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Magnetic resonance imaging for individual
prediction of treatment response in major
depressive disorder: a systematic review
and meta-analysis
Sem E. Cohen1, Jasper B. Zantvoord 1,2, Babet N. Wezenberg1, Claudi L. H. Bockting1,3 and Guido A. van Wingen1

Abstract
No tools are currently available to predict whether a patient suffering from major depressive disorder (MDD) will
respond to a certain treatment. Machine learning analysis of magnetic resonance imaging (MRI) data has shown
potential in predicting response for individual patients, which may enable personalized treatment decisions and
increase treatment efficacy. Here, we evaluated the accuracy of MRI-guided response prediction in MDD. We
conducted a systematic review and meta-analysis of all studies using MRI to predict single-subject response to
antidepressant treatment in patients with MDD. Classification performance was calculated using a bivariate model and
expressed as area under the curve, sensitivity, and specificity. In addition, we analyzed differences in classification
performance between different interventions and MRI modalities. Meta-analysis of 22 samples including 957 patients
showed an overall area under the bivariate summary receiver operating curve of 0.84 (95% CI 0.81–0.87), sensitivity of
77% (95% CI 71–82), and specificity of 79% (95% CI 73–84). Although classification performance was higher for
electroconvulsive therapy outcome prediction (n= 285, 80% sensitivity, 83% specificity) than medication outcome
prediction (n= 283, 75% sensitivity, 72% specificity), there was no significant difference in classification performance
between treatments or MRI modalities. Prediction of treatment response using machine learning analysis of MRI data is
promising but should not yet be implemented into clinical practice. Future studies with more generalizable samples
and external validation are needed to establish the potential of MRI to realize individualized patient care in MDD.

Introduction
Major depressive disorder (MDD) is a debilitating dis-

ease, accounting for 40% of the global disability-adjusted
life years caused by psychiatric disorders1. Depression is
associated with impaired social functioning and unem-
ployment and is associated with a wide range of chronic
physical illnesses, such as diabetes and cardiovascular
disease2,3. MDD is estimated to have a life-time

prevalence of 20.6% in the United States4. Despite gen-
eral consensus that effective treatment of depression is
paramount for both a patient’s health and for reducing
global burden of disease, global disease burden by MDD
has not decreased in the past decades5. This is partly
because treatment selection is based on trial and error,
with no possibility to predict an individual’s response to a
certain treatment6. Non-response to initial pharmacolo-
gical and psychotherapeutic interventions is highly pre-
valent, with treatment-resistant depression affecting
20–30% of depressed patients in the current clinical
practice7–9. Treatment of choice for patients who have
not responded to pharmacological and psychotherapeutic
treatments is electroconvulsive therapy (ECT), which
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produces remission in about 50% of therapy-resistant
patients10,11. Furthermore, non-response can only be
determined at least 4 weeks after initiation of pharma-
cotherapy, ECT requires 4–6 weeks on average, and
effects of psychotherapy can even take 16 weeks to
manifest7,12. Consequently, patients are regularly exposed
to multiple failed treatments and might spend months to
years waiting for successful treatment. This stresses the
need for markers, which, before treatment commence-
ment, can inform clinicians on the chance of responding
to a particular treatment.
A large number of studies have correlated baseline

clinical characteristics and biomarkers with MDD status
and treatment outcome and have identified many factors
that are associated with treatment success13. However,
such descriptive analyses only provide inference at the
group level and not at the level of the individual patient,
which is required for clinical decision-making14. More
recent studies have started to use machine learning ana-
lyses that aim to develop predictive models and that are
tested using independent data15. More than with corre-
lational analysis, single-subject response prediction stu-
dies using machine learning might be able to redeem the
promise of individualized psychiatry16. Without being
explicitly pre-programmed, these algorithms (either linear
or non-linear) are able to learn from aggregated data in a
patient sample using multivariate pattern recognition, in
order to provide the best prediction of an output vari-
able17,18. In predictive modeling, machine learning could
enable clinicians to judge the viability of treatments for
individual patients. As such, it might increase treatment
efficacy, decrease illness duration, and reduce MDD’s
impact on the global burden of disease.
Multiple modalities have been considered for single-

