic burden of IPD attributable to all 15 serotypes in V114 
using two hypothetical birth cohorts from Korea and Hong Kong. 
IPD cases and costs attributable to all 15 V114 serotypes were 
estimated prior to and following PCV7 and PCV13 introduction.

Methods

Model design

A Markov model with three health states—no pneumococcal 
disease, IPD (meningitis and bacteremia including bacteremic 
pneumonia [BP]), and death (Figure 1)—was adapted from 
a previous analysis.18 At the start of the model, an unvaccinated 
birth cohort enters into the “no pneumococcal disease” state 
and is at risk of developing IPD. The probability of an infant 
developing pneumococcal disease varies by age over the time 
horizon of the model. During each cycle, some individuals 
move into the IPD state based on the annual incidence. 
Those who are in the bacteremia (including BP) state may die 
due to their infection, with rates based on case fatality rates. 
Background mortality is applied to all states in the model. The 
model assumed that infants could experience only one IPD 
event during each year and that IPD could lead to either 
recovery (return to the no pneumococcal disease health state) 
or death. Post-meningitis sequelae, NBPP, and acute otitis 
media were not considered in the model. Indirect protection 
of adults via pediatric vaccination was not considered because 
the model included an unvaccinated birth cohort.

Model inputs

Cohorts of unvaccinated infants born in 2018 in Korea and 
Hong Kong were modeled over 20 years to estimate cases, 
deaths, direct medical costs, and indirect costs for IPD. Based 
on local census data, the total cohort consisted of 336,309 
newborns in Korea19and 56,890 newborns in Hong Kong.20 

The model tracked each infant up to 20 years of age or death, 
whichever occurred first.

Epidemiologic and economic parameters were retrieved 
from the literature. PCVs were introduced intermittently in 
Korea—PCV7 in 2003, the 10-valent PCV (PCV10, which 
contains the PCV7 serotypes plus serotypes 1, 5, and 7F) in 
2010, and PCV13 in 2010—so incidence and serotype dis-
tribution data were available for three eras: pre-PCV7, pre- 
PCV13, and post-PCV13.21–23 Epidemiological inputs for 
Korea are shown in Table 1. In all three eras, the case 
fatality rates were 9.5% for meningitis and 5.6% for 
bacteremia.24 In Hong Kong, PCVs were incorporated con-
secutively into the childhood immunization program 
(PCV7 in 2009, PCV10 in 2010, and PCV13 in 2011), so 
outcomes were only estimated for two eras, pre-PCV7 and 
post-PCV13, and incidence and serotype distribution data 
were retrieved for those two eras.6,25,26 Epidemiological 
inputs for Hong Kong are shown in Table 1. In both eras, 
the case fatality rates were 9.0% for meningitis and 4.6% for 
bacteremia.27,28 For both analyses, the case fatality rates 
retrieved from the literature reflected current access to 
care and medical treatment for IPD.

Figure 1. Structure of the Markov model. BP,bacteremic pneumonia

Table 1. Epidemiological inputs for Korea and Hong Kong.

Pre-PCV7 Pre-PCV13 Post-PCV13

PCV7-specific PCV13-specific V114-specific PCV7-specific PCV13-specific V114-specific PCV7-specific PCV13-specific V114-specific

Korea

Incidence of IPD (per 100,000 persons per year)a

0–1 years 2.93 0.97 0.0 0.27 1.06 0.04 0.04 0.15 0.04
2–3 years 1.36 0.45 0.0 0.08 0.33 0.01 0.04 0.16 0.04
4–12 years 0.33 0.11 0.0 0.05 0.20 0.01 0.01 0.05 0.01
13–18 years 0.27 0.09 0.0 0.05 0.19 0.01 0.02 0.07 0.02

Hong Kong

Incidence of IPD (per 100,000 persons per year)b

0–2 years 16.84 0.66 0.0 - - - 0.17 2.51 0.0
3–5 years 13.98 0.55 0.0 - - - 0.72 10.47 0.0
6–14 years 0.81 0.06 0.0 - - - 0.17 2.44 0.0

