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Computational modeling reveals 
a key role for polarized myeloid 
cells in controlling osteoclast 
activity during bone injury repair
Chen Hao Lo1,3,4, Etienne Baratchart2,4, David Basanta2,5* & Conor C. Lynch1,5* 

Bone-forming osteoblasts and -resorbing osteoclasts control bone injury repair, and myeloid-
derived cells such as monocytes and macrophages are known to influence their behavior. However, 
precisely how these multiple cell types coordinate and regulate each other over time within the bone 
marrow to restore bone is difficult to dissect using biological approaches. Conversely, mathematical 
modeling lends itself well to this challenge. Therefore, we generated an ordinary differential equation 
(ODE) model powered by experimental data (osteoblast, osteoclast, bone volume, pro- and anti-
inflammatory myeloid cells) obtained from intra-tibially injured mice. Initial ODE results using only 
osteoblast/osteoclast populations demonstrated that bone homeostasis could not be recovered after 
injury, but this issue was resolved upon integration of pro- and anti-inflammatory myeloid population 
dynamics. Surprisingly, the ODE revealed temporal disconnects between the peak of total bone 
mineralization/resorption, and osteoblast/osteoclast numbers. Specifically, the model indicated that 
osteoclast activity must vary greatly (> 17-fold) to return the bone volume to baseline after injury and 
suggest that osteoblast/osteoclast number alone is insufficient to predict bone the trajectory of bone 
repair. Importantly, the values of osteoclast activity fall within those published previously. These data 
underscore the value of mathematical modeling approaches to understand and reveal new insights 
into complex biological processes.

Bone healing subsequent to injury or trauma is a significant clinical problem in orthopedics and rehabilitation1–3. 
Understanding the processes involved and how cells coordinate and control each phase of bone injury repair 
can reveal opportunities to accelerate healing and improve patient outcomes while reducing cost. The phases of 
bone repair in diaphyseal, epiphyseal or metaphyseal fractures have been well characterized1,4–7. For example, 
in critical non-union fractures such as internal injuries to the supporting trabecular bone architecture, a rapid 
inflammatory response is followed by mass callus formation spanning the periosteal and endosteal surfaces. The 
callus is then mineralized by infiltrating mesenchymal stromal cells (MSCs) that differentiate into cartilage, and 
bone-forming chondrocytes and osteoblasts respectively1,2. Subsequently, activated osteoclasts mediate resorption 
and clearing of the ossified callus reestablishing the marrow trabeculae1. In addition to osteoblasts and osteo-
clasts, other cell types are also involved in the bone healing/remodeling process, such as resident and infiltrating 
immune cells that exert pro- and anti-inflammatory activities depending on environmental cues1,8–10. This is 
evidenced by the fact that acute pro-inflammatory factor administration (e.g. TNFα) can improve bone repair 
while prolonged administration has the opposite effect11–15. Monocytes and macrophages are major components 
of the bone immune infiltrate subsequent to injury1,8,9,16. Previous studies using genetic or pharmacological 
depletion of myeloid cells such as macrophages demonstrated significantly delayed time to bone repair 10,16–19. 
However, precisely how these multiple cell types coordinate and regulate osteoblast and osteoclast activity over 
time is challenging to dissect using traditional in vitro and in vivo biological approaches.

A potential approach to overcome this hurdle is the integration of experimental data with computational 
models that allow for the analysis of multiple cell types at any time point during bone injury repair. Previous 
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reports, including from our group, have successfully demonstrated the feasibility of mathematical modeling 
approaches to enhance our understanding of how cells interact in the bone ecosystem to coordinate homeostasis 
and cancer-bone interactions20–29. There are a number of mathematical model approaches that can be employed 
such as ODEs that can be used to model bone cell populations in normal and disease processes30–35. Individual 
cellular dynamics can also be considered by representing the cell populations as either a continuous spatial 
field whose dynamics are described by a set of partial differential equations (PDE)36,37, or as individual agents 
in an agent-based model approach30. Although these models have been used to examine bone injury repair and 
homeostasis, they have largely focused on the interaction between bone-building osteoblasts and bone-resorbing 
osteoclasts30–32,34,37. Some models have considered immune populations but these are theoretical and are not 
driven by biological data that provides quantitative information for each population and various timepoints 
throughout the bone injury repair process38,39.

To address this, we used an in vivo model of bone injury to longitudinally measure changes in pro- and 
anti-inflammatory monocytes and macrophages in addition to osteoblast and osteoclast numbers and bone 
volume around the site of injury. We then used the obtained biological data combined with empirically-derived 
parameters from the literature to power an ODE model of trabecular bone injury repair and examine the impact 
of infiltrating immune cells on osteoblast and osteoclast activity over time in regard to trabecular bone volume 
dynamics. The ODE model generated herein, demonstrated that the temporal interplay between myeloid-derived 
pro- and anti-inflammatory populations are critical in driving osteoblast and osteoclast response but interest-
ingly, using a constant rates of bone formation and resorption, the mathematical model failed to recapitulate the 
trabecular bone volume dynamics. Further interrogation of the model demonstrated that the rate of osteoclast 
resorptive activity must vary greatly over the course of injury resolution to return the bone volume to homeosta-
sis. This insight has not been considered to date and underscores the value of mathematically modeling complex 
multicellular biological process.