subject response prediction. A recent meta-analysis cov-
ering different markers found neuroimaging to overall be
most successful in predicting treatment response in
depressed patients (i.e., more than phenomenological or
genetic studies)19. However, the review pooled different
treatments and neuroimaging modalities such as electro-
encephalography (EEG) and magnetic resonance imaging
(MRI). Since it did not differentiate between prediction
success in different neuroimaging techniques, the study
offers little insight into treatment-specific biomarkers or
specific (MRI) modalities. A recent meta-analysis on EEG
for individual prediction of antidepressant treatment
response found reasonable accuracy (72% sensitivity and
68% specificity) but concludes that EEG should not yet be
used clinically as a prediction tool, since generalizability
and validity of the reported studies are limited20. How-
ever, a meta-analysis of prediction accuracy in anti-
depressive treatment that specifically focuses on MRI
does not yet exist, which may reveal a better predictive
value than EEG.

The primary aim of the present study was to calculate
the aggregate classification performance of predictive
MRI biomarkers in patients with MDD using a bivariate
random-effect model meta-analysis. We further investi-
gated whether classification performance was influenced
by intervention type (i.e., pharmacotherapy, psychother-
apy, or ECT) or imaging modality (i.e., structural MRI
(sMRI), resting-state functional MRI (fMRI), task-based
fMRI, diffusion tensor imaging (DTI)).

Methods and materials
Inclusion and exclusion criteria
Two authors (S.E.C. and B.N.W.) included studies using

any form of MRI (structural, resting-state, task-based,
spectroscopy, DTI), which were conducted at baseline,
i.e., within 4 weeks before the start of antidepressant
treatment. Furthermore, inclusion criteria were an over-
arching definition of antidepressant treatment according
to the current NICE guidelines and a non-selective patient
population with MDD suffering from a current depressive
episode. Studies that used feature selection based on in-
sample data without validating prediction outcomes either
internally (e.g., through cross-validation) or externally
(through independent set validation) were excluded.
Inclusion or exclusion conflicts were resolved by con-
sensus or if necessary by authors J.B.Z. and G.A.v.W.

Search strategy
We conducted a search in EMBASE, Medline, Psy-

cInfo, and Web of Science databases. Each database was
searched from inception to January 2020. Furthermore,
we searched the WHO International Clinical Trial Reg-
istry Platforms search portal for registered and unpub-
lished studies, and we looked for “gray” literature such as
abstracts and conference articles through conference
websites and from other relevant sources. Additionally,
we checked included articles for references and con-
ducted citation screening. For a full account of our
search strategy and inclusion criteria, see the Supple-
mentary Material.

Data extraction
Two authors (S.E.C. and B.N.W.) independently

extracted data from included studies, including the
number of participants, patient population and depression
severity subtype, treatment history, antidepressant inter-
vention and outcome measures, response/remission rates,
neuroimaging technique, brain region and feature selec-
tion, method of analysis, and validation strategy (see Table
1). From the included articles, we extracted the confusion
table (a 2 × 2 table for correctly and incorrectly classified
patients) for sensitivity or specificity. If these were not
supplied, we computed the matrix from additional infor-
mation in the article. If multiple studies analyzed the same
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Table 1 Methodological summary of the studies.

