
RESEARCH ARTICLE

Enhanced production of heterologous

proteins by a synthetic microbial community:

Conditions and trade-offs

Marco MauriID
1, Jean-Luc GouzéID
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Abstract

Synthetic microbial consortia have been increasingly utilized in biotechnology and experi-

mental evidence shows that suitably engineered consortia can outperform individual spe-

cies in the synthesis of valuable products. Despite significant achievements, though, a

quantitative understanding of the conditions that make this possible, and of the trade-offs

due to the concurrent growth of multiple species, is still limited. In this work, we contribute to

filling this gap by the investigation of a known prototypical synthetic consortium. A first E.

coli strain, producing a heterologous protein, is sided by a second E. coli strain engineered

to scavenge toxic byproducts, thus favoring the growth of the producer at the expense of

diverting part of the resources to the growth of the cleaner. The simplicity of the consortium

is ideal to perform an in depth-analysis and draw conclusions of more general interest. We

develop a coarse-grained mathematical model that quantitatively accounts for literature

data from different key growth phenotypes. Based on this, assuming growth in chemostat,

we first investigate the conditions enabling stable coexistence of both strains and the effect

of the metabolic load due to heterologous protein production. In these conditions, we estab-

lish when and to what extent the consortium outperforms the producer alone in terms of pro-

ductivity. Finally, we show in chemostat as well as in a fed-batch scenario that gain in

productivity comes at the price of a reduced yield, reflecting at the level of the consortium

resource allocation trade-offs that are well-known for individual species.

Author summary

In nature, microorganisms occur in communities comprising a variety of mutually inter-

acting species. Established through evolution, these interactions allow for the survival and

growth of microorganisms in their natural environment, and give rise to complex dynam-

ics that could not be exhibited by any of the species in isolation. The richness of microbial

community dynamics has been leveraged to outperform individual species in biotechno-

logical production processes and other processes of high societal value. Yet, in view of

their complexity, natural communities are difficult to study and control. In order to
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overcome these issues, a rapidly growing research field concerns the rational design and

engineering of synthetic microbial consortia. Despite the great potential of synthetic

microbial consortia, and significant efforts devoted to their mathematical modelling and

analysis, a detailed understanding of how enhanced production can be achieved, and at

what cost, is still unavailable. In this work, based on a quantitative model of a prototypical

synthetic microbial consortium, we determine precise conditions under which a consor-

tium outperforms individual species in the production of a recombinant protein. More-

over, we identify the inherent trade-offs between productivity and efficiency of substrate

utilization.

Introduction

Synthetic microbial consortia have been proposed for a variety of applications in industrial

and environmental biotechnology and in biomedicine [1–7]. In general, the advantage of syn-

thetic consortia, in comparison with naturally evolved microbial communities, is that they

have a simpler composition and often a known interaction structure, which makes them easier

to understand and exploit [8]. For example, a co-culture of two engineered Escherichia coli
strains has been shown to significantly increase the production of muconic acid, a commodity

chemical, from a mixture of glucose and acetate [9]. The pathway for the production of muco-

nic acid was distributed over the two strains, coupled by an intermediate metabolite secreted

by the first strain and assimilated by the second, which enabled more efficient conversion of

the sugar mixture to muconic acid.

Natural communities are a source of inspiration for the design of synthetic consortia. An

interesting example is the small ecosystem that emerged during evolution experiments with

E. coli in a glucose-limited chemostat [10, 11]. In the conditions of the experiment, and more

generally when growing fast on glucose, E. coli bacteria secrete acetate into the medium [12,

13]. After several hundreds of generations, the initially isogenic population in the bioreactor

was found to have differentiated into genetically distinct subpopulations, including a strain

with enhanced glucose uptake and acetate secretion rates, and another strain with enhanced

acetate uptake and reduced acetate secretion rates [11]. The adaptive genetic changes had rein-

forced the feeding of one strain on a metabolic by-product of the other, thus enabling their sta-

ble coexistence.

Apart from being a model system for studying interactions in naturally occurring microbial

communities [14], the results of this evolution experiment also suggest novel applications. The

secretion of acetate is not only wasteful but also toxic, as its accumulation in the medium

inhibits bacterial growth [15–17]. Growth inhibition by acetate and other weak acids is a well-

known problem in industrial biotechnology, where it limits the productivity of strains modi-

fied to convert a substrate into a recombinant protein or a metabolite of interest [18, 19]. The

E. coli community described above suggests an elegant solution to this problem. When cocul-

turing a species producing a heterologous protein of interest and secreting acetate with

another species specialized in the assimilation of acetate, the latter could remove the acetate

secreted into the medium by the former (Fig 1). Several instances of synthetic consortia imple-

menting (variants of) this idea have been reported in the literature [20–23]. For example, Zhou

et al. [23] describe a consortium of modified E. coli and Saccharomyces cerevisiae strains jointly

producing a precursor for an antitumor agent, where the acetate secreted by the bacteria pro-

vides the substrate for growth of the yeast population.
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Despite these promising results, it is not obvious that a consortium of heterologous protein

producers and acetate cleaners will produce more of a protein of interest than a single strain.

In particular, it requires that the gain in productivity obtained by the depletion of acetate out-

weighs the loss of substrate incurred by the maintenance of the population of acetate cleaners.

The aim of this study is to investigate under which conditions enhanced productivity of a het-

erologous protein is possible and which trade-offs in the use of available resources this

involves. We focus on a prototypical synthetic consortium of E. coli strains that was previously

implemented and shown to lead to higher biomass accumulation in both batch, chemostat,

and biofilm conditions [20].

Mathematical modeling can be leveraged to quantitatively characterize the conditions for

improved productivity and inherent trade-offs. For the consortium considered here, and other

communities exhibiting cross-feeding and mutualism, a large variety of models have been pro-

posed in the literature [24–27]. We here focus on coarse-grained models that describe by

means of a few variables the main processes fueling microbial growth and the interactions

between different microbial species. Such models remain mathematically tractable while allow-

ing structural determinants of the productivity of a consortium to be clearly identified.

The models we develop differ in two main respects from existing coarse-grained models of

similarly structured communities [28–33]. First, we take into account a range of mechanisms

controlling the growth phenotypes of the E. coli strains constituting our consortium, with the

Fig 1. Synthetic consortium for the production of a heterologous protein. (A) The consortium consists of two bacterial species. A first bacterial

species growing efficiently on glucose (producer, green) produces a heterologous protein and secretes acetate as a by-product. A second species

(cleaner, hatched orange) grows preferentially on acetate, thus removing the latter from the environment and relieving its inhibitory effect on the

growth of the producer. Assuming a well-stirred reaction volume, BP and BC denote the biomass concentrations of the producer and cleaner species,

respectively,H is the concentration of the heterologous protein, A and G denote the concentrations of acetate and glucose. (B) The consortium is grown

in a bioreactor, where the inflow and outflow rates and the glucose concentration in the inflowing medium can be externally controlled. We here

consider equal and constant inflow and outflow rates, which means that the bioreactor volume is constant and a well-defined steady state can eventually

be reached [38].

https://doi.org/10.1371/journal.pcbi.1007795.g001
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aim of obtaining quantitatively predictive models. In particular, in addition to acetate toxicity,

we consider carbon catabolite repression [34], threshold regulation of acetate overflow [12],

and growth-independent maintenance [35]. These mechanisms play an important role in

shaping the dynamics of the consortium and are also crucial for making quantitative sense of

the experimental data [13]. Second, whereas most of the modeling studies have been con-

cerned with the conditions of coexistence of strains secreting and consuming acetate, we will

focus here on the conditions for enhanced productivity of the expression of a heterologous

protein by the former. The relationship between coexistence and productivity is not straight-

forward: while increased productivity requires coexistence, it may also affect the latter, not

least through the metabolic load incurred by heterologous protein expression [36, 37].

The models developed in this study will be analyzed in the well-defined steady-state condi-

tions of growth in a chemostat as well as in fed-batch [38]. This results in three main contribu-

tions. First, we explain how the overexpression of the heterologous protein modifies the

growth rate of the producer strain and thus the boundaries of the producer and cleaner coexis-

tence domain. Second, we determine how productivity is improved under conditions of coex-

istence, when the loss of substrate due to the growth of the acetate cleaner population is offset

by the gain in productivity due to the removal of acetate from the medium and the consequent

increase in biomass of the producer. Third, we predict that the increased productivity comes at

the price of a reduced yield of conversion of substrate into product, thus generalizing to the

community level the rate-yield trade-off observed on the level of individual species [39, 40].

While our study focuses on the synthetic consortium of heterologous protein producers

and acetate cleaners described in Fig 1, the main conclusions are sufficiently general to carry

over to other cross-feeding and mutualistic systems harnessed as microbial cell factories.

Moreover, the conditions and trade-offs identified here may also provide a starting point for

the development of model-based feedback control strategies for optimizing the productivity of

synthetic microbial consortia.

