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Abstract: Two new isosarcophine derivatives, cherbonolides M (1) and N (2), were further isolated
from a Formosan soft coral Sarcophyton cherbonnieri. The planar structure and relative configura-
tion of both compounds were established by the detailed analysis of the IR, MS, and 1D and 2D
NMR data. Further, the absolute configuration of both compounds was determined by the com-
parison of CD spectra with that of isosarcophine (3). Notably, cherbonolide N (2) possesses the
unique cembranoidal scaffold of tetrahydrooxepane with the 12,17-ether linkage fusing with a γ-
lactone. In addition, the assay for cytotoxicity of both new compounds revealed that they showed
to be noncytotoxic toward the proliferation of A549, DLD-1, and HuCCT-1 cell lines. Moreover,
the anti-inflammatory activities of both metabolites were carried out by measuring the N-formyl-
methionyl-leucyl-phenylalanine/cytochalasin B (fMLF/CB)-induced generation of superoxide anion
and elastase release in the primary human neutrophils. Cherbonolide N (2) was found to reduce
the generation of superoxide anion (20.6 ± 6.8%) and the elastase release (30.1 ± 3.3%) in the
fMLF/CB-induced human neutrophils at a concentration of 30 µM.

Keywords: isosarcophine derivatives; Sarcophyton cherbonnieri; tetrahydrooxepane; cytotoxicity;
anti-inflammatory activity

1. Introduction

The chemical constituents for soft corals of the genera Sarcophyton have been well
studied. According to the statistics, more than 500 marine natural products have been
isolated from this genus during the past two decades. Among these metabolites, over
300 diterpenoids with the 14 membered cembranoidal skeleton were discovered [1]. There-
fore, the Sarcophyton genus has been frequently considered to be an important source of the
14 membered ring diterpenoidal skeleton [2–4]. These secondary metabolites help the or-
ganisms to defend themselves against the predators and adapt to the environment stress [5].
Furthermore, some of the isolates have been demonstrated to possess various biological
activities, such as cytotoxic [6–12], anti-inflammatory [6,7,13–18], neuroprotective [19],
antibacterial [19], and antiviral activities [12,20]. The diversified structures and various
biological applications of marine natural products thus prompt us to further explore the
secondary metabolites from organisms of the Sarcophyton genus.
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Sarcophine, the dihydrofuran-containing cembranoidal diterpene, is one of the major
metabolites in the soft corals of Sarcophyton genera [21]. Bernstein et al. discovered this
metabolite from the soft coral Sarcophyton glaucum in 1974 [22]. Subsequently, the absolute
configuration of sarcophine was determined by Kashman et al. in 1977 [23]. Furthermore,
Frincke et al. indicated that sarcophine was converted from the other 14 membered
diterpene, sarcophytoxide, by auto-oxidation in 1980 [24]. Isosarcophine, an isomer of
sarcophine, was proven to be converted from isosarcophytoxide via auto-oxidation and
isolated from the soft coral Sinularia mayi by Kusumi et al. in 1990 [25]. It was found that
isosarcophine showed significant cytotoxicities toward some cancer cell lines [25,26].

Our previous investigation of soft coral Sarcophyton cherbonnieri had contributed to
the isolation of 13 new cembranoids derived from the isosarcophine [13,14]. In the present
study, the continuous chemical investigation of S. cherbonnieri resulted in the discovery of
two new isosarcophine derivatives, cherbonolides M (1) and N (2) as shown in Figure 1.
The planar structures and relative configurations of both compounds were elucidated by
analyzing the infrared (IR), MS, and 1D and 2D NMR data. Furthermore, to determine
the absolute configurations, the circular dichroism (CD) spectra of both new compounds
were measured and compared with those of isosarcophine (3). Moreover, in order to
discover bioactive natural products for the development of drug leads, the cytotoxicity
against human lung adenocarcinoma (A549), human colorectal adenocarcinoma (DLD-
1), and human intrahepatic cholangiocarcinoma (HuCCT-1) was examined. In addition,
the anti-inflammatory activity of both isolates was investigated by measuring the N-
formyl-methionyl-leucyl-phenylalanine/cytochalasin B (fMLF/CB)-induced generation of
superoxide anion and elastase release in the primary human neutrophils.
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2. Results and Discussion

The chemical structures of metabolites 1 and 2 were elucidated by analyzing the MS,
IR, CD, and 1D and 2D NMR data (Supplementary Materials Figures S1–S32). Additionally,
the 13C and 1H chemical shifts of 1 and 2 are listed in Table 1.

Compound 1, cherbonolide M, was isolated as a colorless oil. The molecular formula
of 1 was C20H28O4 deduced from the pseudomolecular ion peak at m/z 355.1882 [M + Na]+

(calculated 355.1880, C20H28O4Na) in the high-resolution electrospray ionization mass
spectrometry (HR-ESI-MS). Its IR spectrum showed the absorptions at 3445 and 1749 cm–1,
indicating the presence of hydroxy and ester groups. The 13C and distortionless enhance-
ment by polarization transfer (DEPT) spectra displayed 20 carbon signals, including four
methyls, five methylenes, five methines, and six quaternary carbons. 1H and 13C NMR spec-
tra showed the signals of an α-methyl-α, β-unsaturated-γ-lactone (δH 5.64, d, J = 10.4 Hz;
1.78, s; δC 174.6, C; 162.4, C; 123.5, C; 78.4, CH; 8.6, CH3), two trisubstituted double bonds
(δH 4.98, d, J = 10.4 Hz; δC 123.4, CH; 147.5, C; δH 4.98, d, J = 10.8 Hz; δC 122.5, CH; 134.9,
C), an oxygen-bearing methine (δH 4.21, dd, J = 10.8, 5.2 Hz; δC 77.5, CH), and an epoxy
groups (δH 2.45, d, J = 10.8 Hz; δC 62.0, CH and 61.1, C).
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Table 1. 13C and 1H NMR spectroscopic data of 1 and 2.