Study+ year n Outcome Intervention Duration Modality Analysis Validation

Costafreda et al. 2009—1 16 Remission CBT 16 wk tbfMRI SVM LOO CV

Siegle et al. 2012 12 Response CBT 12 wk tbfMRI RF Ind. replication

Queirazza et al. 2019 37 Response CBT 6–10 wk tbfMRI SVM, LR LOO nested CV

Van Waarde et al. 2015 45 Remission ECT 10 wk rsfMRI lSVM LOO CV

Moreno-Ortega

et al. 2019

19 Remission ECT ns rsfMRI LR LOO CV

Sun et al. 2019 122 Remission+

remission

ECT 3–4 wk rsfMRI LR LOO CV

Redlich et al. 2016 23 Response ECT 3–8 wk sMRI lSVM/GPC LOO CV

Wade et al. 2016 34 Response ECT 2–7 wk sMRI RBFSVM LOO CV

Cao et al. 2018 24 Response+
remission

ECT 3–4 wk sMRI lSVM LOO CV

Jiang et al. 2018 38 Remission ECT 3–4 wk sMRI LR 10-fold LOO CV+

Independent cohort rep

Wade et al. 2017

Leaver et al. 2017

44a Remission

Response

ECT

ECT

ns

ns

sMRI

rsfMRI, aslMRI

RF

RBFSVM

Nested CV

5-fold LOO CV

Drysdale et al. 2017 124

30

Response rTMS 4–6 wk rsfMRI lSVM LOO CV

Ind. replication

Cash et al. 2019 33 Remission rTMS 5–8 wk rsfMRI lSVM LOO+ k fold CV

Costafreda et al. 2009—2

Nouretdinov et al. 2011

18a Remission

Remission

SSRI

SSRI

8 wk

8 wk

sMRI

sMRI

lSVM

TCP

LOO CV

LOO CV

Gong et al. 2011 46 Response SSRI/TCA/SNRI 12 wk sMRI lSVM LOO CV

Marquand et al. 2008 20 Response SSRI 8 wk tbfMRI lSVM LOO CV

Godlewska et al. 2018 32 Response SSRI 6 wk tbfMRI LR LOO CV

Meyer et al. 2019 22 Remission/non-

response

SSRI 8 wk tbfMRI LR LOO CV

Karim et al. 2018 49 Remission SNRI 12 wk tbfMRI LR 10-fold LOO CV

Patel et al. 2015 19 Remission SSRI/SNRI ns rsfMRI, DTI, sMRI ADTree/lSVM/

RBFSVM/L1LR

Nested LOO CV

iSPOT trials 77a SSRI/SNRI 8 wk

Korgaonkar et al. 2014 Remission DTI LR K-fold CV

Williams et al. 2015 Response tbfMRI LDA LOO CV

Goldstein-Piekarski

et al. 2016

Remission tbfMRI LR 10-fold LOO CV

Grieve et al. 2016 Non-remission DTI LR Independent rep

Goldstein-Piekarski

et al. 2018

Remission rsfMRI LR LOO CV

Reported sample sizes were not necessarily equal in articles with overlapping sample.
SSRI selective serotonin reuptake inhibitor, TCA tricyclic antidepressant, SNRI serotonin-norepinephrine reuptake inhibitor, ECT electroconvulsive therapy, CBT
cognitive behavioral therapy, rTMS repetitive transcranial magnetic stimulation, iTBS intermittent theta burst stimulation, AP antipsychotics, ns not specified, tb task
based, rs resting state, asl arterial spin labeling, fMRI functional magnetic resonance imaging, sMRI structural magnetic resonance imaging, WB whole brain, ROI region
of interest, DTI diffusion tensor imaging, lSVM linear support vector machine, RBF radial basic function, TCP transductive conformal predictor, LR logistic regression,
LinR linear regression, LDA linear discriminant analysis, RF random forest, LOO CV leave-one-out cross-validation, wm white matter, sLR stepwise linear regression, beta-
w beta-weights, LARS least-angle regression, PMVD proportional marginal decomposition.
an is a weighted average across studies.
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patient sample, we used mean outcome measures based
on these studies. If necessary, we contacted authors
requesting additional information.

