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Abstract
ATP-mediated signaling is an important regulator of electrolyte transport in the kidney. The

purinergic cation channel P2X6 has been previously localized to the distal convoluted

tubule (DCT), a nephron segment important for Mg2+ and Na+ reabsorption, but its role in

ion transport remains unknown. In this study, P2x6 knockout (P2x6-/-) mice were generated

to investigate the role of P2X6 in renal electrolyte transport. The P2x6-/- animals displayed a

normal phenotype and did not differ physiologically from wild type mice. Differences in

serum concentration and 24-hrs urine excretion of Na+, K+, Mg2+ and Ca2+ were not

detected between P2x6+/+, P2x6+/- and P2x6-/- mice. Quantitative PCR was applied to

examine potential compensatory changes in renal expression levels of other P2x subunits
and electrolyte transporters, including P2x1-5, P2x7, Trpm6, Ncc, Egf, Cldn16, Scnn1,
Slc12a3, Slc41a1, Slc41a3, Cnnm2, Kcnj10 and Fxyd2. Additionally, protein levels of P2X2

and P2X4 were assessed in P2x6+/+ and P2x6-/- mouse kidneys. However, significant

changes in expression were not detected. Furthermore, no compensatory changes in gene

expression could be demonstrated in heart material isolated from P2x6-/- mice. Except for a

significant (P<0.05) upregulation of P2x2 in the heart of P2x6-/- mice compared to the

P2x6+/+mice. Thus, our data suggests that purinergic signaling via P2X6 is not significantly

involved in the regulation of renal electrolyte handling under normal physiological

conditions.

Introduction
Adenosine triphosphate (ATP) is an important mediator of cellular communication. In normal
physiological conditions, extracellular ATP is involved in a wide variety of cell signaling pro-
cesses including the recruitment of leukocytes and platelets to damaged cells and sites of
increased cell death [1–3]. In the kidney, ATP-mediated purinergic signaling has been linked
to renal inflammation [4] and fibrosis [5]. Purinergic signaling is also involved in the regula-
tion of Na+ and water transport [6], which means it is one of the factors involved in the onset
of hypertension [7–10].
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ATP activates both P2X and P2Y receptors [11]. Whereas P2Y receptors are G protein-cou-
pled receptors, P2X receptors form ATP-sensitive ion channels that are expressed at the surface
of epithelial cells throughout the body [12–14]. P2X subunits assemble in homo- or heterotri-
mers with large extracellular loops forming ATP binding sites [12, 15]. Activation of P2X
receptors by extracellular ATP results in the non-selective influx of cations into the cell. The
P2X family of receptors consists of seven subtypes (P2X1-7) [12, 16]. Within the kidney, P2X
receptors are commonly described as inhibitors of ion transport [6]. In mouse collecting duct
(CD) cells, ATP release inhibits ENaC mediated Na+ uptake [9], which has been linked to
P2X2, P2X4, P2X2/6 and P2X4/6 activity. P2 channel activity has also been implicated in the
inhibition of water uptake via AQP2 [17].

Recent studies demonstrated that P2X receptors regulate electrolyte reabsorption in the dis-
tal convoluted tubule (DCT) [18, 19]. A screening of P2x receptors expression levels revealed
that P2X4 and P2X6 are the predominant P2X subtypes in the DCT [18]. P2X6 forms hetero-
mers with P2X4 [19, 20]. Recently, P2X4 homomers were found to directly inhibit the apical
Mg2+ channel transient receptor potential cation channel subfamily M, member 6 (TRPM6).
In the DCT, TRPM6 is the main channel for Mg2+ reabsorption, and extracellular ATP inhibits
Mg2+ uptake by increasing P2X-mediated Ca2+ influx [21]. However, the role of P2X6 in the
regulation of Mg2+ transport is still unknown.

The aim of the present study was, therefore, to determine the function of P2X6 in renal elec-
trolyte handling. To this end, P2x6-/- mice were generated and functionally characterized by
measuring serum levels and 24-hour urine excretion of Na+, Mg2+, K+ and Ca2+. Potential
compensatory mechanisms for loss of P2x6 gene function were measured by RT-qPCR
analysis.