IPD, invasive pneumococcal disease; PCV, pneumococcal conjugate vaccine. 
aSources: Lee et al., Cho et al., and Korea Disease Control and Prevention Agency.21,22,23 The incidence for the 13–18 year age group was used for individuals up to 20 

years of age. 
bSources: Ho et al., Ho et al., and Hong Kong Center for Health Protection.6,25,26 The incidence for the 6–14 year age group was used for individuals up to 20 years of age.
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Direct medical costs were obtained from the literature24,28 and 
estimated from the healthcare perspective. Cost inputs for Korea 
and Hong Kong are shown in Table 2. A societal perspective 
considered direct medical costs and indirect costs, including pro-
ductivity losses linked to premature death among children, and 
productivity losses among adult caregivers. However, due to lack 
of data on out-of-pocket costs, they were not included. For Korea, 
costs were updated to 2020 US dollars (USD) and discounted at 
4.5% annually.31 For Hong Kong, costs were updated to 2020 USD 
and discounted at 3% annually.32,33 Cost updates were performed 
using the medical component of the consumer price index34,35and 
publicly available currency conversion ratios.36,37

Model outputs

Health and economic outputs were estimated for Korea under 
three scenarios (pre-PCV7, pre-PCV13, and post-PCV13), and for 
Hong Kong under two scenarios (pre-PCV7 and post-PCV13). 
Disease incidence and serotype distributions corresponding to 
each vaccination era were applied to all 15 serotypes in V114. 
Outcomes included cases of IPD, mortality, and costs of IPD by 
serotype.

Sensitivity analysis

Deterministic sensitivity analysis was utilized to assess the 
impact of uncertainties around key parameters and assump-
tions in the pre-PCV7 scenario only. The following assump-
tions were explored: incidence rate of IPD ±20% (.8-1.2 the 
base case value), case fatality rate of IPD ±20% the base case 
value, direct medical costs and indirect costs associated with 
treating meningitis and bacteremia ±20% the base case value, 
and discount rates of 0% or 5%.

Results

Health and economic burden of V114-targeted 
pneumococcal serotypes in Korea

Cases of IPD by serotype
In the model for Korea, V114 serotypes caused 62, 26, and 8 IPD 
cases in the pre-PCV7, pre-PCV13 and post-PCV13 scenarios, 
respectively (Table 3). In the pre-PCV7 scenario, the majority of 
cases (46 cases, 75%) were attributable to the PCV7 serotypes. 
Most cases were attributable to serotype 19A in the pre-PCV13 
scenario (18 cases, 67%) and the post-PCV13 scenario (4 cases, 
44%). PCV13-specific serotypes increased from 15 cases in the 

pre-PCV7 scenario to 21 cases in the pre-PCV13 scenario. The 
increase was primarily due to an increase in serotype 19A from 8 
cases in the pre-PCV7 scenario to 18 cases in the pre-PCV13 
scenario. V114-specific serotypes 22F and 33F accounted for 0 
(0%), 1 (3%), and 1 (17%) IPD cases in the pre-PCV7, pre- 
PCV13, and post-PCV13 scenarios, respectively.

Mortality by serotype
The number of estimated deaths in Korea associated with V114 
serotypes was 4 in the pre-PCV7 scenario, 2 in the pre-PCV13 
scenario, and 1 in the post-PCV13 scenario (data not shown). 
Most of these deaths (75%) were attributable to PCV7-specific 
serotypes in the pre-PCV7 scenario. In the pre-PCV13 and post- 
PCV13 scenarios, deaths were attributable to the six additional 
serotypes in PCV13.

Costs of IPD by serotype
Total discounted costs (direct and indirect) in Korea due to V114 
serotypes were estimated to be $1.691 million in the pre-PCV7 
scenario, $.743 million in the pre-PCV13 scenario, and 
$.212 million in the post-PCV13 scenario (Table 4). PCV7- 
specific serotypes accounted for the majority of costs in the pre- 
PCV7 scenario ($1.269 million, 75%). Costs due to PCV13-specific 
serotypes increased from $.442 million (25%) in the pre-PCV7 
scenario to $.578 million (78%) in the pre-PCV13 scenario. This 
was primarily due to increases in costs attributable to serotype 19A 
from $.211 million (12%) to $.496 million (67%). Total costs 
associated with V114-specific serotypes 22F and 33F were $0 in 
the pre-PCV7 scenario, $.020 million (3%) in the pre-PCV13 
scenario, and $.035 million (17%) in the post-PCV13 scenario.