Meta-analytic method
For quantitative analysis, we used confusion matrices to

pool studies using Reitsma’s bivariate random effect model,
as suggested in the Cochrane handbook for diagnostic
tests of accuracy studies21,22. We used this method for
computing our main outcomes, which were the overall
area under the summary receiver operating characteristic
(SROC) curve, sensitivity, and specificity, as well as sensi-
tivity and specificity of intervention subsets. Additionally,
we performed a separate bivariate regression for modalities
(fMRI and sMRI) by including from each study both sMRI
and fMRI, if provided in the original article or after our
request for further information. As a post hoc analysis, we
excluded DTI from this regression, and in the fMRI group,
we subdivided resting-state and task-based modalities.

Heterogeneity and publication bias
To visualize between-study differences, we conducted a

univariate random-effect forest plot of the diagnostic odds
ratios (ORs), subdivided per treatment group. We identi-
fied clinical and statistical heterogeneity by visually asses-
sing confidence interval (CI) overlap and by identifying
outlying studies. We avoided using an objective measure of
heterogeneity, since these have shown to be inappropriately
conservative for accuracy studies23. Rather, we used a
random-effect model that assumes that our data was het-
erogeneous and set out to investigate potential sources of
heterogeneity22. We did not perform any sensitivity ana-
lyses, as no studies were of such low quality, or were such
outliers that sensitivity analysis was appropriate. To assess
sample size effects and possible publication bias, we used
Deeks’ test, as recommended for diagnostic accuracy stu-
dies24,25. For assessing quality of the primary studies, we

used the QUADAS-2 tool26. We pre-specified methods in
the PROSPERO database for systematic reviews (registra-
tion number CRD42019137497). All analyses were con-
ducted using the mada and metafor package in R27–29.

Results
Search results
Our search yielded 5824 hits, 168 of which were inclu-

ded for full-text review (see Fig. 1). After contacting the
authors for additional information, we excluded 21 studies
for not reporting data necessary for reconstructing a
confusion matrix, all of which were “gray literature”, i.e.,
abstracts or conference summary articles. Furthermore,
we excluded 11 articles for not reporting any form of
validation of their prediction model. After exclusion of
non-eligible studies and, through citation searching,
addition of 2 eligible studies that did not come up in
search hits, 27 remained30–56.

Description of the study characteristics
We included 27 studies with an accumulated number of

957 unique patients and a mean sample size of 44 per
study, with a median of 33 (see Table 1 for a full meth-
odological study summary. Please refer to Supplementary
Table 1 for an overview of patient characteristics and
study demographics). Three patient samples were used in
more than one article30,32,40,41,51–55.
Of the included studies, 50% used some form of phar-

macotherapeutic intervention (total n= 283), all of which
administered a clinically viable dosage, with response time
varying from 2 weeks (early response) to 12 weeks. Only
one study did not use selective serotonin reuptake inhi-
bitors (SSRIs), instead using an serotonin-norepinephrine
reuptake inhibitor (SNRI)49. Three studies used either an
SSRI or SNRI, and one of these three chose a tricyclic
antidepressant as a third treatment option45,50,57. ECT
was administered in 35% of studies (total n= 285), 8%

Records a�er search & duplicate removal
(n = 5824)

Full-text ar�cles assessed for eligibility
(n = 168)

Records excluded a�er screening
(n = 5656)

Records excluded a�er full-text 
review (n = 143)

- 62 no individual predic�on
- 26 no dichotomous predic�on
- 21 missing data for matrix
- 18 no interven�on
- 11 no valida�on 
- 5 wrong diagnos�c modality

Studies included (n = 27)

Included from cita�on search (n=2)

Fig. 1 Flow diagram of the study inclusion process. n number.
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used transcranial magnetic stimulation, and 8% used
cognitive therapy. Most studies used either sMRI (31%) or
task-based fMRI (31%), most often using emotional sti-
muli, 19% used resting-state fMRI, and 8% used DTI. Two
studies combined multiple modalities40,50.
As machine learning paradigm, 31% studies used sup-

port vector machine (SVM) for data-analysis, while 28%
used logistic regression. After comparing classification
accuracy with multiple algorithms (among others, SVM
and random forest), Patel and colleagues used an alter-
nating decision tree method50. For validation, 85% used
leave-one-out cross-validation. Two studies used an
independent cohort to validate their results, while one
study first cross-validated classification results, after which
authors validated their prediction model in two small,
independent cohorts, achieving similar results39,43,53. For
additional information on approaches to imaging analysis,
please refer to Supplementary Table 2.