Results

A dynamical model of the bacterial production strain

Model principles and state equations. The synthetic consortium considered here consists

of two E. coli strains, one growing on glucose and producing the heterologous protein, and the

other preferentially growing on acetate and thus removing this growth-inhibitory by-product

from the environment [20]. While the overall structure of the model is similar to other popula-

tion-based models of synthetic mutualistic consortia [28–33], it also differs on key points from

previous work in order to account for regulatory mechanisms specific to E. coli. We here

explain the model for the producer strain in detail and then appropriately modify the model

for the cleaner in a later section.

The model for the producer is schematically represented in Fig 2A. In a well-defined mini-

mal medium, glucose at a concentration G [g L−1] is taken up at a rate rgup [g gDW−1 h−1]

(where gDW stands for “gram Dry Weight”). The substrate is converted partly into proteins

and other macromolecules, which make up most of the biomass, and partly utilized for pro-

ducing ATP and other energy carriers. In fact, around half of the carbon contents of the sub-

strate is consumed by energy metabolism and leaves the cell in the form of CO2 [41]. The

conversion of glucose into biomass is thus characterized by the biomass yield coefficient Yg
[gDW g−1]. Acetate overflow at a rate raover [g gDW−1 h−1] occurs when the glucose uptake rate

reaches a threshold level [42, 43], thus increasing the acetate concentration A in the medium.

In the absence of glucose, E. coli can utilize acetate as an alternative substrate, taken up at a

rate raup [g gDW−1 h−1] and converted into biomass with a yield coefficient Ya [gDW g−1].
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Accumulation of acetate in the medium inhibits bacterial metabolism and growth [15–17].

The producer strain differs from a wild-type E. coli strain in that it carries a plasmid for the

inducible expression of a heterologous protein. As a consequence, the total biomass concentra-

tion Btot [gDW L−1] is the sum of the concentration of heterologous proteinH [gDW L−1] and

the concentration of biomass actively involved in cellular growth and maintenance, the auto-

catalytic biomass B [gDW L−1]. The fraction of biomass production assigned to the synthesis

of heterologous protein is determined by the (dimensionless) product yield constant Yh. The

total biomass Btot [gDW L−1] decays at a rate kdeg Btot, with degradation rate constant kdeg
[h−1]. In other words, non-growth-related maintenance of the biomass requires an expendi-

ture of resources equal to kdeg Btot [44].

The producer strain is assumed to grow in a bioreactor operating in continuous mode [38],

that is, with a dilution rate D [h−1] and a glucose concentration Gin [g L−1] in the inflow. This

Fig 2. Model of the producer strain and its calibration. (A) The model describes the uptake of nutrients, glucose and acetate, at rates rgup and raup,
respectively, as well as the pathways for acetate overflow (raover), production of autocatalytic biomass and heterologous protein in proportions

determined by the yield coefficient Yh, and degradation of biomass (kdeg). The bacterial population grows in a bioreactor operating in continuous mode,

whereby the dilution rate D and the glucose concentration in the inflow Gin can be tuned (indicated in blue). Concentrations in the bioreactor are

denoted by G for glucose, A for acetate,H for heterologous protein, and B for autocatalytic biomass. For clarity, regulatory interactions due to growth

inhibition by acetate and carbon catabolite repression have been omitted from the figure. (B) and (C) Experimental data from [13] used to identify the

parameter values of the system of Eqs 1–6. The data include measurements of the growth rate μ+, the glucose uptake rate rgþup , the (net) acetate uptake

rate raþup , and the acetate overflow rate raþover during exponential growth of an E. coli wild-type strain in batch conditions in minimal medium with glucose

as the sole carbon source (B left panel), acetate as the sole carbon source (B right panel) and in glucose with increasing concentrations of acetate added

(C). The + symbol indicates that the measurements have been carried out during exponential growth in batch. The fit of the model to the data is shown

as well (red curve). The R2 values of the fit are 0.6, 0.77, and 0.77 (from left to right).

https://doi.org/10.1371/journal.pcbi.1007795.g002
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gives rise to the following dynamical system of Ordinary Differential Equations (ODEs):

dG
dt
¼ � rgupðG;AÞBþ D ðGin � GÞ; ð1Þ

dA
dt
¼ ðraoverðG;AÞ � r

a
upðG;AÞÞB � DA; ð2Þ

dB
dt
¼ ð1 � YhÞ ðYg r

g
upðG;AÞ þ Ya ðr

a
upðG;AÞ � r

a
overðG;AÞÞÞB � kdeg B � DB; ð3Þ

dH
dt
¼ Yh ðYg r

g
upðG;AÞ þ Ya ðr

a
upðG;AÞ � r

a
overðG;AÞÞÞB � kdeg H � DH; ð4Þ

with

Btot ¼ Bþ H: ð5Þ

The term � Ya raover represents the biomass equivalent lost due to acetate overflow, that is,

the biomass that would have been produced if the secreted acetate had instead been taken up

by the cells. Note that the specific rate of biomass production per unit of biomass, including

both heterologous protein and catalytic biomass, is given by

Yg rgupðG;AÞ þ Ya ðr
a
upðG;AÞ � r

a
overðG;AÞÞ. Since only catalytic biomass is actively participating

in cellular growth, the total rate of biomass production is obtained by multiplying the specific

rate with B.

Definition of growth rate. The model of Eqs 1–5 allows the (specific) growth rate μ [h−1]

to be explicitly defined in terms of the reaction rates. By definition, the rate of change of the

total biomass in the bioreactor equals the biomass produced due to the growth of the bacterial

culture (μBtot) minus the biomass flushed out due to dilution (DBtot):

dBtot
dt
¼ ðm � DÞBtot: ð6Þ

Therefore, the specific growth rate μ represents the sum of the rate of change of total bio-

mass per total biomass unit and the dilution rate

m ¼
1

Btot

dBtot
dt
þ D: ð7Þ

From Eqs 3–5 it then follows that

m ¼ ðYg rgup þ Ya ðraup � r
a
overÞÞ

B
Btot
� kdeg: ð8Þ

In the absence of heterologous protein production Btot = B, and the growth rate is given by

the balance between substrate assimilation and dissimilation and biomass degradation. Heter-

ologous protein production, however, puts a burden on the growth of the population, by draw-

ing away resources from catalytic biomass. Eq 8 brings out this burden in that a largerH leads

to a smaller ratio B/Btot lowering the specific growth rate. At steady state, as shown in the

Methods section, we find from Eqs 3 and 4 that B�=B�tot ¼ 1 � Yh, with � indicating quantities
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at steady state. Then, Eq 8 reduces to

m� ¼ ð1 � YhÞ ðYg rg�up þ Ya ðra�up � r
a�
overÞÞ � kdeg: ð9Þ

This formulation emphasizes that, at steady state, the growth rate linearly depends on the

product yield Yh, as well as on the glucose and acetate uptake rates.

Definition of reaction rates. The rate equations are functions of the nutrient concentra-

tions and express the regulatory mechanisms at work. The rate laws are motivated by a combi-

nation of modeling assumptions and experimental evidence as explained below.

The uptake rates are defined in such a way that, when inserted into Eq 8, they lead to

Monod-like dependencies of the growth rate on the substrate concentrations, modulated by

terms accounting for regulatory effects [45, 46]:

rgupðG;AÞ ¼ kg
G

Gþ Kg

Y
n
a

An þYn
a

; ð10Þ

raupðG;AÞ ¼ ka
A

Aþ Ka

Y
m
g

rgupðG;AÞ
m
þY

m
g

: ð11Þ

kg, ka [g gDW−1 h−1] denote maximal uptake rate constants and Kg, Ka [g L−1] half-maximal

saturation constants. The inhibition term with the constant Θa [g L−1] in Eq 10 represents the

inhibitory effect of acetate on bacterial growth [15–17], whereas the inhibition term with the

constant Θg [g gDW−1 h−1] in Eq 11 corresponds to carbon catabolite repression (CCR), that

is, the repression of enzymes in the metabolism of acetate and many other secondary carbon

sources while cells are growing on glucose [34, 47]. The strength of CCR is correlated with the

phosphorylation state of the preferred glucose uptake system, the phosphotransferase system

(PTS) [48], and therefore with the glucose uptake rate in our conditions. Note that, due to ace-

tate inhibition, the glucose uptake rate may be low (and CCR partially relieved) even in the

presence of high glucose concentrations in the medium. The exponents n andm shape the

nonlinear effect of acetate inhibition and carbon catabolite repression, respectively.