Results
Osteoclast and osteoblast numbers fluctuate dynamically in response to bone injury.  The 
stages and duration of trabecular repair following non-critical/ non-displaced bone fractures largely follow the 
same program, whereby subsequent to injury, early inflammation and hematoma occur rapidly, followed by 
the formation of a callus that is subsequently mineralized by bone-forming osteoablasts4,5,40. The callus is then 
remodeled via the activity of bone-resorbing osteoclasts1,18,41–46 (Fig. 1a). Osteoblasts and osteoclasts are critical 
mediators of these steps and their numbers shift accordingly during each phase of repair. Existing theoretical 
models of bone remodeling assume osteoblast and osteoclast activities are constant over time and their numbers, 
therefore, directly predict bone dynamics31,32,34,37. To evaluate this prevailing assumption, we first asked if mode-
ling osteoclast and osteoblasts alone was sufficient to accurately predict corresponding bone remodeling dynam-
ics using experimental data. We focused on modeling trabecular bone dynamics as opposed to the cortical sur-
faces given that these injuries resolve quickly over a shorter time period compared those involving cortical bone. 
To generate parameters to power such an ODE model, we used an experimental model of trabecular bone injury 
repair: non-critical trabecular disruption resulting from direct intratibial penetration via the knee epiphysis into 
the medullary canal47–50 (Fig. 1b). Tibias from mice were collected prior to injury at baseline (day 0), and at day 
1, 2, 3, 7 and 14 (n = 5 mice/time point) following injury. High-resolution micro-computed tomography (μCT) 
analysis of uninjured tibia established baseline bone volume (BV/TV) (Fig. 1c and d). Our data show that after 
injury, trabecular bone volume around the injury site diminished over a 48-h period, prior to a robust increase 
in mineralized bone content between days 2 and 7. By day 14, the bone volume returned toward baseline values. 
We directed our μCT and histological analyses on the area surrounding the bone injury rather than the entire 
bone since our goal was to quantify cellular dynamics and changes in the bone marrow specifically in response 
to trabecular injury; values that could be diluted by measurements in non-injured areas of the medullary canal as 
well as the cortex (Supplemental Fig. 1a and b). Focusing on the site of injury and surrounding area (in keeping 
with parameters from the μCT analysis), histologically, we observed sequential increases in osteoblasts followed 
by osteoclasts, findings that are qualitatively compatible with our BV:TV μCT analyses and are in line with previ-
ous published observations that have also quantitated trabecular dynamics50–52 (Fig. 1c and d).

Bone repair dynamics cannot be computationally recapitulated using constant osteoblast and 
osteoclast activity rates.  To date, bone resorption and formation rates have been difficult to measure 
in  vivo. Despite various in  vitro studies showing that osteoblast and osteoclast activity can be controlled by 
inflammatory factors and cytokines15,53–64, existing theoretical mathematical models of bone remodeling largely 
assume that resorption and formation rates per cell are fixed/constant over time. Since measuring whether oste-
oblast and osteoclast activities vary over time in vivo during bone injury repair is experimentally challenging, we 
employed an integrated experimental and mathematical approach to address this knowledge gap.

Using the obtained biological data and publicly-available parameter values regarding osteoblast and osteoclast 
behavior (Fig. 1c, Supplemental Fig. 2 and Table 1), we developed an initial data-driven mathematical ODE model 
to recapitulate the control of trabecular bone restoration exclusively by these two populations (Fig. 2a). This 
initial ODE model simulated the bone injury event as a transient osteoblast (OBL) expansion and a decrease in 
osteoclast (OCL) population from day 0 to 2 (see mathematical and computational methods). Fits to the rest of 
the OCL and OBL population data were optimized within the parameter space defined by published literature, 
such as regarding cellular lifespan and proliferation rates (Fig. 2b and Table 1). Optimal fits with greatest R2 value 
and number of residuals less than 1 (#R < 1) were subsequently used for estimating bone volume dynamics. Using 
these OCL and OBL optimized fits, the ODE model attempted to recapitulate experimental bone dynamics by 
sampling constant bone resorption rates within a range previously described in literature50,53,65,66. A corresponding 
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bone formation rate was estimated in each sampling as to ensure a return to baseline bone volume at the end 
of the injury repair process (Fig. 2a #). Interestingly, using this iterative approach, the ODE predictions largely 
overestimated the bone volume dynamics compared to the experimental data (Supplemental Fig. 3). In fact, 
the best-fitted iteration, which used the lowest published OCL resorption rates66, only achieved an R2 value of 
0.4554, and #R < 1 of 2/5 (Fig. 2c). This indicated that either published measurements of in vitro bone resorption/
formation parameters do not reflect in vivo rates, and/or that bone resorption/formation rates by osteoclasts and 
osteoblasts are variable over time during the course of injury repair. To address this, we alternatively fitted the 
model to bone dynamics data while allowing the optimization algorithm to freely determine an optimal combi-
nation of constant bone resorption and formation rates that were not forced to return to baseline bone volume 
subsequent to injury (Fig. 2a &). This resulted in improved bone volume dynamic fits during injury repair but, 
of note, the final bone volume reached by the ODE was 70% lower compared to that of baseline (Fig. 2d). Taken 
together, these data suggest that osteoclast and osteoblast activity rates must vary greatly during injury response 