Meta-analysis
General outcome
After pooling results from studies with overlapping

patient samples, we quantitatively analyzed 22 samples,

including one independent cohort replication that we
have interpreted as a separate study43. For all imaging
modalities and interventions taken together, the meta-
analytic estimate for the SROC AUC was 0.84 (95% CI
0.81–0.87), with 77% sensitivity (95% CI 71–82) and 79%
specificity (95% CI 73–84), amounting to a moderately
high classification performance (see Fig. 2).

Intervention differences
Sensitivity and specificity of ECT interventions were

80% (95% CI 73–85) and 83% (95% CI 72–90),
respectively, compared to 75% (95% CI 68–82) and 72%
(95% CI 64–80) for antidepressant medication. Exclu-
sion of the studies that did not use SSRI as pharma-
cological agent had little influence on the results49.
Although prediction outcomes in ECT studies do show
a trend toward higher precision, CIs overlapped (see
Table 2). With only few primary studies, sensitivity and
specificity for psychotherapy were, respectively, 84%
(95% CI 68–92) and 72% (39–92), for repetitive tran-
scranial magnetic stimulation (rTMS), respectively,
79% (95% CI 71–86) and 82% (74–88).
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Fig. 2 Overall accuracy measures: area under the curve 0.84 (95% CI 0.81–0.87), sensitivity 77% (95% CI 71–82), specificity 79% (95% CI
73–84). Reitsma bivariate SROC model of the receiver operating characteristic curve. Summary of sensitivity and false-positive rate (1− specificity) is
indicated in black, sensitivity and false-positive rates for different interventions are gray-scale. ECT electroconvulsive therapy, rTMS repetitive
transcranial magnetic stimulation, pharmacological pharmacotherapeutic antidepressive interventions.
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Modality differences
In order to assess whether sMRI studies yielded differ-

ent performance measures compared to fMRI studies, we
performed random-effect meta-regression for modality
subtypes. When comparing fMRI and sMRI, z-regression
values for sensitivities and specificities were non-sig-
nificant, suggesting that prediction success for structural
or functional neuroimaging did not differ between studies
(see Table 3). Post hoc analysis excluding DTI and sub-
dividing task-based and resting-state fMRI did not alter
the results.

Quality assessment
Three studies included only late-life depression, which

reduces applicability in the general MDD population (see
Supplementary Fig. 1 and Supplementary Table 3). In terms
of flow and timing, drop-outs were a common issue, with
10 studies having a drop-out rate of ≥30%, while 11 studies
did not clarify drop-outs, possibly leading to attrition bias.
Furthermore, two studies adapted the definition of response
to create an even split in responders/non-responders,
causing applicability concerns45,48. One study did not pre-
specify the pharmacological intervention50.

Heterogeneity and publication bias
The univariate forest plot of diagnostic performance

(in ln OR) showed considerable overlap in CIs between
studies with different ORs, indicating that heterogeneity
might be caused by sample variance (see Fig. 3)23. As
described in the study description above, inter-study
differences were present in population, modalities,

intervention type, response/remission definition, feature
selection, and analysis technique. Deeks’ funnel plot
asymmetry test showed study size and diagnostic OR to be
inversely related (p= 0.044; see Supplementary Fig. 2),
indicating that classification performance was lower in
studies with larger samples. Inspection of the gray lit-
erature that was excluded due to missing information in
order to construct a confusion matrix (all of which were
conference/poster abstracts) showed that the gray litera-
ture had comparable mean sample sizes (n= 22, mean
n= 56) and accuracies (ranging from 73 to 95%) com-
pared to the included studies. For an overview of gray
literature results, see Supplementary Table 4.