When the glucose uptake rate exceeds a threshold l [g gDW−1 h−1], E. coli produces and

secretes acetate as a fermentation by-product [42, 43]. This overflow metabolism has been

explained as providing cells, in the presence of excess glucose, with a less efficient but also less

costly way to produce ATP than through respiration [43]. Experimental data show that, above

the threshold level, the acetate secretion rate is proportional to the excess glucose uptake rate:

raoverðG;AÞ ¼ kover max ð0; rgupðG;AÞ � lÞ: ð12Þ

Model calibration. The model has 14 parameters most of which have been measured or

can be estimated from published data sets. The fact that these experiments have been carried

out with different E. coli strains and in different conditions carries the risk of obtaining param-

eter values that are mutually inconsistent. In order to avoid this problem, we have calibrated

the model as much as possible against a single, recently published data set for an E. coli wild-

type strain grown in batch in minimal medium with different concentrations of glucose and

acetate [13], that is, for conditions in which D = 0 h−1 and Yh = 0. Only the values for the bio-

mass degradation constant kdeg, the threshold for acetate overflow l, and the half-maximal satu-

ration constants Kg and Ka were taken from the literature. The results of the parameter

estimation procedure, described in more detail in theMethods section, are plotted in Fig 2 and

show an excellent fit of the model to the data, despite the apparent noise in the measurements,
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which prevents a perfect fit by any sufficiently smooth model. The parameter values are

reported in Table 1 and were compared with other published values for consistency (Methods).
In order to verify that the resulting model is well-posed, we also performed an a-posteriori
identifiability analysis (S1 Fig), showing tight confidence intervals for the parameter estimates.

In most simulations, the product yield coefficient was set to Yh = 0.2.

The model is able to reproduce key growth phenotypes

Simple as it is, the model is able to reproduce a range of experimentally observed growth phe-

notypes that are important for the study of a consortium aimed at the production of a heterolo-

gous protein of interest, both quantitatively and qualitatively. We demonstrate this by

validating the model in scenarios that are different from the one used for model calibration

(Fig 2). In particular, we consider dynamic growth in batch of the wild-type strain (diauxic

growth on glucose and acetate), exponential growth of an energy-dissipating mutant strain

(with a different acetate overflow behavior), and exponential growth of several glucose uptake

mutant strains (with different growth rates and acetate secretion rates). In each case, the

model predictions are compared with experimental data sets that were not used for identifying

the model parameters. Moreover, we explain the relevance of the different scenarios for the

construction of the producer and cleaner making up the consortium of Fig 1.

Diauxic growth. When growing in batch in minimal medium with glucose, E. coli bacte-

ria attain a high growth rate and secrete acetate into the medium. Only after the glucose has

been consumed, the cells start to take up acetate [12, 49]. We validated our model by ensuring

that it reproduces this so-called diauxic growth behavior by simulating a batch experiment

(D = 0 h−1) in the absence of heterologous protein production (Yh = 0). The results are shown

in Fig 3A. The biomass concentration in the bioreactor B is seen to increase while the glucose

concentration (G) decreases and acetate accumulates without being consumed (A). When the

glucose is almost completely depleted (*4 h), cells continue growth on acetate at a lower rate.

Table 1. Parameter values. Values of the parameters of the model of Eqs 1–4 describing the producer strain, with rates

as in Eqs 10–12, and the cleaner strain, with rates as in Eqs 14–16.

Parameter Value Reference

kg 1.53 g gDW−1 h−1 This work

Kg 0.09 g L−1 [69]

Θa 0.52 g L−1 This work

n 1 This work

kover 0.17 This work

l 0.7 g gDW−1 h−1 [68]

ka 0.97 g gDW−1 h−1 This work

Ka 0.5 g L−1 [70]

Θg 0.25 g gDW−1 h−1 This work

m 1 This work

Yg 0.44 gDW g−1 This work

Ya 0.298 gDW g−1 This work

Yh 0.2 This work

kdeg 0.0044 h−1 [45]

kΔPTS 0.38 g gDW−1 h−1 This work

kAcs 1.46 g gDW−1 h−1 This work

KAcs 0.012 g L−1 [12]

https://doi.org/10.1371/journal.pcbi.1007795.t001
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As shown in the same plot, the simulations are in good agreement with the experimental data

of Enjalbert et al. [13]. The capability to reproduce diauxic growth depends on the inclusion

of a regulatory term for CCR [34, 47] in Eq 11, a feature absent from many previous models.

The property of diauxic growth is preserved in the case of heterologous protein production

(S2 Fig).

Shift in acetate overflow in energy-dissipating mutant. The proton-leaking LacY

mutant described by Basan et al. [43] has an effect of energy dissipation and therefore a lower

Fig 3. Model validation. (A) Time evolution of the concentration of glucose G (blue curve), acetate A (red curve), and biomass B (green curve) in a

bioreactor operating in batch mode, with initial concentrations of 2.7 g L−1 of glucose and 0.1 g L−1 of biomass. The predicted time-courses are

compared with the data from Enjalbert et al. [13] (dots). (B) Effect of lower growth yield Yg, accounting for the use of an energy-dissipating LacY

mutant, on the onset of acetate overflow, indicated by the overflow rate (black curves) reached at steady state in a bioreactor operating in continuous

mode, with Gin = 20 g L−1. A decrease in growth yield (Yg = 0.27 gDW g−1 for the mutant vs Yg = 0.44 gDW g−1 for the wild-type strain) causes acetate

overflow to occur at a lower growth rate in the mutant and the rate of overflow to depend more strongly on the growth rate (steepness of the curve). The

model predictions are compared with the data from Basan et al. [43] (dots). Since the onset of acetate overflow occurs at slightly different growth rates

in the wild-type strain used for calibration and the wild-type strain used by Basan et al., we compare the relative changes in growth rates upon a

decrease in growth yield. m̂^ refers to the growth rate at which acetate overflow starts. (C) Predicted versus measured growth rate values for glucose

uptake mutants (dots and diamonds, see legend) with different values for kg that grow exponentially in batch in minimal medium with glucose (G(0) =

3.6 g L−1). The growth rates of the mutants μ+ have been normalized with respect to the growth rate of the wild-type strain mþWT in the same conditions.

Dashed lines indicate perfect predictions as a reference. The data are from Steinsiek et al. [52]. (D) Idem for acetate secretion rates of mutants (raþover) and

wild type (raþoverWT). In all four plots there is a good or very good correspondence between the model predictions and the experimental data.

https://doi.org/10.1371/journal.pcbi.1007795.g003
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growth rate. One might naively expect that the decrease in growth rate would lower the

amount of acetate secreted, but this is not the case as energy dissipation causes acetate overflow

to start at a lower growth rate [43]. The model reproduces this observation in the case of

steady-state growth in a bioreactor operating in continuous mode, without heterologous pro-

tein production (Yh = 0), as shown in Fig 3B. In order to mimick the effect of the LacY muta-

tion, the growth yield Yg was decreased from its estimated value of 0.44 gDW g−1 (Table 1) to

0.27 gDW g−1. Intuitively, the onset of acetate overflow occurs at a lower growth rate, because

for a lower growth yield more substrate is needed to produce a given amount of biomass. As a

consequence, the glucose uptake rate must be higher to attain the growth rate set by the dilu-

tion rate. The model not only correctly predicts that acetate overflow starts at a lower growth

rate, but also that the rate of acetate secretion increases more strongly with growth rate, as wit-

nessed by the steeper curve for the lower Yg value in Fig 3B. The reproduction of the shift in

acetate overflow is a non-trivial achievement of the model and critically depends on the intro-

duction of a regulatory term for acetate overflow in the model, Eq 12, a feature missing in

many other models.

Like energy dissipation, the overexpression of a heterologous protein puts a burden on the

metabolism of the host cell, leading to a lower growth rate and other problems for the meta-

bolic engineering of the cell [36, 37]. The analogy between energy dissipation and protein

overexpression can be further developed by deriving from Eq 9 the following relation between

the yields Yg, Yh, the dilution rate D, and the threshold l for acetate overflow:

D ¼ ð1 � YhÞYg l � kdeg: ð13Þ

In the derivation we used that μ� = D and overflow starts at rg�up ¼ l, where ra�over ¼ 0 and

ra�up ¼ 0 (due to carbon catabolite repression). Eq 13 shows that a glucose uptake rate equal to l
occurs at lower D for both lower Yg (energy dissipation) and higher Yh (heterologous protein

production). For an increase in product yield, the model indeed predicts the same shift in ace-

tate overflow as for a decrease in growth yield (S2 Fig), consistent with reports in the literature

[50].

Changes in growth rate and acetate secretion rate in glucose uptake mutants. While

the PTS is the main glucose uptake system of E. coli, a number of other systems are capable of

transporting glucose into the cell, such as maltose and galactose transporters [51, 52]. Steinsiek

et al. systematically tested during exponential growth in batch how the growth rate, the glucose

uptake rate, and acetate secretion rate change in strains in which (combinations of) uptake sys-

tems have been deleted. The mutants are straightforward to simulate by means of the model

bearing in mind that the deletion of an uptake system decreases the value of kg, the maximum

glucose uptake rate. More precisely, the observed relative decrease of the glucose uptake rate in

a mutant strain leads to a decrease in the same proportion of kg. The predicted growth rates

and acetate secretion rates for the mutants correspond well to those measured experimentally

by Steinsiek et al. (Fig 3C and 3D). As expected, for mutants strongly reducing glucose uptake

the growth rates are low and no acetate overflow occurs. Mutations in glucose uptake systems

form the basis for constructing a cleaner strain that does not or only weakly grow on glucose

but instead takes up acetate at a high rate (see [20] and below).