Sensitivity analysis
The discounted total cost was sensitive to uncertainties around all 
key parameters, especially the discount rate (Table 5). When the 
discount rate was 0% or 5%, total costs for IPD attributable to 
V114 serotypes increased by 290% or decreased by 11%, 
respectively.

Table 2. Cost inputs for Korea and Hong Kong.

Korea Hong Kong

Direct medical cost per episodea

Meningitis $13,033 $18,425
Bacteremia $6,078 $12,230

Indirect medical cost per episodeb

Meningitis $1,024 $473
Bacteremia $651 $528

Costs are reported in 2020 USD. 
aSource: Korea: Zhang et al.24 Hong Kong: Wu et al.28 

bSources: Korea: Myers et al. and Olarte et al.29,30 and https://tradingeconomics. 
com/south-korea/wages. Hong Kong: Wu et al.28

Table 3. IPD cases attributable to V114 serotypes in the pre-PCV7, pre-PCV13, and 
post-PCV13 periods in Korea and Hong Konga

Korea Hong Kong

Pre- 
PCV7

Pre- 
PCV13

Post- 
PCV13

Pre- 
PCV7

Post- 
PCV13

PCV7-specific 
serotypes

46 (75) 5 (19) 1 (17) 59 (96) 3 (6)

PCV13-specific 
serotypes

15 (25) 21 (78) 5 (67) 3 (4) 43 (94)

1 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
3 0 (0) 0 (0) 0 (0) 1 (2) 38 (83)
5 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
6A 8 (12) 3 (11) 1 (11) 1 (2) 0 (0)
7F 0 (0) 0 (0) 1 (11) 0 (0) 0 (0)
19A 8 (12) 18 (67) 4 (44) 0 (0) 5 (10)

V114-specific 
serotypes

0 (0) 1 (3) 1 (17) 0 (0) 0 (0)

All V114 serotypes 62 26 8 62 46

IPD, invasive pneumococcal disease; PCV, pneumococcal conjugate vaccine 
aData are presented as n (%). Some totals sum to more or less than 100% due to 

rounding.
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Health and economic burden of V114-targeted 
pneumococcal serotypes in Hong Kong

Cases of IPD by serotype
In Hong Kong, V114 serotypes caused an estimated 62 and 46 
IPD cases in the pre-PCV7 and post-PCV13 scenarios, respec-
tively (Table 3). In the pre-PCV7 scenario, a majority of cases 
(59 cases, 96%) were attributable to PCV7 serotypes. PCV13- 
specific serotypes increased from 3 cases (4%) in the pre-PCV7 
scenario to 43 cases (94%) in the post-PCV13 scenario. This 
increase was primarily due to an increase in serotype 3 from 1 
case (2%) in the pre-PCV7 scenario to 38 cases (83%) in the 
post-PCV13 scenario. Cases due to serotype 19A increased 
from 0 (0%) to 5 (10%) across these time periods.

Mortality
Three deaths from IPD due to V114 serotypes were predicted 
in Hong Kong for the pre-PCV7 scenario, all of which were 
attributable to PCV7-specific serotypes (data not shown). 
Three deaths were predicted for the post-PCV13 scenario, 2 
of which (67%) were attributable to serotype 3.

Costs of IPD by serotype
Total discounted medical costs and indirect costs in Hong Kong 
were estimated to be approximately $2.322 million over 20 years 
in the pre-PCV7 scenario and decreased to $1.726 million in the 
post-PCV13 scenario (Table 4). PCV7 serotypes accounted for the 
majority of total costs in the pre-PCV7 scenario (96%), whereas 
PCV13-specific serotypes accounted for the majority of the total 
costs in the post-PCV13 scenario (94%). The increase in PCV13- 
specific costs from the pre-PCV7 scenario to the post-PCV13 
scenario was primarily due to increases in costs attributable to 
serotype 3 from $.044 million (2%) to $1.419 million (82%).