Discussion
Our results show that machine learning analysis of

MRI data can predict antidepressive treatment success
with an AUC of 0.84, 77% sensitivity, and 79% specificity
(Fig. 2). Furthermore, we did not find a difference in
classification performance between studies using phar-
macotherapy and ECT. Although ECT showed some-
what higher sensitivity and specificity, CIs largely
overlapped between the two intervention types (Table 2).
There were few primary studies for psychotherapy and
rTMS, which also show overlapping CIs. In addition,
classification performance of sMRI and fMRI did not
differ significantly (Table 3).
To our knowledge, this is the first meta-analysis speci-

fically examining MRI for predicting treatment effects in
depression. The overall classification performance is
comparable to the one reported by Lee et al., who found a
general accuracy of 85% when combining the results
for different neuroimaging modalities (defined as EEG,
computed tomography, positron emission tomography, or
MRI)58. Those results were, however, based on a total of 8
MRI studies, whereas our search resulted in 22 individual
studies for analysis. This is partly due to the time gap
between studies, which underscores the rapid develop-
ment in this research area. Our results show that MRI
prediction studies perform somewhat better than EEG
(AUC of 0.76) and comparable to accuracy of diagnostic
classification studies with MRI that distinguishes depres-
sed patients and healthy controls20,59. In contrast to the
review of EEG studies, we excluded studies that tested
their model on the training set, which increased

Table 2 Summary estimates of sensitivity/specificity for
different interventions.

Intervention group Sensitivity 95% CI Specificity 95% CI

Combined 77% 71–82 79% 73–84

Medication 75% 68–82 73% 64–80

ECT 80% 73–85 83% 72–90

Psychotherapy 84% 68–92 72% 39–92

rTMS 79% 71–86 82% 74–88

CI confidence interval, rTMS repetitive transcranial magnetic stimulation, ECT
electroconvulsive therapy.

Table 3 Bivariate random-effect meta-regression z-scores for modality as covariate.

Point estimate Standard error 95% Lower 95% Upper z-value p Value

Sensitivity 0.221 0.233 −0.236 0.677 0.948 0.343

Specificity 0.217 0.252 −0.77 0.711 0.861 0.389

p Values for both sensitivity and specificity >0.05, i.e., z-score differences for functional and structural MRI are non-significant.
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generalizability of our sample and avoided presenting
inflated accuracy results.
Clinical practice would require different prediction

approaches for a broad range of specific settings. It would
be useful to have a single predictive test for therapy-
resistant patients, especially to guide decision-making for
invasive treatments such as ECT. For example, ECT is
associated with cognitive side effects that are preferably
avoided in case the treatment is unsuccessful60. In addi-
tion, ECT is only applied in 1–2% of patients with per-
sistent or severe depression and a biomarker that
indicates a high probability of success may reduce the
hesitance of its use61. However, for most treatments, a
differential biomarker would be preferable, which would
enable selecting the treatment with the highest chance of
success. As of yet, no MRI study has used such pro-
spective prediction and subsequent treatment matching
to guide decision-making between two treatment options
(for instance, between cognitive behavioral therapy and an
SSRI). Furthermore, no studies have yet compared efficacy

of prediction-guided treatments versus regular treatment
based on patient–clinician preference. Thus, although the
predictive performance of MRI biomarkers is certainly
promising, the current study designs do not yet enable the
translation of research findings to the clinic.
Generally, studies were of acceptable quality, although

drop-out rates could cause concern in terms of reliability.
Drop-out rates were not mentioned in 11 studies, and for
10 studies, drop-out rates were >30% without using an
intention-to-diagnose approach. Not accounting for drop-
outs, who might be less likely to respond to treatment,
could inflate response/remission data and consequently
alter sensitivity and specificity of the predictive test.
Additionally, our results show between-study variety
regarding the response criterion, which typically consisted
of clinical response (≥50% symptom reduction) or symp-
tom remission. Different clinical settings might require
different prediction outcomes. For instance, one could
expect treatment of a first-time depressive episode to lead
to complete remission, while in severe treatment-resistant