Methods

P2X6-/- mice
All experiments were performed in compliance with the Central Animal Laboratory Nijmegen
and the animal ethics board of the Radboud University Nijmegen (DEC #2013–185). P2x6+/-

mice (mus musculus), from a mixed background, (B6J-129P2-P2RX6) were provided by The
Mary Lyon Centre, Oxfordshire, UK. The acquired P2x6-/- mice were backcrossed once with
C57BL/6 wild-type. 6–10 littermates were housed in standard cages with bedding material con-
sisting of straw and paper in a temperature- and light-controlled room with standard pellet
chow and deionized drinking water available ad libitum (S1 ARRIVE Checklist). To confirm
full loss of P2X6, PCR amplification of the complete P2x6 transcript was performed in isolated
mouse heart cDNA. PCR products were designed to be exon-exon junction spanning and
amplify several exons in a range of 145–564 bp in ascending order. PCRs were performed with
Amplitaq Gold 360 mastermix (Invitrogen, Bleiswijk, The Netherlands) in a Biometra T3000
(Westburg, Leusden, The Netherlands). Primer sequences are described in S1 Table.

Phenotyping
Phenotyping was performed on P2x6+/+, P2x6+/- and P2x6-/- mice to assess differences in
behavior and phenotype. Body condition scoring (BCS) was performed as described previously
[22]. Mice were checked for abnormal breathing, grooming and fur condition. Additionally,
mice were closely monitored for the ability to support their own body weight and whether they
lacked voluntary movement of the fore and hind limbs. Eyes and ears were visually inspected
for abnormalities. All mice were thoroughly investigated for fighting wounds. Furthermore,
animals were checked for bearing a possible rectal or vaginal prolapse. Activity and curiosity of
the animals was verified by assessing open-field behavior as described previously [22].

P2X6 KOMice Are Physiologically Normal

PLOS ONE | DOI:10.1371/journal.pone.0156803 June 2, 2016 2 / 16

Competing Interests: The authors have declared
that no competing interests exist.



Experimental set-up
The experimental sample size was determined by a power calculation (N�2σ(Zα+Zβ)2/δ2),
based on an estimated urinary Mg2+ excretion of 65 ± 35 μmol/day [23]. A difference of 70%
(45 μmol/day) (δ) with a standard deviation of 75% (48 μmol/day) (σ) in urinary Mg2+ excre-
tion was expected, combined with a power of 80% (β) and a significance threshold of 5% (α)
this results in a minimum sample size of 10 animals (N) per group. For the experiment, 30
adult male mice (10 P2x6-/- (knock-out), 10 P2x6+/- (heterozygous) and 10 P2x6+/+ (wild-
type)) were housed individually in mouse metabolic cages during the last 48 hrs for urine and
feces collection (24 hrs adaptation, 24 hrs sampling). Littermates were allocated to an experi-
mental group based on genotype. Animals were 8–10 weeks old. Blood samples were collected
by orbita extraction in isoflurane-anesthetized mice during the day. The primary outcome
measure was changes in urinary Mg2+ excretion levels between experimental groups. Second-
ary measures were differences in other electrolytes, such as Na+, K+ and Ca2+. After being anes-
thetized with 4% (v/v) isoflurane, all thirty mice were sacrificed. Blood samples, kidneys and
hearts were collected and the organs were immediately frozen in liquid nitrogen.

Expression profiling
Total RNA was isolated using TRIzol total RNA isolation agent (Invitrogen, Bleiswijk, the Neth-
erlands) according to the manufacturer’s protocol. Obtained RNA was treated with DNase (Pro-
mega, Fitchburg, WI, USA) to remove genomic DNA. Subsequently, reverse transcription of the
mRNA byM-MLV reverse transcriptase (Invitrogen, Bleiswijk, the Netherlands) was performed
for 1 hr at 37°C. Gene expression levels were determined by RT-qPCR on a BioRad (Hercules,
CA, USA) analyzer using SYBR Green and normalized for glyceraldehyde 3-phosphate dehydroge-
nase (Gapdh) expression levels. Primer sequences are provided in S2 Table.