Sensitivity analysis
The discounted total cost was sensitive to uncertainties 
around all key parameters, especially the discount rate 
(Table 5). When the discount rate was 0% and 5%, total 
costs for IPD attributable to various serotypes increased by 
185% and decreased by 36%, respectively.

Discussion

This study showed that PCV-targeted serotypes of S. pneumoniae 
are predicted to cause ongoing morbidity and cost in both Korea 
and Hong Kong. The models predicted that PCV13-specific ser-
otypes of S. pneumoniae persisted to various degrees after imple-
mentation of routine PCV13 vaccination. Specifically, serotype 
19A in Korea and serotype 3 in Hong Kong still caused 
a majority of IPD cases in the most recent period. Serotypes 
specific to the V114 vaccine, 22F and 33F, were predicted to impart 
additional morbidity and costs in Korea.

Our findings are consistent with the literature. Prior to the 
introduction of PCVs, the majority of IPD was caused by serotypes 
in PCV7.38 In Korea, approximately 60% of IPD cases were due to 
PCV7 serotypes prior to PCV7 introduction,39 and in Hong Kong, 
89.6% of IPD cases were caused by PCV7 serotypes before PCV7 

Table 4. Discounted direct and indirect costs associated with IPD in Koreaa

$ in millions (%) Pre-PCV7 Pre-PCV13 Post-PCV13

Direct costs Indirect costs Total costs Direct costs Indirect costs Total costs Direct costs Indirect costs Total costs

Korea
PCV7-specific serotypes 0.296 (75) 0.973 (75) 1.269 (75) 0.033 (19) 0.111 (19) 0.144 (19) 0.008 (17) 0.028 (17) 0.035 (17)
PCV13-specific serotypes 0.098 (25) 0.323 (25) 0.442 (25) 0.134 (78) 0.444 (78) 0.578 (78) 0.031 (67) 0.111 (67) 0.141 (67)

1 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
3 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
5 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
6A 0.049 (12) 0.162 (12) 0.211 (12) 0.019 (11) 0.063 (11) 0.082 (11) 0.005 (11) 0.018 (11) 0.024 (11)
7F 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0.005 (11) 0.018 (11) 0.024 (11)
19A 0.049 (12) 0.162 (12) 0.211 (12) 0.115 (67) 0.381 (67) 0.496 (67) 0.020 (44) 0.074 (44) 0.094 (44)

V114-specific serotypes 0 (0) 0 (0) 0 (0) 0.005 (3) 0.015 (3) 0.020 (3) 0.008 (17) 0.028 (17) 0.035 (17)

All V114 serotypes 0.394 1.297 1.691 0.172 0.570 0.743 0.046 0.166 0.212

Hong Kong
PCV7-specific serotypes 0.719 (96) 1.508 (96) 2.227 (96) - - - 0.033 (6) 0.078 (6) 0.110 (6)
PCV13-specific serotypes 0.030 (4) 0.065 (4) 0.096 (4) - - - 0.479 (94) 1.137 (94) 1.616 (94)

1 0 (0) 0 (0) 0 (0) - - - 0 (0) 0 (0) 0 (0)
3 0.014 (2) 0.031 (2) 0.044 (2) - - - 0.419 (82) 1.000 (82) 1.419 (82)
5 0 (0) 0 (0) 0 (0) - - - 0.003 (1) 0.007 (1) 0.010 (1)
6A 0.017 (2) 0.035 (2) 0.051 (2) - - - 0 (0) 0 (0) 0 (0)
7F 0 (0) 0 (0) 0 (0) - - - 0 (0) 0 (0) 0 (0)
19A 0 (0) 0 (0) 0 (0) - - - 0.056 (11) 0.130 (11) 0.187 (11)

V114-specific serotypes 0 (0) 0 (0) 0 (0) - - - 0 (0) 0 (0) 0 (0)

All V114 serotypes 0.749 1.573 2.322 - - - 0.512 1.215 1.726

IPD, invasive pneumococcal disease; PCV, pneumococcal conjugate vaccine 
aData are presented as cost (%). Costs are reported in millions of 2020 USD. Some totals sum to more or less than 100% due to rounding.