Figure 1.   Osteoblast (OBL) and osteoclast (OCL) numbers temporally fluctuate dynamically as bone heals 
from injury. (a) Schematic summarizing published dynamics of OBL and OCL following bone injury. (b) 
Schematic depicting the experimental workflow to induce bone injury in mice and generate bone, osteoblast and 
osteoclast dynamic data. (c) Representative images of micro-computed tomography revealed trabecular bone 
status (BONE). Decalcified bones were stained and quantified for OBL by RUNX2 immunofluorescence staining 
(OBL), and OCL by tartrate-resistant acid phosphatase (TRAcP) staining (OCL). (d) Quantitation of temporal 
dynamics of bone volume, osteoclast and osteoblast population.
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in order to return the trabecular bone to homeostasis during the injury repair time-frame. This raised the ques-
tion as to what cellular/environmental cues are potentially responsible for controlling their activity. 

Polarized pro‑ and anti‑inflammatory monocytes and macrophages emerge in distinct tem-
poral waves during bone injury repair.  Monocytes and macrophages are key cellular species in the 
bone ecosystem and their pro- and anti-inflammatory functions have been implicated in the bone injury repair 
process and in the regulation of osteoblast/osteoclast activity8,18,19,50,67,68. Studies have shown, for example that, 
(1) myeloid cells are polarized in bone injury and inflammation, (2) pro-inflammatory factors and myeloid cells 
stimulate osteoclast activity, and (3) anti-inflammatory/wound-healing factors and myeloid cells stimulate oste-
oblast activity (Supplemental Fig. 4)1,9,11,45,51,67–69. Based on this rationale, we therefore hypothesized that fluc-
tuations in the number and polarization status of myeloid populations control osteoclast and osteoblast activity 
during bone repair. To test this hypothesis, we reanalyzed the non-critical trabecular bone injury experiment. 
Tibias from mice were collected at baseline prior to injury (day 0), and at day 1, 2, 3, 7 and 14 (n = 5/time point) 
post-injury. Flow cytometry was used to measure changes in myeloid populations over time since it allowed for 
multiplexed analysis of phenotypic as well as polarization markers for resolving various myeloid subsets8,17,70–80 
(Fig. 3a–c and Supplemental Fig. 5). Our results show that there are significant increases in pro-inflammatory 
monocytes and macrophages within the first 48 h that are subsequently rapidly depleted upon the infiltration of 
anti-inflammatory macrophages between 24 and 72 h (Fig. 3c). Our follow-up histological analyses using tissue 
sections from days 2 and 3 confirm the presence of pro- and anti-inflammatory cells at the injury site, which 
were not observed at baseline (Supplemental Fig. 6a and b). Interestingly, in accordance with observations from 
other in vivo studies, we observed a smaller second wave of pro-inflammatory monocytes between days 6 and 
881–83 (Fig. 3c and d).

Integration of polarized myeloid cells control of bone remodeling activity recapitulates bone 
healing dynamics.  Previous studies have reported pro- and anti-inflammatory myeloid control of osteo-
clast and osteoblast activity; however, these observations are largely derived from in vitro settings54,67,84–93. To 
address this, we integrated the experimental quantitative data collected from each of these populations via flow 
cytometry into the framework of the ODE model (Fig. 4a and b). Specifically, we allowed osteoclast activity to be 
stimulated from baseline in proportion to the presence of pro-inflammatory cells by a model-estimated constant 
factor of α. Likewise, we allowed osteoblast activity to be stimulated from baseline in proportion to the presence 
of anti-inflammatory cells by a model-estimated constant factor of β. These assumptions are based on empirical 
data from published in vitro experimental data54,67,84–86,88–93. We then asked the expanded ODE model to opti-
mize for levels of α and β that are needed to recapitulate bone volume dynamics. Of note, we did not integrate 
anti-inflammatory monocyte data as the experimental data demonstrated this population remains consistently 
low levels that did not fluctuate throughout the course of bone injury repair (Fig. 3c). Importantly, in our model 
optimization, the range of osteoblast and osteoclast activities that could be influenced by infiltrating myeloid 
cells were limited to published values (Supplemental Fig. 2). Given these restraints, the model nevertheless esti-
mated an optimal set of parameters that significantly recapitulated the bone volume dynamics (R2 = 0.9362; 
#R < 1 = 5/5) (Fig. 4c). The optimized model reveals that while osteoblast activity remains relatively constant, 
osteoclast activity changes dramatically over time. Furthermore, in this expanded ODE model, the bone volume 
returned to baseline levels subsequent to injury, underscoring the biological validity of our model assumptions 
and reinforcing myeloid-derived infiltrating cells as important regulators of osteoblast, and in particular, osteo-
clast activities in the process.

Table 1.   Parameters extracted from published literature were combined with temporal dynamics data in ODE 
model to estimate previously unknown parameters needed to fit bone data. Apposition rates from confined 
model (#) were calculated in fashion to offset resorption rates derived from publication, to maintain constant 
bone volume at homeostasis.