Electrolyte measurements
Serum and urinary total Mg2+ and Ca2+ concentrations were determined using a xylidyl blue col-
orimetric assay kit according to the manufacturer’s protocol (Roche/Hitachi, Tokyo, Japan). In
short, serumMg2+ and Ca2+ were measured photometrically via the decrease in xylidyl blue
absorbance. 1 MMg2+ and Ca2+ standards (Sigma Aldrich, Zwijndrecht, The Netherlands) were
used to generate standard dilution curves. The assay was calibrated using a Mg2+ Precinorm
(Sigma Aldrich, Zwijndrecht, The Netherlands) with a concentration of 0.76 mMMg2+. Samples
were measured on a Nanodrop 2000c spectrophotometer (Thermo Scientific, Breda, The Nether-
lands) at 600 nm. 20 μl of urine was acidified by adding 4 μl 1MHCl and diluted 30x with MQ
before performing the Mg2+ and Ca2+ assays. All feces were dissolved in 5 ml 65% v/v sulfuric
acid and incubated for 10 min. at 50°C and then diluted 50 times in MQ before use. Serum and
urinary Na+ and K+ concentration were determined by the Radboudumc clinical lab on an auto-
mated system according to the manufacturer's protocol (Abbott Diagnostics, Belgium).

Isolation of membrane and cytosol fractions
Membrane and cytosol fractions were isolated from kidney tissue of P2x6-/- and P2x6+/+ litter-
mates by ultracentrifugation. To this end, half of a mouse kidney was first homogenized using
a homogenizer (bedrijf) in 1 ml of lysis buffer (50 mM Tris pH 7.5, 1 mM EDTA, 1 mM
EGTA, 1 mMNaOrthovandate, 5 mM NaF, 5 mM glycerolphosphate 0.27 M sucrose) contain-
ing 1 tablet of complete protease inhibitor cocktail (Roche) and 0.1% b-mercapto-ethanol
without detergents. Samples were than centrifugated at 3000 g for 10 minutes at 4°C. The
supernatant was then centrifugated at 100,000 g for 1 hour at 4°C in a Sorvall™WX Floor Ultra
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Centrifuge (Thermo Scientific, Asheville, NC, USA) with a 70.1Ti rotor. The supernatant was
taken and proteins in the cytosolic fraction were solubilized by adding 1% NP-40. The remain-
ing pellet was resuspended in 1 ml lysis buffer without b-mercapto-ethanol and centrifuged at
100,000 g for 15 minutes at 4°C to get rid of all cytosolic parts. The remaining pellet consists of
the membrane fraction and is subsequently resuspended in 100 μl lysis buffer containing 1%
NP-40 and b-mercapto-ethanol. To remove any debris, membrane fractions were spun a final
time at 12,000 g for 10 minutes at 4°C. The remaining supernatant was used for further
experiments.

Cell culture and transfection
HEK293 cells were grown in Dulbecco’s modified Eagle’s medium (Lonza, Leusden, The Neth-
erlands) containing 10% (v/v) fetal calf serum (FCS), 2 mM L-glutamine at 37°C in a humidity
controlled incubator with 5% (v/v) CO2. The cells were transiently transfected with the respec-
tive construct using Lipofectamine 2000 (Invitrogen Bleiswijk, The Netherlands) in a 1 μg
DNA to 2 μl lipofectamine ratio and analyzed on Western blot, 48 hours after transfection. Cell
samples were lysed in lysis buffer (50 mM Tris pH 7.5, 1 mM EDTA, 1 mM EGTA, 1 mM
NaOrthovandate, 5 mMNaF, 5 mM glycerolphosphate 0.27 M sucrose and 1 tablet of complete
protease inhibitor cocktail (Roche)) containing 1% (v/v) Triton X-100.

BCA protein measurements and western blotting
Protein concentrations were measured with a colorimetric Pierce BCA protein assay kit (Ther-
moFisher scientific, Breda, The Netherlands) according to the manufacturer’s protocol. In
short, samples were loaded on a 96 well plate, incubated for 30 minutes at 37°C and measured
at 562 nm with a Biorad Benchmark plus microplate photospectrometer (Biorad, Veenendaal,
The Netherlands). Protein lysates of membrane and cytsolic fractions of P2x6-/- and P2x6+/+