Table 5. Results of sensitivity analysis for Korea and Hong Kong.

Korea discounted  
total costsa

Hong Kong discounted  
total costsa

Base case $1.69 $2.3
Incidence −20% 1.28 (−24%) 1.86 (−20%)
Incidence +20% 2.13 (+26%) 2.79 (+20%)
Case fatality rate −20% 1.44 (−15%) 2.01 (−13%)
Case fatality rate +20% 1.94 (+15%) 2.63 (+13%)
Cost −20% 1.61 (−5%) 2.17 (−7%)
Cost +20% 1.78 (+5%) 2.48 (+7%)
Discount rate 0% 6.60 (+290%) 6.62 (+185%)
Discount rate 5% 1.50 (−11%) 1.48 (−36%)

aNumbers in parentheses indicate the percentage change from the base case 
value. Costs are reported as millions of 2020 USD.
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introduction.17 Our results showed that IPD cases associated with 
PCV7 serotypes still persist. Thus, it is important to retain protection 
against PCV7 serotypes in current and future vaccine formulations.

Our findings indicated that S. pneumoniae serotype 19A is 
dominant in Korea, and serotype 3 is currently dominant in 
Hong Kong, despite these serotypes being included in PCV13. 
These results are in agreement with recent epidemiological studies 
from both and Hong Kong8,17,18 and Korea.13 A survey of inci-
dence rates in Hong Kong from 1995 to 2017 found that IPD cases 
due to serotype 3 were steadily increasing across all vaccine eras.17 
Consistent with this, several studies have demonstrated a lack of 
PCV13 effective ness against IPD caused by serotype 3,40 and 
studies from the United States and the United Kingdom have 
highlighted the persistence of serotype 3 after PCV13 introduc-
tion.41,42 Regarding serotype 19A, Data from 2010–2015 in Korea 
showed that, although serotype 19A prevalence decreased steadily, 
it remained as prevalent as many non-PCV serotypes in 2015 and 
was the most prevalent serotype overall during this time period.13 

Elsewhere, the prevalence of IPD caused by serotype 19A has 
plateaued in recent years,41,42,43 and this serotype remains a per-
sistent cause of IPD in Europe.16

Regarding serotype 3, a survey of incidence rates in Hong Kong 
from 1995 to 2017 found that IPD cases due to serotype 3 were 
steadily increasing across all vaccine eras.17 Consistent with this, 
several studies have demonstrated a lack of PCV13 effectiveness 
against IPD caused by serotype 3,18,40 and studies from the United 
States and the United Kingdom have highlighted the persistence of 
serotype 3 after PCV13 introduction.40,44,45,46 Together, these 
findings highlight the importance of retaining the protection 
against the vaccine-type serotypes as new PCVs are developed. 
Moreover, higher-valency PCVs have been found to elicit lower 
immune responses relative to first-generation PCVs for the shared 
serotypes,47 and this phenomenon, known as ‘geometric mean 
concentration creep’, becomes more pronounced as more sero-
types are added.48 New PCVs will need to incorporate strategies 
for better targeting of persistent serotypes.

Interestingly, although serotypes 22F and 33F are two of the 
most commonly observed non-PCV13 serotypes in children with 
IPD,16 we observed only a minimal burden from these serotypes in 
the current analysis. This is likely because these serotypes were 
rarely or never observed in most serotyping studies from Korea 
and Hong Kong,8,12,13,17,49,50 suggesting a geographically tailored 
approach to surveillance, vaccination policy, and vaccine develop-
ment will be needed. However, even in locations where serotypes 
22F and 33F are rare, their invasiveness, which is comparable to 
that of serotype 19A,51 may prioritize them for targeting by new 
PCVs. In some locations, the antibiotic resistance of both persis-
tent and emergent serotypes may be the greater immediate con-
cern. For example, in a prospective study at Seoul National 
University Children’s Hospital from 2010 to 2015, 91% of naso-
pharyngeal S. pneumoniae isolates from children exhibited multi- 
drug resistance.13 Isolates from Korean children attending daycare 
centers in 2014 showed an 82% multi-drug resistance rate.15 In 
a multi-center study of S. pneumoniae isolates collected from 
Korean hospitals between 2014 and 2016, serotype 19A had one 
of the highest rates of multi-drug resistance.52