0 1.25 3.5 5

log Odds Ratio

Drysdale rep, 2017
Drysdale, 2017
Cash, 2019
Siegle, 2012

Queirazza, 2019
Costafreda, 2009

Patel, 2015
Meyer, 2019
Marquand, 2008
Karim, 2018
iSPOT trials, 2014G̃2018
Gong, 2011
Godlewska, 2018
Costafreda & Nouretdinov, 2009, 2011

Wade & Leaver, 2017, 2018
Wade, 2016
Van Waarde, 2015
Sun, 2019
Redlich, 2016
MorenoG̃Ortega, 2019
Jiang, 2018
Cao, 2018

3.10 [ 2.01, 4.19]
2.55 [ 1.69, 3.41]
3.40 [ 1.45, 5.35]
3.28 [ 0.97, 5.60]

2.15 [ 0.60, 3.70]
2.71 [ 0.03, 5.39]

4.28 [ 1.35, 7.21]
3.50 [ 0.27, 6.73]

1.99 [G̃0.13, 4.12]
1.64 [ 0.42, 2.86]
2.27 [ 1.23, 3.30]
1.65 [ 0.40, 2.91]
1.79 [ 0.22, 3.36]
4.16 [ 1.22, 7.10]

1.41 [ 0.15, 2.67]
3.95 [ 1.64, 6.26]
3.39 [ 1.77, 5.02]
2.48 [ 1.47, 3.50]
3.30 [ 0.24, 6.36]
4.16 [ 1.22, 7.10]
3.78 [ 1.51, 6.06]
3.50 [ 1.07, 5.93]

2.52 [ 2.19, 2.85]

rTMS

Psychotherapy

Pharmacotherapy

ECT

Author and Year log (Odds Ratio) [95% CI]

2.83 [2.19, 3.47]

2.54 [1.38, 3.70]

2.11 [1.55, 2.67]

2.89 [2.11, 3.68]

Weighed Estimate

Weighed Estimate

Weighed Estimate

Weighed Estimate

Weighed Estimate

Fig. 3 Univariate random-effect forest plot of natural logarithm of diagnostic odds ratios. Summary estimates for odds ratios are computed
assuming normal distribution. CI confidence interval, rTMS repetitive transcranial magnetic stimulation, ECT electroconvulsive therapy.
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depression, response might be a more practical and
achievable goal62. Authors should take care to pre-specify
which outcome they will use and why that outcome is the
most appropriate for their sample or intervention.
Furthermore, although no objective investigation for

clinical heterogeneity in prediction studies exists, our
random-effect forest plot shows considerable overlap of
CIs with differing study results, implying the presence of
sampling variation (Fig. 3)22. Clinical variance between
samples is an important obstacle in generalizability of any
diagnostic or predictive marker, especially in psychiatric
illnesses such as MDDs, which is heterogeneous in both
its clinical and neurophysiological manifestation63,64.
Thus, inter-sample diversity of inclusion criteria and
methodological design might hamper the realization of a
reliable predictive biomarker.
In the current literature on diagnostic accuracy studies,

the possibility of publication selection as a source of bias
is still under debate25,65. Common forms of formalizations
of publication bias, such as the Egger’s or Begg’s test,
are not recommended for meta-analyses of prediction
studies, since their sensitivity in diagnostic accuracy stu-
dies is generally poor23. However, the recommended
Deeks’ funnel plot asymmetry test (see Supplementary
Fig. 2) shows the presence of a sample size effect, with the
n of a study being negatively correlated to classification
performance, which could be attributable to publication
bias66. Another explanation of this significant correlation
might be that large-scale studies with large samples are
more likely to consist of heterogeneous patient groups,
which in turn reduces prediction accuracy67. As a further
exploration of publication bias, our search also took into
account gray literature, which indicated that publication
(or positive result) bias was absent. In conclusion, quan-
titative testing could not distinguish between a real effect
(due to accuracy reduction in large heterogeneous sam-
ples) or publication bias. Although the gray literature
deems its presence less likely, we cannot exclude the
presence of publication bias.
The following limitations warrant further discussion.