A dynamical model of the producer-cleaner consortium

As shown in Fig 3, even at low concentrations, the acetate secreted by the E. coli producer

strain impairs growth, and therefore the capability to produce the heterologous protein in

high amounts. The detrimental effect of acetate could be alleviated by engineering a second

E. coli strain so as to preferentially take up acetate, the so-called cleaner strain. Below we
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briefly describe the genetic modifications required to turn a wild-type E. coli strain into a

cleaner strain, and we provide the model of the synthetic consortium consisting of produc-

ers and cleaners. A very similar consortium has been implemented in previous experimental

work [20] and coexistence properties have been analyzed by means of a mathematical

model of the consortium [31]. The analysis in the next section will focus on a different

topic, the conditions and trade-offs underlying improved productivity of a heterologous

protein.

Design of cleaner strain and model equations. The cleaner strain is obtained from a

wild-type E. coli strain by knocking-out the gene ptsG, encoding a major subunit of the glucose

uptake system PTS [51], and transforming this strain with a plasmid enabling the inducible

overexpression of the native gene acs, coding for the enzyme acetyl-CoA synthetase (Acs) [12].

It has been shown that deletion of ptsG reduces the glucose uptake rate 4-fold [52]. The possi-

bility of the cell to continue to take up glucose at a reduced rate, through other, non-specific

systems, is advantageous for our purpose, since it allows the cleaner to grow faster than on ace-

tate alone and thus enlarges the coexistence range in continuous-mode cultivation (see

below). Overexpressing acs has been shown to increase the growth rate of E. coli on acetate

[53]. Unlike the producer, the cleaner strain does not express the heterologous protein of

interest.

With the above design, the model of the cleaner strain is similar to that of the producer,

except that Eq 4 can be eliminated and Btot = B. The rate equations for the cleaner are the fol-

lowing, using the subscript C to refer to concentrations and rates of the cleaner:

rgupCðG;AÞ ¼ kDPTS
G

Gþ Kg

Y
n
a

An þYn
a

; ð14Þ

raoverCðG;AÞ ¼ kover max ð0; rgupCðG;AÞ � lÞ; ð15Þ

raupCðG;AÞ ¼ ka
A

Aþ Ka

Y
m
g

rgupCðG;AÞ
m
þY

m
g

þ kAcs
A

Aþ KAcs
: ð16Þ

The only modifications with respect to the producer strain are the replacement of kg by

kΔPTS [g gDW−1 h−1], kΔPTS< kg, in Eq 14, and the addition of an extra term acounting for Acs

overexpression in Eq 16, with maximal uptake rate kAcs [g gDW−1 h−1], kAcs> ka, and half-

maximal saturation constant KAcs [g L−1].

Model of consortium. Next, we assemble the model for the protein producer and the ace-

tate cleaner to obtain the model of the consortium (Fig 4). The two populations, growing in

the same reactor environment, interact in a number of direct and indirect ways. Both the pro-

ducer and the cleaner take up glucose from the environment, while in addition the cleaner is

capable of assimilating acetate secreted by the producer. The removal of acetate cleans the

environment from a toxic by-product inhibiting the growth of, especially, the producer. The

mutualistic interaction structure of the consortium, in which both strains favor growth of the

other, causes the consortium to escape the exclusion principle [54] and makes coexistence of

the two strains possible.
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The dynamics of the system are thus characterized by the following system of ODEs, where

the dependency of the rate expressions on the concentrations has been dropped for clarity:

dG
dt
¼ � rgupP BP � r

g
upC BC þ D ðGin � GÞ; ð17Þ

dA
dt
¼ ðraoverP � r

a
upPÞBP þ ðr

a
overC � r

a
upCÞBC � DA; ð18Þ

dBP
dt
¼ ð1 � YhÞ ðYg r

g
upP þ Ya ðr

a
upP � r

a
overPÞÞBP � kdeg BP � DBP; ð19Þ

dH
dt
¼ Yh ðYg r

g
upP þ Ya ðr

a
upP � r

a
overPÞÞBP � kdeg H � DH; ð20Þ

dBC
dt
¼ ðYg r

g
upC þ Ya ðr

a
upC � r

a
overCÞÞBC � kdeg BC � DBC; ð21Þ

completed by the following mass conservation equation:

BtotP ¼ BP þH: ð22Þ

The growth rates of the producer and cleaner strains are defined by the following equations

dBtotP
dt
¼ ðmP � DÞBtotP;

dBC
dt
¼ ðmC � DÞBC; ð23Þ

which leads to expressions for μP, and μC analogously to Eq 8. S3 Fig shows an example simula-

tion of the consortium, in conditions leading to coexistence of producer and cleaner strains.

Fig 4. Model of the producer-cleaner consortium. The model describes the protein producer and acetate cleaner strains, in green and hatched orange,

respectively. The producer strain preferentially grows on glucose, whereas the cleaner has been modified in such a way as to prefer acetate over glucose.

The genetic modifications (purple uptake arrows) include the deletion of the preferred glucose uptake system and the overexpression of a selected

enzyme in acetate metabolism. The producer also expresses the heterologous protein of interest. The biomass concentrations of the producer and the

cleaner are denoted by BP and BC, respectively. Reaction rates specific to the producer and the cleaner are also identified by the subscripts P and C,

respectively (e.g., rgupP vs r
g
upC for the glucose uptake rate). The consortium grows in a bioreactor operating in continuous mode, whereby the dilution rate

D and the glucose concentration in the inflow Gin can be tuned (indicated in thin blue). For clarity, regulatory interactions due to growth inhibition by

acetate and carbon catabolite repression have been omitted from the figure.

https://doi.org/10.1371/journal.pcbi.1007795.g004

PLOS COMPUTATIONAL BIOLOGY Enhanced production of heterologous proteins by a synthetic microbial community

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007795 April 13, 2020 12 / 30

https://doi.org/10.1371/journal.pcbi.1007795.g004
https://doi.org/10.1371/journal.pcbi.1007795


Coexistence of producer and cleaner depends on the product yield

When can the species composing the consortium stably coexist? To answer this question, we

study the consortium model developed above in chemostat, that is, we investigate the existence

and nature of the (stable) steady states of the model. First of all, setting both derivatives in Eq

23 to zero, one finds that nonzero steady-state concentrations B�totP and B�C can be obtained

only if m�P ¼ m
�
C ¼ D. This simple but crucial fact immediately implies that Dmust not exceed

the maximal growth rate of either of the species. At the same time, acetate, the primary sub-

strate for cleaner growth, is only available upon overflow in the producer. Since the latter

occurs when rgupP > l, and rgupP increases with the producer growth rate (see Eq 9), it follows

that persistence of the cleaner is guaranteed only by fast enough growth of the producer. All

this suggests that coexistence is only possible in a finite range of growth rates (or equivalently,

dilution rates). Since the producer growth rate is affected by the product yield Yh, this range

must depend on Yh as well. In order to quantitatively pinpoint the effects of all these factors on

the stability of the consortium, in the following paragraphs we perform steady-state analysis of

Eqs 17–21 in a variety of experimental conditions.

Dependence of coexistence on D and gin. For ease of illustration, in this section, we con-

sider the system with Yh = 0, that is, in absence of heterologous protein synthesis. All other

parameters of the consortium are fixed as in Table 1. The case Yh> 0 will be considered

below.

We sought the (real, nonnegative, stable) steady states of the system for a grid of values of

the bioreactor inflow parameters in the region (D, Gin)2[0, 0.7] h−1×[0, 20] g L−1. Assuming

that both biomasses are initially present, we first used a numerical integration approach (see

details in Methods). For every value of the pair (D, Gin), unique steady-state biomass concen-

trations B�P and B�C were found for any initial positive biomass concentrations. Uniqueness of

the steady state was reconfirmed by an algebraic approach (see Methods). Absence of multi-

stability (in particular, bistability) differs from the results in [31] and follows from the mono-

tonic dependence of uptake rates, and therefore growth rates, on substrate concentrations (see

Discussion).

The results from the numerical computation of B�P and B�C are summarized in Fig 5A (the

same results from the algebraic approach are shown in S4 Fig). As expected, stable coexistence

(nonzero B�P and B�C) is only observed in a finite range of values of D. This range depends very

mildly on the specific value of Gin above a small threshold of about 2 g L−1. For a given value of

Gin above this threshold, four different regimes are encountered through increasing values of

D, corresponding to stable existence of the sole producer, coexistence, cleaner washout, and

producer and cleaner washout. To discuss what characterizes these regimes, we rely on Fig 5C

and 5E, showing steady-state values of several rates and biomass concentrations as a function

of D.

For small values of D, rg�upP is smaller than the overflow threshold l. Notably, in analogy with

Eq 13, and bearing in mind that Yh = 0, one finds that

rg�upP ¼
kdeg þ D
ð1 � YhÞYg

¼
kdeg þ D
Yg

; ð24Þ

that is, glucose uptake grows linearly with D (see Fig 5C). Absence of acetate overflow impairs

cleaner growth due to its inefficient growth on glucose, so that only the producer remains in

the bioreactor at this rate.