Parameter Description Value Unit Supplemental references SE

δOB Osteoblast lifespan 0.19 Day−1 33, 34 –

γOB Osteoblast proliferation rate 0.873 Day−1 Estimated 0.1999

InhibOC Osteoclast inhibition 1.2186 Day−1 Estimated 0.3540

ROC Osteoclast recruitment 6774.8 Cell Day−1 Estimated 1967.6

Tanab Duration of anabolism 6.6924 Day Estimated 1.8649

TantiCatab Osteoclast Inhibition duration 2 Day Estimated –

TCatab Starting time of catabolism 2 Day Imposed –

Published resorption rate range# [1 × 10−8 − 5 × 10−5] mm3 Cell−1 Day−1 26, 27, Imposed –

δB
Per bone volume unit resorption 
rate# 7.034 × 10−6 Cell−1 Day−1 Estimated 7.30 × 10−7

ΠB Bone formation rate# – mm3 Cell−1 Day−1 Determined from δb –

δB
Per bone volume unit resorption 
rate& 5.7687 × 10−6 Cell−1 Day−1 Estimated 1.63 × 10−6

ΠB Bone formation rate& 1.2164 × 10−6 mm3 Cell−1 Day−1 Estimated 1.6043 × 10−7
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Osteoclast resorption activity does not correlate with osteoclast number during bone injury 
repair.  Upon further analysis of the results generated by our expanded ODE model, we noted a disconnect 
between the dynamics of osteoblast and osteoclast activity versus their population numbers (Fig. 5a). The model 
predicts that osteoblast mineralizing activity varies slightly over time 1.21 × 10−6 to 2.63 × 10−6 mm3/cell/day; 
however, the model predicts that a range of 4.26 × 10−7 to 7.28 × 10−6 mm3/cell/day is required for osteoclast 
activity (Fig. 5a and b). These data suggest that, while osteoblast activity only increases by twofolds, a 17-fold 
increase in osteoclast activity is required to recapitulate injury dynamics and also return to the bone volume 
to homeostasis. Importantly, the noted ranges for osteoclast activity fall within those values reported in inde-
pendent studies53,65,66 (Fig. 5b and Supplemental Fig. 2). Our model is the first to posit that the rate at which 
osteoclast resorbs mineralized matrix in bone healing can vary greatly depending on cues from the surrounding 
microenvironment.

We also submit that this variation in resorptive activity can be recapitulated by the integration of infiltrating 
pro- and anti-inflammatory monocytes and macrophages. To this end, we returned to our initial ODE model 

Figure 2.   Osteoblast (OBL) and osteoclast (OCL) activities as measured at homeostasis do not allow 
accurate bone prediction during injury repair in vivo. Histological quantitation of tibia bones parameterizes 
mathematical ordinary differential equation (ODE) model of bone injury repair. (a) Ordinary differential 
equations (ODE) describing dynamics of OCL and OBL population are paired with published parameters to 
form an initial ODE model to predict bone repair dynamic. Schematic depicts OCL resorb (red line) and OBL 
form bone (green line). ODE expressions with unknown value (red) were estimated as the model optimizes 
fits to in vivo data. (b) Model produces accurate fits to OCL and OBL dynamics. (c) Model falsely predicts 
bone dynamics given OBL and OCL fits in the first 14 days following bone injury when it samples various 
publication-derived OCL resorption rates (each dashed line represents one sampling). OBL bone formation 
rates are mathematically estimated in each sampling to ensure predictions will eventually return to homeostasis 
(#). (d) Alternatively, ODE model was allowed to freely seek out a combination of resorption and formation 
rates to best fit data within the 14-day time period (&).
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(Fig. 2) and asked how would osteoclast activity change overtime in order to fit to the bone data. In this agnostic 
approach, we no longer restricted osteoclast resorption to constant rates over time, but defined a piecewise linear 
function of time for osteoclast resorption rate (Supplemental Fig. 7a and b, Mathematical and Computational 
Methods). Independent of the parameters chosen for the initial piecewise slope conditions, the optimization 
algorithm identified a functional form composed of two waves: initially intense and transient between days 1 
and 2, followed by a milder but persistent wave starting after Day 3 (Supplemental Fig. 7c; orange line). We noted 
this temporal profile was very similar to that of experimental data regarding the pro-inflammatory monocytes 
and macrophages populations (Fig. 3c and Supplemental Fig. 7c). While this result does not discount the pos-
sible contribution from other cells within the bone marrow, it does further supports that pro-inflammatory cells 
contribute significantly to osteoclast behavior and therefore bone healing dynamics (Supplemental Fig. 7). We 
used a similar approach to determine variable osteoblast activity and defined a piecewise linear function of time, 
for the bone formation rate (Supplemental Fig. 8a). Interestingly, this model did not recapitulate bone volume 
dynamics despite the freedom to change bone formation rate over time (Supplemental Fig. 8b; R2 = 0.6796). These 
data further support a role for pro-inflammatory myeloid cells in controlling osteoclast, and less so osteoblast 
activity, and therefore bone volume during injury repair.