Our results show that PCV-targeted serotypes of S. pneumoniae 
will cause ongoing costs in both Korea and Hong Kong. Similar to 
the prevalence trends, total costs were expected to decrease from 

the pre-PCV7 scenario to the post-PCV13 scenario with costs 
decreasing by 87% in Korea and 26% in Hong Kong. Of interest, 
in Korea total costs associated with V114-specific serotypes 22F 
and 33F increased by 17% from the pre-PCV7 scenario to the post- 
PCV13 scenario. The costs associated with emerging serotypes 22F 
and 33F will likely vary by location, with these serotypes persisting 
in Korea.

There are several limitations of this study. First, the use of an 
unvaccinated cohort in combination with post-PCV13 incidence 
data provides an estimate of what will happen in the current era 
in the absence of external influences. The actual outcomes will, 
of course, be affected by local vaccination rates and other factors. 
In Korea, reported PCV coverage has ranged from 74% as of 
201053 to 98% as of 2015.54 Although a survey of Hong Kong 
parents of primary school children found that only 42% reported 
having had their children vaccinated with PCVs,55 most studies 
from Hong Kong claim nearly universal infant vaccination with 
PCVs.17,27,28,56,57 The high vaccination rates in both locations 
would be expected to affect the serotype replacement patterns 
over time, especially if new PCVs are introduced.

Secondly, although we assumed constant IPD incidence 
over 20-year time horizon, the incidence of IPD may shift 
over time in response to the invasiveness of emergent pneu-
mococcal serotypes and to widespread health events such as the 
COVID-19 pandemic. In Korea, IPD cases decreased by 22% in 
the first half of 2020 compared to the previous 5 years.58 In 
Hong Kong, cases of IPD decreased by 75% in 2020 compared 
to the previous five years, likely due to mask wearing adopted 
during the pandemic (similar results were observed in 
Singapore and Taiwan).59

Other limitations of our analysis include the fact that non-
invasive syndromes such as NBPP and acute otitis media were 
not considered in the model. Similarly, sequelae of meningitis, 
such as deafness or other long-term disability, were not 
included. The cost calculations also did not include direct non- 
medical costs accrued by families and caregivers, such as 
transportation and lodging. Indirect costs associated with pro-
ductivity loss were estimated using conservative values for 
earnings, and for caregivers, only absenteeism was including 
in the productivity loss calculation. Furthermore, the average 
income for individuals under 20 years of age was assumed to be 
zero. As a result, the cost calculations presented here are likely 
an underestimation. Our Markov model did not account for 
transmission dynamics, outcomes such as nasopharyngeal car-
riage, and the indirect protective effect of PCVs on unvacci-
nated groups.. Finally, the many IPD cases attributed to non- 
vaccine-type serotypes in all three time periods likely caused 
our model to underestimate the health and economic burden 
of IPD attributable V114 serotypes.60

In conclusion, our health and economic model showed that 
PCV-targeted serotypes, particularly serotypes 3 and 19A, con-
tinue to be associated with substantial IPD-related morbidity 
and costs after the introduction of PCVs. The persistence of 
PCV-targeted serotypes, and the morbidity and costs asso-
ciated with emerging serotypes 22F and 33F, will likely vary 
by location. Thus, future pediatric PCVs must include sero-
types contained in currently licensed PCVs to maintain disease 
reduction as well as expand serotype coverage to key non- 
vaccine serotypes that have emerged. Furthermore, 
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surveillance of serotype prevalence should guide vaccine design 
and vaccination policy.
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