At a value D’ 0.34 h−1 where Eq 24 reaches threshold l, acetate overflow occurs. In this

regime, a comparatively small population of cleaners grows on acetate as soon as the overflow
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rate is sufficient to sustain growth at the corresponding rate D. The resulting cleaner and pro-

ducer populations balance out in a way that guarantees the precise amount of environmental

detoxification to enable growth of the producer at the same rate. The gentle decrease of the

producer population size results from utilization of part of the resources to sustain the growth

of the cleaner population.

Fig 5. Steady-state analysis of the consortium in chemostat. Left: Yh = 0; Right: Yh = 0.2. (A)-(B) Nature of the

unique (stable) steady state as a function of D and Gin (hatched red: stable coexistence; green: stable existence of the

producer only; black: washout of both strains). (C)-(D) For Gin = 20 g L−1, for the producer (green dots with solid

lines) and the cleaner (orange dots with dotted lines) strains, steady-state value of glucose uptake rate as a function of

D; (E)-(F) Idem, for biomass and substrate concentrations. Consortium parameters are as in Table 1. Acetate uptake

and overflow rates are shown in S6 Fig.

https://doi.org/10.1371/journal.pcbi.1007795.g005
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For D exceeding 0.55 h−1, acetate uptake becomes insufficient to support cleaner growth.

Together with the faster utilization of glucose by the producer strain, this results in the wash-

out of the cleaner strain. In absence of acetate scavenging, producer growth at this high rate is

only possible at low acetate concentrations, that is, if the population excreting acetate is small.

This is witnessed by the sudden drop of B�P.
For D above the maximal producer growth rate on glucose, the producer population is also

washed out. In view of the dependence of growth rate on glucose concentration via the Monod

law (Eq 10), this threshold depends on Gin. Finally, for small values of Ginmildly depending on

D and typically below 2 g L−1, the producer population does not excrete enough acetate to sup-

port the cleaner growth at the corresponding rate. Of course, in absence of glucose (Gin = 0),

the entire consortium is washed out.

Dependence of coexistence on Yh. How is coexistence affected by the synthesis of a heter-

ologous protein? To address this question, we repeat the analysis of the previous section for

the case where Yh = 0.2, which is the value of product yield reported in Table 1. Steady-state

results for B�P and B�C are illustrated in Fig 5B (a unique stable steady state is again found for

every value of D and Gin, see S4B Fig). Compared with Fig 5A, a similar shape of the various

coexistence domains is observed. Steady-state rates and concentration profiles qualitatively

similar to the case Yh = 0 are also obtained, as shown in Fig 5D and 5F. However, quantitative

differences in the values of D and Gin supporting coexistence are observed.

Coexistence occurs for D> 0.25 h−1. This value is smaller than the corresponding value for

the case where Yh = 0. This is explained by the fact that, for larger Yh, the necessary acetate

overflow to support cleaner existence starts at lower growth (dilution) rates (see the discussion

following Eq 13). For sufficiently large values of Gin, coexistence persists up to about D = 0.48

h−1, whereas the whole consortium is washed out at about D’ 0.52 h−1. Both of these dilution

rates are again smaller than their counterparts for Yh = 0. This is because the metabolic burden

associated with Yh steers away part of the glucose uptake from producer growth, thus decreas-

ing the maximal producer growth rate (Eq 9) as well as the size of the producer population.

The latter implies less acetate excretion and thus a reduction in the maximal cleaner growth

rate as well. It is important to note that the interval of dilution rates supporting coexistence,

though shifted toward lower values, is comparable to that observed for Yh = 0. Interestingly, in

presence of heterologous protein synthesis, smaller values of Gin (about 1 g L−1) are required

to observe coexistence at some suitable dilution rate.

We can thus summarize our results with the intriguing observation that, whereas a larger

product yield shrinks the survival domain of the producer, it does not shrink the survival

domain of the cleaner. In other words, heterologous protein production does not impair coex-

istence despite causing a metabolic burden on the producer. However, overly large values of

YH drastically reduce the ability of the producer to grow, to the detriment of the whole com-

munity. In fact, it can be seen that when the burden is so heavy that the cleaner outperforms

the producer in growth on glucose, regimes where only the cleaner survives are possible

(S5 Fig).

Coexistence improves productivity but lowers the process yield

We have shown in the previous section that coexistence of the producer and cleaner strains in

a chemostat is possible and even favored by a nonzero yield Yh, though at lower dilution

(growth) rates. Does coexistence improve performance of the heterologous protein production

process? Presence of the cleaner has the potential to favor growth of the producer due to the

scavenging of acetate. At the same time, however, growth of the cleaner also consumes glucose,

thus taking away resources from the producer. The effects of this resource utilization trade-off
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on heterologous protein production performance are a priori unclear. In the following, we

focus on two main questions: When does a consortium achieve the highest production rates?

Does the consortium outperform a producer population alone in the synthesis ofH? As we

will see, based on further anaysis of our model in continuous culture conditions in the chemo-

stat (with product yield fixed to Yh = 0.2), the answer to these questions will unveil further

trade-offs between different notions of production performance.

The consortium attains highest productivity in a coexistence regime. For the same con-

ditions as in Figs 5B and 6A reports a heatmap of the productivity of the consortium as a func-

tion of the bioreactor parameters D and Gin. Productivity is defined as the steady-state rate of

outflow of proteinH through the chemostat effluent (DH�). Productivity is indeed maximal in

a coexistence regime. Highest values are obtained near the maximal dilution rates before the

cleaner washout, and for high input glucose concentrations (Fig 6A). Productivity drops sud-

denly for dilution rates near the boundary of cleaner washout (D’ 0.5 h−1). This is the result

of a sudden decrease of the producer population (Fig 5F). Productivity is of course zero for

larger dilution rates where the producer is also washed out. In summary, the highest produc-

tivity is obtained in a regime where coexistence of producer and cleaner is possible. In the next

section, we investigate the question whether the consortium is indeed advantageous over a

producer strain working in isolation.

The consortium attains higher productivity than the producer species alone. Does the

consortium outperform a producer population growing alone? Of course, productivity of the

former differs from that of the latter only where coexistence is possible, which is also where the

consortium attains highest productivity. The question then becomes whether in this region a

producer growing in isolation would outperform the consortium.

In Fig 6B, for the same value of glucose inflow concentration of Fig 5D and 5F (Gin = 20 g

L−1), we compare productivity of the consortium and of the producer species in isolation as a

function of the dilution rate D. For the intermediate dilution rates where coexistence is possi-

ble, two subdomains can be distinguished. For D between 0.26 h−1 and 0.36 h−1, productivity

grows with D for both the consortium and the sole producer. However, since part of the

resources are devoted to maintain the cleaner species, the producer species alone outperforms

the consortium. For values of D between 0.36 h−1 and 0.48 h−1, because of the larger overflow

at higher growth rates, the toxic effect of acetate becomes dominant. In absence of the cleaner,

this results in a sudden drop of productivity due to a reduced size of the producer population

(see S7 Fig). For the consortium instead, the gentle reduction in producer biomass is overcom-

pensated by the increase of D. The net result is an increase in productivity (Fig 6B), up to the

dilution rates where the producer biomass washes out. Crucially, the maximum value of the

consortium productivity (about 0.7 g L−1 h−1 at D’ 0.44 h−1) is about 14% larger than that of

the producer alone (about 0.6 g L−1 h−1 at D’ 0.36 h−1). In summary, the consortium outper-

forms the producer species alone in terms of productivity. As seen before, maximal productiv-

ity is obtained for high values of Gin. It is worth noting that the maximum is obtained at a

dilution rate strictly smaller than the maximal rate supporting coexistence. For applications,

this warrants persistence of the cleaner in spite of fluctuations of the system and modelling

inaccuracies. Results along the same lines are obtained for all other values of Gin supporting

coexistence.

Highest productivity corresponds to a smaller process yield. How efficient is the con-

version of substrate into product by the consortium? How does this relate with productivity?