Discussion
The complex cellular mechanisms that control bone injury repair can be difficult to dissect given the complex-
ity of the bone marrow microenvironment using traditional biological approaches but key insights have been 
made. For example, genetic and pharmacologic approaches reveal that macrophages play important roles in bone 
healing as well as osteoclast differentiation51,68,93–95. Yet, how macrophage populations quantitatively interact 
with each other or other cell types in the bone environment directly or indirectly over time can be challenging 
to identify with this approach. For instance, though polarized macrophages have been observed at sites of bone 
injury alongside osteoblasts and osteoclasts (Supplemental Fig. 6b)8,11,17, the rates at which polarized macrophages 
stimulate the activities of these bone cells remained difficult to evaluate and furthermore, quantitate. Computa-
tional approaches allow simultaneous interrogation of multicellular systems in which a mathematical model can 
infer parameter values that may be otherwise unknown. Despite this advantage, existing mathematical models of 
bone remodeling largely focus only on osteoclast, osteoblast and the bone; and those which integrate additional 
populations are theoretical28,30–38. As shown here, we have integrated both our experimental and published data 
into a mathematical framework which models interactions between myeloid cells, osteoclasts and osteoblasts, 
and the bone from published literature. Our findings are derived solely from the experimental in vivo bone injury 
model we have described herein. We are thus collaborating with orthopedic experts in examining the relevance/
application of our findings in more established models of bone fracture and are considering integrating new 
biological parameters into our mathematical models. Nonetheless, using this model, we have concluded that bone 
repair cannot be recapitulated if we assume osteoclast osteoblast activities are constant over time. Our initial ODE 
model failed to derive accurate bone fits despite using both published and freely estimating constant activity rates. 
Therefore, based on the literature, we subsequently focused on myeloid-derived monocytes and macrophages 
that have noted roles in contributing to bone injury repair51,68,93–95, and the expanded ODE demonstrated that 

Figure 3.   Transient waves of pro- and anti-inflammatory monocytes and macrophages alternate dynamically 
during bone injury repair. Flow cytometry performed on tibia bone marrow harvested from C57BL/6 mice 
at various time points after injury (n = 30; 5/time point) reveals diverse myeloid dynamics and polarization. 
Time points corresponds to time points from histological data. Total monocyte (CD11b + LY-6CHI LY-6G-; 
(a) and macrophage (CD11b + LY-6CLO LY-6G-; (b) and their respective pro- and anti-inflammatory subsets 
(c) each uniquely fluctuates following bone injury (Student t-test compares all time points to its Day 0 for 
each subset; *p < 0.05 **p < 0.005 ***p < 0.0005 ****p < 0.00005 nsp > 0.05). (d) Temporal dynamics of pro and 
anti-inflammatory monocytes and macrophage numbers are normalized as fold change relative to levels at 
homeostasis. Dashed lines show timings of pro- and anti-inflammatory polarization are mutually exclusive.
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the dynamic waves of polarized monocytes and macrophages and their temporal control of bone remodeling 
activity sufficiently allowed for the accurate recapitulation of bone repair.

Another major finding from our analyses is the extent to which osteoclast resorptive activity can be modu-
lated subsequent to osteoblast mineralization of the injury site. Existing empirical data have recorded osteoclast 
resorptive activities in the range of 1 × 10−8 to 5 × 10−5 mm3/cell/day53,65,66. Here, our estimations suggest that 
osteoclast activity varies by 17-fold magnitude over time within this published range and that pro-inflammatory 
monocyte and macrophages are critical for regulating this effect. Beyond our experimental model, in other criti-
cal bone injury contexts, it is possible that bone remodeling activity may vary even more. These data underscore 
how mathematical modeling can provide important biological insights. It should be noted that though other 
mathematical models have been proposed to explore mechanisms of bone repair dynamics30,32,34,36,38, the study 
presented herein, to our knowledge, is the first to leverage longitudinal biological data on multiple cellular 
populations and integrate this information into a mathematical model.

Additional quantitative insights provided by the ODE model include estimations on monocyte and mac-
rophage proliferation rates as well as the rates at which pro- and anti-inflammatory cells polarize and modulate 
osteoclast and osteoblast activity, respectively, during the repair process. This information can be critical for 
therapies that target specific myeloid populations during bone injury repair in a bid to accelerate bone healing. 
Our study also reveals rapid expansion of pro-inflammatory monocytes and macrophages in the first 24 h with 
anti-inflammatory macrophages emerging shortly thereafter and persisting for up to 48 h. Interestingly, pro-
inflammatory cells moderately rebound upon the clearance of anti-inflammatory cells (between days 6 and 8, 
Fig. 3c), suggesting a second wave of inflammation that is in keeping with other reports81–83. Conflicting reports 
suggest this could be due to (1) emergence of anti-inflammatory macrophages having an inhibitory effect on 

Figure 4.   Integration of pro- and anti-inflammatory myeloid populations to modulate OCL and OBL activity 
sufficiently improves model fit to experimental bone data. (a) ODE expands to six populations and allows 
manually-fitted pro- and anti-inflammatory cells to enhance bone resorption and formation rates, respectively. 
Individual equations are shown next to schematic of ODE framework, model estimates amount of influence 
polarized myeloid cells have on bone remodeling activity to optimize fit to data (expressions in red). (b) 
Manual fits to pro- and anti-inflammatory monocytes (Pro- and Anti-MONO, respectively), anti-inflammatory 
macrophages (Anti-MAC) are represented by solid lines through error bar of data. (c) Myeloid data was used to 
predict bone dynamics given OBL and OCL fits. Statistical analysis of resulting fits on OCL, OBL and bone are 
shown (R2).
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pro-inflammatory population, or (2) myeloid plasticity and repolarization68,72,96–101. Our next efforts with the 
ODE generated herein will focus on the interplay between macrophages and how their polarization states control 
not only each other, but also how osteoblasts and osteoclasts coordinate bone injury repair.