mouse kidney samples were denatured in Laemmli containing 100 mM DTT for 30 minutes at
37°C. Samples were then subjected to SDS-PAGE andWestern blots were incubated with a rab-
bit anti-mouse P2x2 antibody (Alomone Labs, Jerusalem, Israel, 1:500) or a rabbit anti-mouse
P2x4 (H-40, Santa Cruz biotechnology, Santa Cruz CA, USA, 1:500) in 5% milk o/n at 4°C.
Then, immunoblots were incubated 45 minutes at RT with peroxidase conjugated goat anti-
rabbit secondary antibodies (Sigma-Aldrich, Zwijndrecht, The Netherlands, 1:10,000). β-actin
was used as a loading control and samples were stained in 5% milk o/n at 4°C with anti-mouse
β-actin (Sigma-Aldrich, Zwijndrecht, The Netherlands, 1:10,000). HEK293 cells, which were
transiently transfected with HA-tagged pCINEO-hP2X4-IRES-GFP and pCINEO-mock-
IRES-GFP constructs, were subjected to the same procedure as described above.

Statistical analysis
All results are depicted as mean ± standard error of the mean (SEM). The statistical analyses
were conducted by one-way ANOVA, followed by a Tukey’s post hoc test when comparing the
three treatment groups (n = 10 for each group). Difference in means with P values< 0.05 were
considered statistically significant.

Results

Breeding of P2x6-/- mice
To assess the function of P2X6 in vivo, P2x6-/- mice were generated (Fig 1A). Inactivation of
the P2x6 gene was achieved by inserting a LacZ knockout (KO) cassette in exon 2 of the gene.
The breeding of P2x6+/- mice resulted in a normal Mendelian inheritance pattern in offspring.
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Fig 1. Characteristics of the P2x6-/-mouse. a) Targeted insertion of the knockout (KO) cassette. Top: P2x6 locus on chromosome
16. Bottom: targeted allele in which the KO cassette is inserted within exon 2. Grey boxes indicate exons, arrows depict genotype
primers. a-c) SA: Splice acceptor site, IRES: internal ribosome entry site, LacZ: ß-galactosidase, NEO: neomycin cassette, pA:
polyA. b) Identification of the mouse genotype by PCR analysis of ear-derived DNA. The PCR product size ± 478 bp shows the
presence of the wild-type allele (+/+), using primers A and C; the PCR product sized ± 800 bp shows the KO allele (-/-) using primers
B and C. Both alleles are detected in heterozygous animals (+/-). c) cDNA isolated frommurine heart samples were used to amplify
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Of a total of 116 mice, 23% were genotyped P2x6+/+, 49% P2x6+/- and 28% P2x6-/-. All offspring
were genotyped for the insertion of the knockout cassette and presence of the wild type P2x6
allele (Fig 1B). Mouse heart cDNA was used to establish the presence of full-length P2x6 tran-
scripts in P2x6+/+ mice and the complete absence of P2x6 expression or potential alternatively
spliced transcripts in P2x6-/- animals (Fig 1C). The expected PCR products were present in
P2x6+/+ mice and not detectable in the P2x6-/- animals.

Normal behavior in P2x6-/- mice
P2x6+/+, P2x6+/- and P2x6-/- mice were subjected to an inspection of behavior and phenotype
according to the guidelines for assessing the health and condition of mice [22]. All genotypes
had a BCS of 3, indicating that all animals were in optimal condition. No changes in breathing,
grooming and fur quality were observed. Mice exhibited no problems with any voluntary
movement or with supporting their own body weight. Both eyes and ears were normal in all
genotypes. All mice displayed normal open field behavior. No fighting wounds could be
detected after thorough examination and there were no mice with a rectal or vaginal prolapse.

Normal renal electrolyte handling in P2x6-/- mice
To investigate the role of P2X6 in renal electrolyte handling, blood, 24 hrs urine and feces were
collected using metabolic cages. No significant differences in body weight, food and water
intake were identified between P2x6+/+, P2x6+/- and P2x6-/- mice littermates (Table 1). Further-
more, urine production did not significantly change between the three mice groups. A similar
trend was observed in the feces production, which was not significantly altered. Because P2X6
is localized to the DCT, changes in electrolyte handling were expected for Na+ and Mg2+. How-
ever, measurements of serum (Fig 2A and 2E) and 24 hrs urinary excretion (Fig 2B and 2F)
showed that all groups have similar Na+ or Mg2+ concentrations and excretion rates, respec-
tively. Furthermore, serum and 24 hrs urine excretion of Ca2+ and K+ remained unchanged
regardless of genotype (Fig 2C, 2D, 2G and 2H).