To address this point we computed the yield of the process, defined as

Y�cont ¼
DH�

DGin
; ð25Þ
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Fig 6. Performance of the heterologous protein production process in chemostat (Yh = 0.2). (A) Heatmap of the

productivity of the consortium (DH�) as a function of glucose inflow Gin and dilution rateD. The boundaries of the

domains of coexistence and of existence of the sole producer are reported from Fig 5B in dashed red and solid green

lines, respectively. (B) For Gin = 20 g L−1, productivity as a function ofD for the consortium (filled circles), and for a

producer growing in isolation (empty circles). The color code for coexistence (dashed red) or existence of the sole

producer (green) is the same as in Fig 5B. Vertical dashed lines indicate different productivity domains (see Discussion

in main text). (C) Same as B for the process yield ((DH�)/(DGin)).

https://doi.org/10.1371/journal.pcbi.1007795.g006

PLOS COMPUTATIONAL BIOLOGY Enhanced production of heterologous proteins by a synthetic microbial community

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007795 April 13, 2020 17 / 30

https://doi.org/10.1371/journal.pcbi.1007795.g006
https://doi.org/10.1371/journal.pcbi.1007795


that is, product outflow rate versus substrate inflow rate at steady-state (subscript cont stands

for continuous bioreactor, to distinguish from later analysis in fed-batch). Fig 6C shows the

yield as a function of D for the same value of Gin as in Fig 6B. Note that, sinceH� ¼ YhB�totP (see

Methods), it holds that Y�cont ¼ YhB
�
totP=Gin. Therefore, the yield of the consortium is propor-

tional to the producer biomass (compare Fig 6C with Fig 5F). The same holds for the producer

alone. The highest yield is found at the highest dilution rate before overflow (D’ 0.26 h−1),

thus in particular, in absence of cleaner. Intuitively, this is because at that point, the largest

producer biomass is obtained before resources are partly redirected into acetate overflow. For

the consortium, this overflow sustains the cleaner growth. At rates above D’ 0.26 h−1, for the

producer alone, biomass loss is initially less pronounced than in the consortium, since no

other species consumes glucose. However, at higher dilution rates, this results in strong acetate

accumulation, whence a sharp loss of biomass and yield. Compared with Fig 6B one notices

that, for the consortium, maximizing productivity is paid for in terms of a decreased yield.

This trade-off takes place because maximal productivity is achieved in presence of the cleaner,

that is, in presence of acetate overflow, which subtracts part of the available glucose from the

protein production process. Utilisation of glucose is made even less efficient by the glucose

uptake of the cleaner, which subtracts further resources from protein production. From a qual-

itative viewpoint, however, the same trade-off is encountered for a hypothetical cleaner strain

without residual glucose uptake (see S8 Fig).

Dynamical model and protein production in fed-batch

The productivity of the community is expressed as the rate at which biomass and thus the

protein of interest flow out from a bioreactor operating in continuous mode. From a methodo-

logical point of view, continuous culture in a chemostat has the advantage of allowing produc-

tivity and yield to be analyzed under well-defined steady-state conditions. However, in many

biotechnological applications today, fed-batch cultures are still the standard mode of operation

[55]. Moreover, the high biomass densities reached during fed-batch operation make acetate

accumulation an even more pressing problem. We have therefore extended the analysis of pos-

sible productivity gains of the synthetic consortium to fed-batch scenarios.

To simplify the analysis and focus on production performance, we analyze the model under

the following assumptions: (i) glucose concentration in the bioreactor, G, is kept constant by a

suitable time-varying input flow; (ii) there is no outflow; (iii) the total volume in the bioreactor

is constant. These assumptions are reasonable over a suitable finite time-horizon and for large

ratios between bioreactor volume and input volume. The design of the (time-varying) control

input parameters D and Gin to meet these assumptions is beyond the scope of this paper. For

the consortium, the model describing this scenario is provided by Eqs 18–21, with G fixed and

D = 0 h−1. A similar adaptation holds for the model with producer only.

How does production performance of a consortium and of a producer alone compare in

fed-batch? What are the trade-offs involved in this case? We illustrate simulation results for

G = 20 g L−1, also referring to more general theoretical results reported in theMethods section.

Fig 7A shows dynamical simulation results for the producer alone and for the consortium with

the cleaner. Of course in this case, biomasses do not reach a steady state. As apparent, they

rather settle into an exponential growth regime, which they maintain as long as G is kept con-

stant. We can thus refer to constant proportions and constant rates in exponential growth

(indicated with a superscript “+”) to investigate productivity and yield.

In exponential growth, for both the producer alone and the consortium, the growth rate μ+

is constant and equal to the constant rate of increase ofH, that is, (d logH/dt)+ = (H−1 dH/

dt)+. Moreover, the ratio between the product concentration and the total producer biomass

PLOS COMPUTATIONAL BIOLOGY Enhanced production of heterologous proteins by a synthetic microbial community

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007795 April 13, 2020 18 / 30

https://doi.org/10.1371/journal.pcbi.1007795


concentration at any point of the exponential growth regime is precisely equal to Yh (see Fig

7A and 7B and also Methods). However, the rate of increase ofH is around 0.48 h−1 for the

consortium and only 0.37 h−1 for the producer alone (Fig 7B). In view of the exponential

increase ofH, it is reasonable to take the rate of increase ofH as a productivity index. By this

criterion, for a fixed environmental glucose concentration, we conclude from the above that

the consortium ensures higher productivity ofH.

How efficient is the conversion of glucose into the protein product? Because of the assumed

constant concentration G, at any time, the glucose uptake rate by the entire consortium,

rgupPBP þ r
g
upCBC, is equal to the rate of glucose supply to the bioreactor. One can thus define the

instantaneous yield of the consortium production process in fed-batch as

Yfed� batch ¼
dH=dt

rgupPBP þ r
g
upCBC

: ð26Þ

The same index can be defined for the producer alone (where BC = 0). In exponential

growth, this yield reaches a constant value Yþfed� batch, which is equal to 0.087 for the producer

alone and 0.08 for the consortium (Fig 7C). Thus, the yield of the producer alone is found to

be greater than that of the consortium.

In summary, similar to the case of a chemostat, we observe a trade-off between productivity

and yield of a protein production process in fed-batch. Again, due to the resources consumed

in the growth of a subsidiary strain, greater productivity of the consortium is paid for in terms

of smaller yield compared to a homogeneous population of producers only.

Discussion

Synthetic microbial consortia present a promising avenue for a variety of bioengineering appli-

cations [1, 3, 5–7]. We are interested in the conditions that allow a synthetic consortium to

express a heterologous protein with higher productivity than a single species, as well as the

underlying trade-offs shaping these conditions.

As a concrete example, we have chosen a prototypical consortium of a protein producer

strain and an acetate cleaner strain of E. coli (Fig 1), a consortium that was experimentally

Fig 7. Protein production dynamics in fed-batch. (A) Time evolution in log scale of the concentrations of the total producer biomass (Btot, BtotP, thick

green) and of the product (H, thin purple) for the consortium (dashed lines) and a producer population alone (solid lines) at a fixed environmental

concentration of glucose G = 20 g L−1 (horizontal blue line) (B) Growth rate and rate of increase ofH in exponential growth, for the consortium

(hatched red) and the producer alone (green). (C) Idem for the process yield in exponential growth.

https://doi.org/10.1371/journal.pcbi.1007795.g007
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constructed recently [20]. In comparison with the latter consortium, we have envisioned a

slightly different design of our cleaner strain. First, while removing the preferential glucose

uptake system PTS, we have assumed that secondary glucose assimilation pathways remain

functional, which reduces but not completely eliminates growth on glucose of the acetate

cleaner strain [52], contrary to the implemented consortium. Second, in order to increase the

maximal growth rate on acetate, we have included in the design of the cleaner strain a plasmid

for the overexpression of Acs, an enzyme for the irreversible conversion of acetate to acetyl-

CoA, as suggested by previous work [53]. The addition of the plasmid facilitates the calibration

of the acetate cleaner strain, as it allows reuse of the parameter values for acetate metabolism

estimated for the wild-type strain (see Methods). Despite these differences, our model repro-

duces the most important conclusion of Bernstein et al. [20], namely that for dilution rates

supporting coexistence, the consortium reaches a higher biomass concentration than the wild-

type strain alone (S7 Fig).

A key challenge for constructing synthetic consortia is to guide their design by mathemati-

cal modeling and analysis, before the actual implementation in vivo. Along these lines, we

developed a quantitatively predictive model of the consortium, accounting for a range of

growth phenotypes (Fig 2). Like in other work on the mathematical modeling of community

dynamics [28–33], we have developed coarse-grained models of the physiology of the individ-

ual species in the consortium, which requires making stark simplying assumptions (see [24,

27] for other perspectives, based on genome-wide flux balance models). Despite the simplifica-

tions, however, a critical requirement to assess the potential for productivity gains is the ability

of the model to qualitatively and quantitatively reproduce nutrient production and consump-

tion patterns, as well as to predict the growth rates of individual species. In the case of the E.
coli consortium studied here, this requires to include a variety of regulatory phenomena

(threshold for acetate overflow, acetate toxicity, carbon catabolite repression, growth-indepen-

dent maintenance, . . .), like in [45, 46], that have not or only partially been accounted for in

previous models of this and structurally similar consortia. The resulting model, with only a sin-

gle biomass variable for each species, is able to quantitatively reproduce complex growth phe-

notypes like diauxic growth (Fig 3A) the effect of energy dissipation on acetate overflow (Fig

3B), and the effect of glucose uptake mutants on growth and acetate overflow (Fig 3C and 3D).