One caveat of our study is that the flow cytometric analysis is performed on cells isolated from the whole 
bone marrow, as opposed to only the volume of interest in histological datasets (See Supplemental Fig. 1). An 
alternative could be to perform multiplex image cytometry of the site of injury for the various myeloid popu-
lations of interest. We suspect that, while this would allow for more accurate quantitation of the myeloid cell 
populations infiltrating the site of information, the overall trends and shifts in those populations over time would 
remain similar to our flow cytometry data. To this point, our initial immunofluorescence analyses demonstrated 
the presence of pro- and anti-inflammatory cells during injury repair and indicate a spatial temporal element 
to myeloid dynamics which our ODE approach does not address (Supplementary Fig. 6). This information, in 
addition to other important bone parameters such as trabecular architecture (Supplementary Fig. 1b) could be 
used in the future for the development of hybrid cellular automaton models to investigate the spatial relationship 
between each population being studied. Further, our model also does not consider the potential roles of other 
cell types in the bone ecology that could contribute, such as T cells. Our results suggest that modeling myeloid 
populations provides enough resolution to satisfactorily explain the process of non-critical trabecular bone injury 
repair. However, other cell populations which (1) exhibits the same temporal dynamics as pro-inflammatory 
myeloid cells (Fig. 3C) or from the piecewise linear function analysis (Supplemental Fig. 7C) and (2) can stimu-
late osteoclast activity may also contribute to bone healing dynamics. Importantly, our unbasied functional 
form search (Supplemental Figs. 7 and 8) yielded osteoclast activity dynamics that qualitatively resonated with 
the population dynamics of pro-inflammatory monocytes and macrophages, supporting the importance of the 
myeloid population in regulating bone volume resorption. Our theoretical framework is flexible enough however 
that the effects of other immune cells such as T cells could be included in future iterations of our ODE model.

Through our unbiased data-driven testing approach, we have integrated experimental data into a physiolog-
ically-relevant mathematical model exploring non-critical trabecular bone injury repair. A potential applica-
tion of our modeling approach is to determine how bone healing times subsequent to injury can be improved 

Figure 5.   OCL and OBL activities and numbers do not correlate and vary distinctly across in bone injury 
repair. (a) OBL and OCL activity rate dynamics (filled curves plotted on the right y-axis) are plotted against 
their population dynamics (unfilled curves plotted on the left y-axis). Activity is temporally distinct from 
population dynamics, both combine to recapitulate bone dynamics. (b) Table detailing the known parameters 
used by model to estimate/infer unknown parameters.
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via therapeutic intervention. Previous reports have demonstrated that modulating pro- and anti-inflammatory 
macrophages can alter the time taken for bone injury repair14,19,50,89. Because of the ability of the ODE model to 
recapitulate the temporal dynamics of the cellular populations involved in bone injury repair, we can investigate 
the precise timing at which to administer therapies in order to further shorten bone-healing time. Likewise, we 
can examine cellular behavior in response to a different sized injury, or even in a different bone injury context, 
such as non-union fractures. These points will be best addressed once we are able to enhance our ODE model 
with reciprocal mechanisms and fully couple the system.

In conclusion, we have developed an ordinary differential equation (ODE) model of osteoclast, osteoblast 
and bone dynamics, that considers the influences of polarized myeloid cells during trabecular bone injury. The 
model faithfully recapitulates bone volume dynamics during injury repair and returns to homeostasis. It further 
yields a number of novel insights regarding myeloid control of osteoclast- and osteoblast-mediated bone resorp-
tion and formation over time. To our knowledge, this model is the first to recapitulate longitudinal in vivo data 
of simultaneously measured bone and myeloid cell populations, as well as bone volume during bone healing. 
A better understanding of bone healing will have clinical translatability, allowing, for instance, accelerating the 
process and improve patient outcomes.

Materials and methods
Intratibial bone injury model.  All animal studies were designed and performed in accordance with 
Guidelines for the Care and Use of Laboratory Animals published by the National Institutes of Health, and 
approved by the University of South Florida’s Institutional Animal Care and Use Committee under IACUC 
Protocol R5857-CCL. Additionally, studies abided by relevant ARRIVE guidelines. 5–6-week-old male immune-
competent C57BL/6 mice were purchased from Jackson Laboratory with consideration for study statistical sig-
nificance and power (n = 30). Surgically prepared mice (n = 25) were systematically sterilized with chlorhexidine. 
For each mouse, the knee joint was flexed to a 90° angle. Using a drilling movement, a 28G needled (0.3062 mm 
diameter) was inserted at a 0° angle, into the joint surface through the patellar tendon and tibial plateau in order 
to enter the intramedullary canal of the tibia. The depth of each injection was approximately 1 cm to ensure a 
substantial VOI for subsequent histological analyses. This needle action induced trabecular bone disruption and 
displacement without further compromising cortical bone structure beyond the needle insertion site (Fig. 1b). 
This method minimized bone-repair contributions from infiltrating extramedullary populations and allowed 
for interrogation of strictly bone marrow populations in subsequent analyses. Five uninjured mice were used as 
baseline controls. Mice receiving intratibial injuries were randomly selected and euthanized at days 1, 2, 3, 7 and 
14 (n = 5/time point) for histological and flow cytometry analyses. Histological and FACS data were obtained in 
a blind manner to parameterize subsequent mathematical models.