Gene expression of renal electrolyte transporters is not altered in P2x6-/-

mice
Since P2x6 has been implicated in regulating both Na+ and Mg2+ transport in the kidney. The
renal expression of several sodium and magnesiotropic genes was analyzed in the two mice

exons 1–12 of P2x6with PCR. The top agarose gels show the PCR products for exons 1–12 in two P2x6+/+ animals. The lower gels
represent the PCR products for exons 1–12 in two P2x6-/- animals.

doi:10.1371/journal.pone.0156803.g001

Table 1. Metabolic Parameters of P2x6 Mice.

P2x6+/+ P2x6+/- P2x6-/-

Body weight (g) 21.5 ± 0.9 21.9 ± 1.0 21.6 ± 1.0

Water intake (mL) 4.1 ± 0.1 4.8 ± 0.2 4.7 ± 0.2

Food intake (g) 3.4 ± 0.3 3.9 ± 0.1 3.9 ± 0.1

Urine volume (mL) 1.2 ± 0.1 1.2 ± 0.1 1.3 ± 0.1

Feces weight (g) 1.4 ± 0.1 1.6 ± 0.0 1.7 ± 0.1

Body weight, water intake, food intake, urine volume and feces weight was assessed after housing the animals for 48 hrs in metabolic cages. Numbers

represent the mean ± SEM.

doi:10.1371/journal.pone.0156803.t001
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groups using RT-qPCR (Fig 3). Significant changes in the renal transcript levels of the apically
expressed magnesium channel Trpm6 were not detected, neither where there expression differ-
ences for Egf, which regulates Trpm6 activity (Fig 3A and 3B) [24]. Cldn16 was measured to
investigate whether paracellular Mg2+ transport in the thick ascending limb of Henle’s loop

Fig 2. Normal renal electrolyte handling in P2x6-/- mice. a) SerumMg2+ concentrations of wild-type,
heterozygous and knockout P2x6 mice. b) 24 hrs urinary Mg2+ excretion of wild-type, heterozygous and
knockout P2x6 mice. c) Serum Ca2+ concentrations. d) 24 hrs urinary Ca2+ excretion. e) Serum Na+

concentrations. f) 24 hrs urinary Na+ excretion. g) Serum K+ concentrations. h) 24 hrs urinary K+ excretion.
Values (n = 10) are presented as means ± SEM.

doi:10.1371/journal.pone.0156803.g002
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(TAL) was affected in the P2x6-/- mice. However no significant changes in Cldn16 transcript
levels were detected (Fig 3C). Since the epithelial Na+ channel (ENaC) activity is inhibited by
purinergic signaling [9], its transcript levels were measured. Scnn1 expression, encoding ENaC

Fig 3. Gene expression of renal electrolyte transporters was not altered in P2x6-/- mice. a-f) The mRNA expression levels of Trpm6 (a),
Egf (b),Cldn16 (c), Cnnm2 (d), Scnn1a (e), Slc12a3 (f) in kidney of P2x6+/+ (Black bars), P2x6+/- (Striped bars), P2x6-/- (white bars) mice were
measured by quantitative RT-PCR and normalized forGapdh expression. Data (n = 10) represent mean ± SEM and are expressed as the fold
difference when compared to the expression in P2x6+/+ mice.

doi:10.1371/journal.pone.0156803.g003

P2X6 KOMice Are Physiologically Normal

PLOS ONE | DOI:10.1371/journal.pone.0156803 June 2, 2016 8 / 16



was the same in P2x6+/+ and P2x6-/- litter mates (Fig 3E and 3F). Other Na+ and Mg2+ related
genes expressed in the DCT cell such as Slc12a3, Cnnm2, Kcnj10, Slc41a1, Slc41a3 and Fxyd2
were also analyzed (Fig 4), since P2x6 was localized to this nephron segment. Again, there was
no marked difference in expression levels between the two mice groups. To investigate whether
other P2x subunits would compensate for the inactivation of P2x6, the genes encoding P2x1-5
and 7 were also analyzed for changes in expression, but no quantifiable changes could be found
(Fig 5). To ensure that the putative binding partners of P2x6, namely P2x2 and P2x4, did not
compensate for the loss of P2x6 at the protein level, Western blots for P2x2 and P2x4 were per-
formed using membrane and cytosol fractions of P2x6+/+ and P2x6-/- mouse kidneys. P2x4 was
detected in both the membrane and cytosol, whereas P2x2 was only detected in the membrane
fraction. Both proteins displayed a band at the expected height of ~54 kD (Fig 6A). After quan-
tification no significant differences were found between P2x6+/+ and P2x6-/- mice (Fig 6B).