The analysis of the model of the synthetic consortium shows that, over the entire range of dilu-

tion rates, the system has a unique stable steady state (Fig 5). These numerical results were con-

firmed by explicit computation and analysis of the roots of the multinomial equations (that is,

polynomial equations in several variables) characterizing the steady states of the consortium

(S4 Fig). Another model of the same consortium, very similar in the level of detail of the

description of the community dynamics [31], predicted the possibility of multiple stable steady

states, one corresponding to coexistence of the producer and the cleaner strains, and the other

to existence of the producer strain alone. The property of multistability was found to rely on

the non-monotonicity of the function describing the dependence of the growth rate on the

acetate concentration in the medium, when acetate is used as the sole carbon source [31]. The

maximal growth rate is thus reached for intermediate acetate concentrations instead of being

monotonically approached for high acetate concentrations, like in Eq 11. The Monod-like

function for acetate uptake used in this study was motivated by experimental data describing a

monotonic increase of the growth rate with increasing acetate concentration, over the relevant

range considered here [16, 56]. The non-monotonicity of the function used by Harvey et al.,
however, is also supported by experimental data (Tomas Gedeon, personal communication).

The discrepancy between the studies might be due to the use of different E. coli strains, differ-

ent media compositions, or other details of the experimental procedures.
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The model predicts that coexistence of the protein producer and acetate cleaner strains is

possible over a range of dilution rates (Fig 5). While coexistence in natural and synthetic eco-

systems has been studied in previous work [30, 31, 33], and is an obvious prerequisite for the

possibility of increasing productivity by a consortium, the observation that this dependency

works in both directions, in that the production of a heterologous protein affects coexistence

as well, is a novel finding of this study. In particular, the analysis of the model shows that the

coexistence region is shifted towards lower dilution rates (Fig 5), as a consequence of the meta-

bolic load associated with heterologous protein production. The effect of metabolic load on

microbial growth has been well-studied and is an active subject of research in synthetic biology

[37, 57], where feedback strategies for avoiding the deleterious consequences of metabolic

overloading have been developed [58]. Our results show that questions on the relation between

growth and metabolic load appear on the community level as well, and are important for

assessing the productivity of synthetic consortia. Whereas the biomass concentration attained,

in the absence of the production of a heterologous protein, has sometimes been used as a

proxy for the productivity of a consortium [59], our analysis shows that subtle effects involving

feedback from metabolic load to growth may be at work. For example, in our system maximal

productivity is obtained for a dilution rate where the total biomass concentration is

suboptimal.

One of the main conclusions from this study is that coexistence of the producer and the

cleaner strains may lead to a productivity gain (Fig 6). Coexistence alone is not enough to

ensure this gain though, as the latter ultimately depends on a trade-off. For lower dilution rates

in the coexistence region, the toxic effect of acetate is very limited and thus investing part of

the substrate in the growth of non-productive acetate scavengers is not profitable, since it has

the sole effect of reducing the producer population. Indeed, despite growth inhibition by ace-

tate, the producer strain in monoculture manages to reach a concentration that is sufficient for

supporting a higher protein production rate than in coculture. For higher dilution rates in the

coexistence region, however, the toxic effect of acetate becomes so strong that the producer

concentration, and thus productivity, plummet when the producer is grown without the

cleaner. The investment of resources necessary to sustain the cleaner population pays off in

this case: removing acetate from the medium allows heterologous protein production at a rate

that more than compensates the utilization of glucose by the cleaner. Note that this trade-off

involves a subtle balance between growth of the producer and cleaner, acetate overflow, acetate

inhibition, and protein production, that is, nonlinear dynamical processes with feedback oper-

ating at the level of the individual strains and their interactions. Therefore, predicting the pro-

ductivity associated with specific bioreactor control parameters would have been extremely

difficult, if not impossible, to achieve without the use of quantitative dynamical models of the

type developed here.

Higher productivity in the consortia comes at the price of a lower process yield, that is, the

outflow rate of heterologous protein divided by the inflow rate of substrate decreases as the

productivity increases (Fig 6). This is basically another manifestation of the trade-off discussed

above. Higher productivity requires a higher dilution rate, and thus more acetate overflow. In

particular, maximal productivity is attained in presence of the cleaner thanks to its consump-

tion of acetate, which allows the producer to grow at rates where acetate concentration in the

medium would otherwise have reached toxic levels. However, the acetate overflow that sus-

tains the cleaner growth at such high rates subtracts significant amounts of glucose from con-

version into the target protein, which results in yield loss. The rate-yield trade-off is well-

known in metabolic engineering [39] and has been extensively studied in microbial physiology

[40], mostly in the context of single species or strains. We here show that this trade-off also

appears on the community level, when weighing the costs of sustaining a cleaner population
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against the benefits of increased protein production. The rate-yield trade-off, as well as the

higher productivity of the consortium of protein producers and acetate cleaners, is not only

predicted in continuous culture in a chemostat, but also in fed-batch conditions (Fig 7).

While our modeling study has focused on a specific synthetic consortium of protein pro-

ducers and acetate cleaners (Fig 1), the conclusions of our study may be more general and

carry over to structurally similar synthetic consortia reported in the literature [60]. An example

is the consortium consisting of Ralstonia eutropha and a ΔmanAmutant of Streptomyces coeli-
cor for the production of biodiesel [61]. S. coelicor ΔmanA produces fatty acid methyl esters,

while secreting acetate and citrate into the medium, resulting in growth inhibition and a lower

pH. R. eutropha utilizes the fermentation acids, thus promoting growth of the producer strain

and increasing pH. Another example is the consortium consisting of a S. cerevisiae strain car-

rying an enzyme for the production of methyl halides and the cellulolytic bacterium Actinota-
lea fermentans [62]. The latter ferments cellulose to acetate and ethanol, which the former

utilizes for growth and methyl halide production. The consumption of the fermentation by-

products by the yeast strain lifts their inhibitory effect on A. fermentans growth. Note that in

this consortium, the cleaner produces the metabolite of interest, whereas the producer pro-

vides the growth substrates. We expect that our conclusions, for example, that metabolic load

influences producer and cleaner coexistence, or that higher productivity comes at the price of

lower yield, will also apply, with appropriate qualifications, in these and other cases.

In the current analysis of the consortium we have assumed that the only control inputs we

dispose of are the dilution rate and the glucose concentration in the inflow, and we have deter-

mined productivity and yield only at steady state. The question under which conditions the

consortium can achieve higher productivity can also be addressed with a larger range of con-

trol inputs, such as the possibility to change YH and kAcs, to give but two examples. Moreover,

appropriate control laws may be needed to stabilize the consortium against fluctuations of the

bioreactor operating conditions, modelling errors, etc., or, in case of multistability, to drive the

system to the appropriate steady state. When considering the consortium from a dynamical

perspective, one can formulate optimal control problems for the maximization of heterologous

protein production in finite time and/or dynamical conditions, instead of maximizing produc-

tivity at steady state [63]. The actual implementation of the optimal dynamical control schemes

will require feedback control of the community composition and the functioning of the indi-

vidual species, in the line of recent proposals in the literature [64, 65]. This suggests exciting

problems at the interface of control theory, synthetic biology, and biotechnology.

Methods

Parameter estimation and identifiability analysis

The model of the producer strain is given by Eqs 1–12 and has 14 parameters, most of which

were estimated from a recently published data set [13]. The data concern steady-state exponen-

tial growth in batch of the E. coli wild-type strain K-12 MG1655 in minimal medium with (i)

glucose as the sole carbon source, (ii) acetate as the sole carbon source, and (iii) glucose with

different concentrations of acetate added. The growth conditions of the experimental data set

(wild-type strain in batch) imply that Yh and Dmust be set equal to 0.

The data set was completed with measurements of the degradation constant kdeg [66, 67],

the threshold for acetate overflow l [68] and the half-maximal saturation constants Kg [69] and

Ka [70]. The value of kdeg was computed from experimental quantification of the maintenance

coefficient Cm [71] in conditions similar to ours, using the relation kdeg = Cm Yg (see S1 Text).

The value of Ka was chosen so as to match the measured constant for the Pta-AckA pathway,

the main uptake pathway for the range of acetate concentrations considered here [12].
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The estimation of the other parameters from the experimental data set was carried out in

two steps. First, the parameters kg, kover, ka, Yg, and Ya were fixed by analytically solving the

reduced systems of equations at steady state and using the measured rates (i) in the absence

of acetate uptake, and (ii) in the absence of glucose and therefore acetate overflow (Fig 2B).

Second, the remaining parameters Θa, n, Θg, andm were estimated from the measured rates

in case (iii) above, by means of an optimization procedure that minimizes the sum of squared

errors between the predictions and measurements of the growth rate (μ+), the glucose uptake

rate (rgþup ), and the net acetate uptake rate (raþup � r
aþ
over) during exponential growth in batch (Fig

2C). The optimization procedure made use of the fminsearchbnd function of Matlab

available at mathworks.com/matlabcentral/fileexchange. We evaluated the results by per-

forming an a-posteriori identifiability analysis using a procedure analogous to bootstrapping

as described before [72], resulting in confidence intervals for the parameter estimates

(S1 Fig).

The parameter values of the calibrated model are summarized in Table 1. There is a good

correspondence of the estimated values with other reported values in the literature. For exam-

ple, the glucose and acetate yield coefficients are in agreement with the measured values of

Yg’ 0.44 g gDW−1 [73–75] and Ya’ 0.3 g gDW−1 [13, 46].