Micro‑computed tomography.  Injured tibias harvested from mice from all time points were centralized 
and were subjected to micro-computed topography (μCT) scanning using Scanco μ35 scanner to derive bone 
volume data. Individual bone scans were deidentified using numerical codes during, and reidentified follow-
ing data analysis in a blinded fashion. A gap of 100 μm from the tip of growth plate towards the midshaft was 
avoided to ensure the high bone density nature of the growth plate does not mask potential differences in bone 
volume associated with the injury. Each bone was then scanned every 6 μm for a total span of 1000 μm along the 
midshaft (i.e. beginning approximately 16 slices away from the tip of the growth plate and analyzed for 180 cross-
sections total/bone). Trabecular bone histomorphometry was subsequently performed after contouring each 
slice scan and reconstructing the 3-dimension volume of interest (VOI) structure of each bone using the built-in 
morph function (n = 30 bones; 5/time point). This process was performed repeatedly using different contours to 
generate bone status dynamics of the whole trabeculae (variable depending on bone), the region surrounding 
the injury (16 μm2 circle per contour), and of the injury itself (3μm2 circle per contour) (Supplemental Fig. 1). 
The positioning of contours across consecutive sections were each examined visually to ensure that the injury 
site was contained and centered within the VOI.

TRAcP staining.  Tibia bones from all time points were decalcified with 14% EDTA every other day for 
3 weeks for further staining quantitation and analyses following μCT scans. Formalin fixed paraffin embedded 
(FFPE) bones were sectioned at 4 μm thickness to ensure single-cellular layer. Multiple slides sectioned at differ-
ent depths from each bone were pooled for all time points, and were baked at 42 °C overnight to improve adhe-
sion while retaining enzymatic activity for tartrate-resistant acid phosphatase (TRAcP) enzyme-based staining 
for osteoclast numbers. Deparaffined and rehydrated sections were pre-incubated in basic stock solution with 
napthol-ether substrate for 1 h at 37 °C and developed in pararosaniline dye and sodium nitrite for 10mins, also 
at 37 °C. Sections with red osteoclasts were further counterstained with hematoxylin to visualize bone tissue 
morphology. Fixed slides were imaged at 20X using Evos Auto brightfield microscopy to include injury site and 
its immediate periphery. All TRAcP positive (red) multinucleated osteoclasts within 5 μm radius from injury 
were counted, and mathematically converted to osteoclasts/bone marrow volume (#OCL/μm3) for each slide 
for each bone at each time point. This region of is consistent in area with the μCT analysis parameters to ensure 
consistency in data.

Immunofluorescence staining and quantitation.  Additional FPPE tibia bone sections were baked at 
56 °C in preparation for immunofluorescence staining of osteoblast (RUNX2 at 1:500; Abcam Cat. No. ab81357), 
pro-inflammatory cells (NOS2 at 1:100; Abcam Cat. No. ab178945), anti-inflammatory cells (ARG1 at 1:200; 
Abcam Cat. No. ab133543) and nuclear staining (DAPI). Slides were processed in batch similar to TRAcP stain-
ing methodology. Deparaffined and rehydrated slides were subject to heat-induced antigen retrieval method. 
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Sections were then blocked and incubated in primary antibodies diluted in 10% normal goat serum in TBS 
overnight at 4 °C. Subsequently, slides were stained with secondary Alexa Fluor 488 or 568-conjugated antibody 
at 1:1000 at room temperature for 1 h under light-proof conditions. Stained slides were stained with DAPI for 
nuclear contrast and mounted for imaging at 20X using Zeiss upright fluorescent microscope to include the 
injury site as well as the immediate peripheral tissue. All RUNX2 positive cells (red staining colocalizing with 
DAPI) within 5 μm radius from injury were counted and mathematically converted to osteoblasts / bone marrow 
volume (#OBL/μm3) for each bone at each time point. Again, this methodology ensured consistency across all 
acquired histological datasets.

Flow cytometry and analysis.  Harvested contralateral injured tibias (n = 30; 5/time point) had ends 
removed and were subjected to centrifugation at 16,000 g for 5 s for isolation of whole bone marrow for flow 
cytometry staining and analysis. Red blood cells were lysed using RBC Lysis Buffer from Sigma Aldrich (Cat. 
No. R7757-100ML) as per manufacturer’s guidelines. Live bone marrow cells were subject to FcR-receptor block-
ing (1:3; BioLegend; Cat. No. 101319) and viability staining (1:500; BioLegend; Cat. No. 423105). Samples were 
then stained by cell-surface conjugated antibodies from BioLegend diluted in autoMACS buffer (Miltenyi; Cat. 
No. 130-091-221) for phenotyping myeloid cells: CD11b-BV786 (1:200; Cat. No. 101243), LY-6C-Alexa Fluor 
488 (1:500; Cat. No.128021) and LY-6G-Alexa Fluor 700 (1:200; Cat. No. 561236). Cells were then fixed with 
2% paraformaldehyde in dark prior to intracellular staining. Fixed cells were permeabilized using intracellu-
lar conjugated antibodies to assess polarization status: NOS2-APC (1:100; eBioscience; Cat. No. 17-5920-80) 
and ARG1-PE (1:100; R&D; Cat. No. IC5868P). Appropriate compensation and fluorescence-minus-one (FMO) 
controls were generated in parallel either with aliquots of bone marrow cells or Rainbow Fluorescent Particle 
beads (BD Biosciences; Cat. No. 556291). All antibody concentrations were titrated prior to injury study using 
primary bone marrow cells to ensure optimal separation and detection of true negative and positive populations. 
Stained controls and samples were analyzed using BD Biosciences LSR flow cytometer (Supplemental Fig. 4). All 
datasets were batch analyzed to ensure optimal consistent gating stringency.