Increased P2x2 expression in P2x6-/- heart
Since upregulation of P2X6 has been linked to chronic heart disease [25], RT-qPCR analysis
was performed on heart tissue of P2x6-/- mice. As in the kidney, expression of the magnesiotro-
pic genes Trpm7 and Cnnm2 remained unchanged. The P2x2 subunit was however

Fig 4. P2x subunit expression in response to the loss of P2x6 function in the kidney. a-f) The mRNA expression levels of P2x1 (a),
P2x2 (b), P2x3 (c), P2x4 (d), P2x5 (e), P2x7 (f), in kidney of P2x6+/+ (Black bars), P2x6+/- (Striped bars), P2x6-/- (white bars) mice were
measured by quantitative RT-qPCR and normalized forGapdh expression. Data (n = 10) represent mean ± SEM and are expressed as
the fold difference when compared to the expression in P2x6+/+mice.

doi:10.1371/journal.pone.0156803.g004
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significantly upregulated two-fold (P<0.05) in the P2x6-/- heart material compared to P2x6+/+

mice. P2x subunits 1, 3–5 & 7 did not show significant differences in gene expression (Fig 7).

Discussion
This study demonstrated that P2X6 knockout mice have a normal phenotype, suggesting that
P2X6 does not play a significant role in renal electrolyte handling. P2x6-/- mice were

Fig 5. Basolaterally expressed compensatory mechanisms for the loss of P2x6 function in the kidney. a-d) The mRNA expression
levels of Fxyd2 (a), Kcjn10 (b), Slc41a1 (c), Slc41a3 (d) in kidney of P2x6+/+ (Black bars), P2x6+/- (Striped bars), P2x6-/- (white bars) mice
were measured by quantitative RT-qPCR and normalized forGapdh expression. Data (n = 10) represent mean ± SEM and are expressed
as the fold difference when compared to the expression in P2x6+/+ mice.

doi:10.1371/journal.pone.0156803.g005
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Fig 6. Protein abundance of P2x2 and P2x4 in response to the loss of P2x6. a) Western blots of membrane and cytosol fractions of
P2x6-/- (KO) and P2x6+/+ (WT) mice. The upper blot shows the immune-staining for P2x2 in mouse kidney material. To the right a western
blot of HEK293 cells transiently transfected with HA-tagged P2x4 (P4) and mock (M) constructs is displayed. Middle, two western blots
below are immune-stained for P2x4, left depicts P2x6-/- (KO) and P2x6+/+ (WT) material stained for P2x4, right represents a P2x4 blot on
HEK293 material transiently transfected with human P2X4 and a mock construct. Bottom, displays a ß-actin immune-staining used as a
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physiologically similar to their wild-type littermates in terms of behavior, weight, food or water
intake. No significant changes in serum concentrations or urinary excretion were observed for
Na+, K+, Ca2+ and Mg2+ in P2x6 null mice. Furthermore, loss of P2X6 function did not induce
compensatory gene expression of any P2X purinergic receptors or other ion transporters that
were investigated in the kidney. Likewise, no changes in P2x2 and P2x4 protein levels were
detected in the kidneys of the P2x6 null mice compared to wild type littermates. Together,
these results suggest that P2x6 is not involved in renal electrolyte handling under normal phys-
iological conditions.

P2X receptors have been established as important negative regulators of ion transport in the
kidney [26]. Specifically, homomers of P2X4 receptors and heteromeric complexes of P2X4
and P2X6 have been implicated in the reabsorption of Na+ and Mg2+ [9, 27]. In microdissected
tubules of the TAL, extracellular ATP inhibited Na+ currents in a P2X-dependent manner [10].
P2X4 receptors also result in diminished TRPM6-mediated currents when overexpressed in
HEK293 cells [18]. Moreover, several studies showed that P2X4 homomers and P2X4/6 hetero-
mers inhibit ENaC in the CD, decreasing Na+ reabsorption [17] [27]. Although this vast
amount of in vitro studies shows the importance of ATP in the regulation of renal ion channel
activity, the physiological consequences remain undecided. In this study, we revealed that loss
of P2X6 does not impair electrolyte handling in vivo, since renal electrolyte handling is unaf-
fected in P2x6-/- mice. Moreover, previous studies demonstrated that P2x4-/- mice also dis-
played normal renal Mg2+ excretion [18]. These findings question the in vivo role of P2X
receptors for renal electrolyte handling.