The experiments used for model calibration were carried out at pH 7 [13]. High-density fer-

mentation in industrial bioreactors may operate at a lower pH though [76], exacerbating the

growth-inhibitory effect of acetate. We therefore used a second data set on the effect of acetate

on the growth rate of E. coli, carried out at pH 6.4 [16], to adjust the parameter Θa characteriz-

ing acetate inhibition. This decreased the value of Θa from 3.5 g L−1 to 0.52 g L−1 (S2 Fig).

Unless stated otherwise, the value of the product yield Yh has been set to 0.2 in the simula-

tions, meaning that 20% of the protein synthesis capacity has been deviated to the production

of heterologous protein, a level that can routinely be reached [77].

The model of the cleaner strain is a modified version of that of the producer strain. The

cleaner does not produce the heterologous protein and two genetic modifications change the

rate equations (Eq 14 and Eq 16). This leads to three additional parameters (Table 1). We set

kΔPTS = kg/4 [52] and KAcs = 0.012 g L−1[13]. Moreover, we chose mild overexpression for the

Acs enzyme, kAcs = 1.5ka, reflecting the observation that overexpression of Acs in minimal

medium with acetate as the sole carbon source leads to faster growth [53] (in the K-12

MG1655 strain, contrary to the W strain [78]).

The consortium model, the parameter identification procedure as well as the identifiability

analysis are implemented in the accompanying code (S1 Software).

Derivation of yield equations

The Results section features a number of expressions showing the relation between the product

yield Yh and other quantities at steady state in continuous culture (Eq 9) or for a constant

growth rate in fed-batch culture. Below we derive these expressions from the model equations.

First, at steady state, when equating Eq 3 to 0 and dividing by B, we find

0 ¼ ð1 � YhÞ ðYg rg�up þ Ya ðra�up � r
a�
overÞÞ � kdeg � D;

and similarly, when equating Eq 4 to 0 and dividing byH,

0 ¼ Yh Yg rg�up þ Ya ðra�up � r
a�
overÞ

� � B�

H�
� kdeg � D:
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Now, when equating the right-hand sides of these two expressions, and eliminating shared

terms on both sides, we are left with

ð1 � YhÞ ¼ Yh
B�

H�
;

so that with Btot = B +H, and solving for Yh, we obtain

Yh ¼
H�

B�tot
and 1 � Yh ¼

B�

B�tot
:

The latter expressions leads to Eq 9. Note that, due to the equivalence of Eqs 3 and 4 and of

Eqs 19 and 20, the same relationships hold for the biomass of the producer in the consortium.

Second, we consider the fed-batch case where the bioreactor glucose concentration G is set

to a constant (assuming suitable glucose inflow) and the rate of the outflow is set to D = 0 h−1.

The relationships we derive again apply to the producer alone or in consortium with the

cleaner. The relevant condition to study in this case is exponential growth (see, e.g., Fig 7A),

that is, zero second derivatives of log BP(t) and logH(t). From Eq 19, the second derivative of

log BP(t) is given by

d
dt

1

BP

dBP
dt

� �

¼
d
dt
ð1 � YhÞ Yg r

g
upP þ Ya ðr

a
upP � r

a
overPÞ

� �
� kdeg

� �
¼

¼ ð1 � YhÞ
d
dt
Yg r

g
upP þ Ya ðr

a
upP � r

a
overPÞ

� �
:

Setting this to zero implies that the sum of rates Yg r
g
upP þ Ya ðraupP � r

a
overPÞ is a constant

which we denote by r+. From Eq 20, the second derivative of logH(t) is then given by

d
dt

1

H
dH
dt

� �

¼
d
dt
Yh Yg r

g
upP þ Ya ðr

a
upP � r

a
overPÞ

� � BP
H
� kdeg

� �

¼

¼ Yh rþ
d
dt
BP
H

� �

:

Setting this to zero implies that the ratio BP/H is a constant which we denote by (BP/H)+

(different from above, note that this does not imply that either BP orH is constant). Then log

(BP/H) is also a constant. By the same relationships employed above, one has

0 ¼
d
dt

log
BP
H
¼
d
dt

logBP �
d
dt

logH ¼ ½ð1 � YhÞ r
þ � kdeg ��

½Yh rþ ðBP=HÞ
þ
� kdeg� ¼ rþ ð1 � Yh � Yh ðBP=HÞ

þ
Þ:

Restricting attention to the nontrivial case where r+ 6¼ 0 (that is G> 0), the above implies

Yh = (1 + (BP/H)+)−1. Since (1 + BP/H)−1 =H/(H + BP) and 1−(1 + BP/H)−1 = BP/(H + BP) for

anyH and BP, when BP/H is constant,H/BtotP and B/BtotP are also constant, given by (H/BtotP)+

= (1 + (BP/H)+)−1 and (B/BtotP)+ = 1−(1 + (BP/H)+)−1. In summary, for this case,

Yh ¼ ðH=BtotPÞ
þ and 1 � Yh ¼ ðB=BtotPÞ

þ
:
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Computation of steady states

Eqs 17–21, with rate functions defined by Eqs 10, 11, 14–16, make up an Ordinary Differential

Equation (ODE) system with state vector x = (G, A, BP,H, BC) taking values in X � R5

�0
. Let us

express the system in compact notation as

_x ¼ f ðxjyÞ: ð27Þ

Here θ is the vector of parameters that are varied in the study of the system, that is, θ = (D,

Gin, Yh), while the other system parameters are fixed as in Table 1. In order to compute the sta-

ble steady states of this system for different values of θ, we employ the following two methods.

Numerical approach. In this approach, stable steady states of the system are sought by

numerical integration of Eq 27. Recall that, for an assigned initial condition x(0) = x0, a

(strictly) stable equilibrium of the dynamical system is given by the asymptotic value of the

corresponding solution xx0ðtÞ, that is, by lim t!1xx0ðtÞ, as long as this exists, it is unique and

finite. In practice we obtain this by integrating Eq 27 from x0 = 0 by the Matlab ODE solver

ode15s over a sufficiently long time horizon (T = 107 h), see S1 Software for more details. This

procedure is computationally efficient and allows for fast exploration of the system over large

sets of values of θ. However, for any given θ, if the system has several stable steady states, then

the steady state eventually reached will depend on x0. This has motivated the parallel use of a

second, algebraic approach.

Algebraic approach. For any given θ, the possible stable steady states of Eq 27 may as well

be sought as the real, nonnegative solutions in x of the equation

0 ¼ f ðxjyÞ; ð28Þ

such that the Jacobian matrix F(x|θ) = @f(x|θ)/@x is strictly stable (that is, all its eigenvalues

have negative real part). In the interest of clarity and simplicity, in what follows we drop θ
from the notation, and instead write rates as functions of x. It can be verified by inspection of

Eqs 10, 11, 14–16 that f(x) is a piecewise rational function. Indeed, the piecewise linear struc-

ture of Eqs 12 and 15 induces a finite partitioning of the state space X into the four subsets

X1 ¼ fx : rgupPðxÞ � l ^ r
g
upCðxÞ � lg; X2 ¼ fx : rgupPðxÞ � l ^ r

g
upCðxÞ > lg;

X3 ¼ fx : rgupPðxÞ > l ^ r
g
upCðxÞ � lg; X4 ¼ fx : rgupPðxÞ > l ^ r

g
upCðxÞ > lg:

Over each Xi, f(x) =Ni(x)/Di(x), whereNi(x) andDi(x) are two multinomial functions deter-

mined by the relevant form of Eqs 12 and 15 (for instance, the rate conditions that define X2

imply that Eq 12 is equal to 0 and Eq 15 is equal to rgupC � l in that domain). For every i, the

solutions of Eq 28 belonging to Xi correspond to the roots in Xi of Ni(x). Out of these solutions,

for i = 1, . . ., 4, the steady states sought are the real nonnegative solutions such that F(x) is

strictly stable.

Multinomial root finding is a well explored problem and specialized tools for enumerating

all solutions exist [79]. In addition, both F(x) and the Ni(x) can be computed explicitly or sym-

bolically at little cost. This suggests the following algorithm:

1. Compute Ni(x), with i = 1, . . ., 4, and F(x);
For i = 1, . . ., 4:

2. Find the real nonnegative solutions of Ni(x) = 0;

3. Record solution x as a system stable steady state if and only if x 2 Xi and F(x) is strictly

stable.
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In our implementation, which is optimized by suitable simplifications for the exploration of

steady states with BP = 0 or BC = 0, symbolic calculations (step 1) are performed in Wolfram

Mathematica, while multinomial root finding (step 2) is performed by the Matlab (numerical)

routine psolve available at NAClab [80, 81]. In practice, step 3 simply amounts to checking that

the evaluation of rgupP and rgupC at the candidate solution x agrees with the rate conditions defin-

ing Xi, thus avoiding the explicit calculation of the latter. In view of the complexity of the mul-

tinomials Ni(x), which comprise terms of order up to 33, this method is computationally

intensive, yet it returns all possible steady states within the precision of the routine psolve.
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