Mathematical and computational methods
Model parameterization.  Initial ODE model The initial Osteoblast/Osteoclast/Bone ODE model is pre-
sented in equation Fig. 2a. OB, OC and B represent osteoblasts, osteoclasts and bone volume, respectively. Oste-
oblast and osteoclast equations are composed of a homeostatic source term, a clearance term, and an injury-
triggered expansion term. The osteoblast clearance parameter δOB was fixed from literature and in order to 
ensure osteoblast homeostasis level, the source term HOB was fixed at δOB*OB0, where OB0 represents the initial 
level of osteoblasts. The osteoblast proliferation rate γOB and duration of expansion Tanab were calibrated in fitting 
the osteoblast dynamics to the experimental data. The osteoclast decrease rate (InhibOC), the decrease duration 
(TantiCatab), the replenishment time (TCatab) and the replenishment rate (ROC) were calibrated in fitting the osteo-
clast dynamics to the experimental data. The homeostatic clearance parameter was fixed to ROC/OC0 in order to 
ensure homeostasis back to the initial osteoclast level.

The bone equation comprises two terms: a bone resorption term, proportional to the number of osteoclasts 
and proportional to bone volume, and a bone formation term, proportional to osteoblast number. The resorption 
term is proportional to bone volume since less bone translates to less bone available for osteoclast resorption. 
On the other hand, osteoblast-mediated bone formation is independent of available bone. A range of possible 
resorption rates was derived from published measurements. Equation on Fig. 2a # shows how bone formation 
parameter is fixed at δBOC0B0/OB0, where B0 is the initial bone level, in order to ensure that bone level remains 
at homeostasis when osteoclast and osteoblast levels are at homeostasis (Corresponding predictions on Fig. 2c). 
Equation on Fig. 2a & shows the case where both δB and ΠB are freely optimized (corresponding fit on Fig. 2d).

Piecewise linear temporal variation of bone resorption and formation rates The initial ODE model was further 
used to study time-dependent bone resorption rate. It was defined as an explicit piecewise linear function of 
time (Supplemental Figs. 7a and 8a). The dynamics of osteoclast and osteoblast was imposed from the previous 
fit. The successive slopes of the piecewise linear function and the initial resorption rate were all estimated from 
fitting the resulting bone dynamics to bone experimental data. The parameter space for the optimization was 
defined as follows: The slopes were allowed to be positive or negative, with the constrain that the resorption 
rate cannot become negative or go beyond the upper bound defined from literature. Using the same approach, 
model sought to recapitulate bone dynamics by optimizing osteoblast activity dynamics (Supplemental Fig. 8).

Enhanced ODE model including polarized monocytes/macrophages For the polarized macrophage part (Fig. 4), 
cells clearances/lifespans were fixed from literature and all the other parameters were calibrated to fit the experi-
mental data. The osteoblast and osteoclast fits were kept the same as in the initial model. For the bone equation, 
homeostatic bone resorption rate δB (before and after injury), pro-inflammatory monocytes/macrophages-medi-
ated bone resorption stimulation parameter (α) and anti-inflammatory macrophages-mediated bone formation 
stimulation parameter (β) were all calibrated to fit the experimental bone dynamics. The homeostatic bone forma-
tion rate ΠB was fixed such that ΠB = δBOC0B0/OB0 so bone level is ensured to remain at homeostasis when osteo-
clast and osteoblast levels are at homeostasis in absence of injury (no polarized monocytes and macrophages).

ODE solver.  The ODE45 function of Matlab was used to solve the differential equation system. The experi-
mental baseline values (time 0) were used as initial conditions.

Parameter estimation method.  To estimate parameters facilitating goodness of fit, we defined the fol-
lowing objective function:



11

Vol.:(0123456789)

Scientific Reports |         (2021) 11:6055  | https://doi.org/10.1038/s41598-021-84888-1

www.nature.com/scientificreports/

where i represents the time point index and j the variable index, α represents the parameter set used to evalu-
ate the model function f, Dij represents the experimental data of variable j at time point i, and σi represents the 
experimental error. The choice of this functional form instead of the sum of the squares of the residuals was 
motivated to avoid that one fit variable would be “sacrificed” to the benefit of another one. This way, we ensure 
that all variables are equally well fitted.

•	 In order to minimize this function representing the error estimate between data and model, we used the Mat-
lab function fminsearch with a penalization term to stay in a parameter range set with reasonable boundaries.

•	 AIC criterion is defined as follows:

 where p is the number of parameters.
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