There are several explanations for the absence of a renal phenotype in P2x6-/-. First, the loss
of P2X6 function may be compensated for by other P2x subunits. P2X6 functions in complexes
with P2X2 or P2X4 and their function may counterbalance the loss of P2X6. However, our
expression profile did not show differences in P2x2 and P2x4 expression at the transcriptional
and protein level in P2x6-/- mice. Second, P2x6-/- mice might need to be challenged to reveal
disturbances in Na+ or Mg2+ handling. For instance, in rat cardiomyocytes, P2x6 expression is
low under normal physiological condition [28, 29]. However, studies in patients have shown
that P2X6 expression significantly increases after an ischemic cardiac event [25]. This latter
study demonstrated that when the system is pathologically challenged, P2X6 expression can be
induced. In our study, compensatory mechanisms, e.g. upregulation of other P2x subunits in
the heart, were not detected in the P2x6-/- mice, except for a significant increase in P2x2 tran-
script. For now, which pathogenic factors would stimulate renal P2X6 expression are unknown.
A transcriptome-wide screening, where mice were challenged with Mg2+-deficient diets, found
no differences in P2x4 and P2x6 expression in the DCT [30]. Third, the mouse may not provide
a good model to study the role of P2X purinoreceptors in the DCT. Although previous studies
have shown that P2x6 is the predominantly expressed P2x transcript in the DCT together with
P2x4, P2X4 protein expression could not be confirmed in the DCT [18]. These findings
together with our results shed doubt on the presence of functional P2X4/ P2X6 trimers in the
DCT.

Over the last decade, the function of P2X6 has been widely debated [19, 31, 32]. Although
recombinant homomeric P2X6 complexes have been reported to reach the plasma membrane
in transiently transfected HEK293 cells [33], Others have shown that P2X6 requires the pres-
ence of P2X4 or P2X2 to become functional at the cell surface [31, 34–36]. This has been

loading control. Ladders (ez-run prestained marker (ThermoScientific, Breda, The Netherlands) represent protein size in kilo Dalton (kD).
b) Protein expression levels for the P2x2 membrane lysate, P2x4 membrane lysate, P2x4 cytosol lysate, ß-actin membrane and ß-actin
cytosol lysates in P2x6-/- and P2x6+/+ mice. Data (n = 3) represents mean ± SEM and are expressed as the % of total band intensity.

doi:10.1371/journal.pone.0156803.g006
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attributed to P2X6 lacking charged residues in the N-terminus, which prevents trafficking of
the protein to the membrane [19]. Recent studies suggest that P2X6 may function as a nuclear
regulator of post-transcriptional modifications in neurons [32]. However, nuclear localization

Fig 7. Compensatory mechanisms for the loss of P2x6 function in the heart. a-h) The mRNA expression
levels of P2x1 (a), P2x2 (b), P2x3 (c), P2x4 (d), P2x5 (e), P2x7 (f), Trpm7 (g),Cnnm2 (h), in heart of P2x6+/+

(Black bars), P2x6+/- (Striped bars), P2x6-/- (white bars) mice were measured by quantitative RT-qPCR and
normalized forGapdh expression. Data represent mean (n = 10) ± SEM and are expressed as the fold difference
when compared to the expression in P2x6+/+ mice. * P< 0.05 indicates a significant difference from P2x6+/+

mice.

doi:10.1371/journal.pone.0156803.g007
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has not been identified in other tissues [37]. Further in vitro studies are required to examine
the function of P2X6.

In conclusion, P2x6-/- mice exhibit an apparent normal physiological behavior and renal
electrolyte handling under normal conditions. Serum Na+, Mg2+, K+ and Ca2+ concentrations
were not significantly different compared to wild type littermates and compensatory expression
of relevant electrolyte transporters was absent. Thus, P2X6 is likely not significantly involved
in the regulation of renal electrolyte handling under normal physiological conditions. Our
results, therefore, question the essential role of P2X6 in normal electrolyte homeostasis.
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