First, we did not find modality differences, but studies
conducting fMRI research might have also attempted
prediction with (less time-consuming and cheaper) sMRI,
which remained unpublished. Although we did contact
authors for additional information, response was poor, so
we were unable to rule out reporting bias for modality
differences. We would advise authors of future studies to
publish non-significant results as well as significant but
less accurate results, since both are potentially useful in
comparing the merits of different modalities. Second, the
number of studies predicting the effects of psychotherapy,
specifically cognitive therapy, outcome was low, resulting
in a blind spot for a commonly deployed treatment in
MDD68. Third, cross-validation in small samples results in

large variation of the estimated accuracy, and as indicated
above, accuracy reduces with larger sample hetero-
geneity67,69. Since the mean sample size of our studies was
44 (with a median n of 33), the reported results may be
optimistic because of overfitting. Overfitting is a cause
for concern specifically in MRI studies, with relatively
small sample sizes and large amounts of fitted data70.
Furthermore, characteristics of the test set during cross-
validation will approximate the characteristics of the
training set more than when tested in the general popu-
lation, due to selection bias71. Only two included studies
replicated their training data in an independent cohort,
and one included study used an out-of-sample cohort to
further test their cross-validated results, leaving the
question open to which extent the majority of results can
be generalized to new patients.
In order to optimize patient care, reduce treatment

resistance, and shorten duration of illness, developing
models that predict treatment success on individual-
patient level is an urgent task. In a 2012 consensus report
on diagnostic imaging markers in psychiatry, the Amer-
ican Psychiatric Association research council proposed
80% sensitivity and specificity as prerequisite for the
clinical application of a biomarker72. Furthermore, bio-
markers should be ideally be reliable, reproducible, non-
invasive, simple to perform, and inexpensive. The results
for an ECT biomarker fulfilled the 80% criterion, but the
results for a medication biomarker fell short. But follow-
ing these terms, primarily reproducibility has not yet been
sufficiently well established with small sample sizes and
external validation in only a minority of studies. This
precludes recommending MRI for treatment response
prediction in clinical practice at this point. Future mul-
ticenter studies with large patient samples that represent
clinical heterogeneity are required to warrant MRI bio-
marker generalizability73. However, one might question
whether excellent generalizability is a goal that should be
aimed for: if each clinical site were to develop its own
locally reliable and replicable biomarker that incorporates
the local hardware, patient, and treatment variability, the
predictive accuracy is expected to be higher than when all
potential sources of heterogeneity are accounted for67,74.
Standard machine learning analysis would, then, mean a
departure from the traditional universalist paradigm in
diagnostics and instead initiate a shift to a paradigm of
localization: heterogeneous yet locally applicable classifi-
cation models. This will enable to retrain predictive
models to obtain even better performance with more data
after biomarker deployment. And this may enable to take
advantage rather than disadvantage from (inevitable)
hardware upgrades, such as higher signal-to-noise for new
generations of MR scanners and coils.
In conclusion, prediction of treatment success using

machine learning analysis of MRI data holds promise but

Cohen et al. Translational Psychiatry          (2021) 11:168 Page 8 of 10



has not transcended the research status and should not
yet be implemented into clinical practice. Once it over-
comes the aforementioned hurdles, MRI may become a
clinical decision support tool aimed to reduce unsuc-
cessful treatments and improve treatment efficacy and
efficiency.
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