Position
1 α 1 b 2 c

δC δH δC δH δC δH

1 162.4 (C) 159.9 (C) 166.1 (C)
2 78.4 (CH) d 5.64 d (10.4) e 77.4 (CH) 4.99 d (10.5) 79.2 (CH) 4.93 d (8.4)
3 123.4 (CH) 4.98 d (10.4) 123.8 (CH) 4.55 d (10.0) 120.7 (CH) 4.50 d (8.4)
4 147.5 (C) 145.5 (C) 139.2 (C)
5 77.5 (CH) 4.21 dd (10.8, 5.2) 77.3 (CH) 3.77 dd (10.5, 5.5) 36.9 (CH2) 1.66 m; 1.87 m
6 33.8 (CH2) 2.28 m; 2.52 m 32.8 (CH2) 2.23 m; 2.31 m 24.3 (CH2) 1.77 m; 2.27 m
7 122.5 (CH) 4.98 d (10.8) 121.4 (CH) 4.55 d (10.0) 127.2 (CH) 4.76 d (10.4)
8 134.9 (C) 134.4 (C) 133.8 (C)
9 37.3 (CH2) 2.08 m; 2.31 m 36.9 (CH2) 1.70 m; 1.98 m 36.1 (CH2) 1.92 m; 1.94 m
10 24.5 (CH2) 2.07 m; 1.23 m 24.2 (CH2) 1.06 m; 1.90 m 25.8 (CH2) 0.95 m; 1.98 m
11 62.0 (CH) 2.45, d (10.8) 61.1 (CH) 2.28 dd (10.5, 2.5) 70.7 (CH) 3.21 dd (10.4, 6.4)
12 61.1 (C) 59.9 (C) 79.4 (C)
13 37.8 (CH2) 2.05 m; 1.04 t (11.2) 37.3 (CH2) 0.77 td (13.5, 2.5);

1.61 dd (13.0, 5.5) 29.4 (CH2) 1.70 m; 1.97 m
14 24.7 (CH2) 2.02 m; 2.71 m 23.8 (CH2) 1.53 d (13.5); 1.95 m 24.0 (CH2) 1.66 m; 2.19 m
15 123.5 (C) 123.8 (C) 128.1 (C)
16 174.6 (C) 173.7 (C) 172.3 (C)
17 8.6 (CH3) 1.78 s 8.7 (CH3) 1.67 s 55.9 (CH2) 4.31 dd (14.8, 1.6);

4.46 d (14.8)
18 10.3 (CH3) 1.74 s 9.8 (CH3) 1.33 s 18.5 (CH3) 1.27 s
19 14.9 (CH3) 1.72 s 14.5 (CH3) 1.31 s 15.2 (CH3) 1.36 s
20 15.9 (CH3) 1.28 s 15.9 (CH3) 1.02 s 22.5 (CH3) 1.02 s
α 13C and 1H spectroscopic data of 1 recorded at 100 and 400 MHz in acetone-d6. b 13C and 1H spectroscopic data of 1 recorded at 125 and
500 MHz in C6D6. c 13C and 1H spectroscopic data of 2 recorded at 100 and 400 MHz in C6D6. d Attached protons were deduced from
DEPT experiments. e J values (in Hz) in parentheses.

The planar structure of 1 was established according to the analysis of 2D NMR spectra
as shown in Figure 2. The correlation spectroscopy (COSY) spectrum showed four partial
moieties from the correlations of H-2 to H-3, H-5 via H2-6 to H-7, H2-9 via H2-10 to H-11,
and H2-13 to H2-14. These partial structures were assembled by heteronuclear multiple
bond correlation (HMBC) correlations from H3-17 to C-1, C-15, C-16; H3-18 to C-3, C-4, C-5;
H3-19 to C-7, C-8, C-9; H3-20 to C-11, C-12, C-13; and H2-14 to C-1 and C-2. Furthermore,
the NMR spectroscopic data of 1 were compared with those of the previous metabolite
cherbonolide H [13] for structural elucidation. It was shown that compound 1 should
possess a hydroxy group at C-5 and a 7,8-trisubstituted double bond from this NMR data
comparison. According to the above evidence, the gross structure of 1 was elucidated.
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The relative configuration of 1 was established by analyzing the nuclear Overhauser
effect spectroscopy (NOESY) spectrum, as shown in Figure 3. Assuming the β-orientation
of H-2 (δH 5.64, d, J = 10.4 Hz), it was found the NOE correlations of H-2 with H-13β
(δH 1.04, t, J = 11.2 Hz), H-13β with H-11 (δH 2.45, d, J = 10.8 Hz), and H-11 with H3-19
revealed the β-orientation of H-11. By contrast, H-2 did not exhibit NOE interaction with
H-3, revealing the downward orientation of H-3. The NOE correlation of H-3 (δH 4.98, d,
J = 10.4 Hz) with H-5 (δH 4.21, dd, J = 10.8, 5.2 Hz), H-5 with H-7 (δH 4.98, d, J = 10.8 Hz), H-
7 with H-9α (δH 2.08, m), and H-9α with H3-20 (δH 1.28, s), suggesting the α-orientation of
H-5 and H3-20. Further, the E geometry of C-3/C-4 and C-7/C-8 was determined from the
upfield shifted methyl groups of C-18 (δC 10.3) and C-19 (δC 14.9). The 3J values between
H-2 and H-3 (10.4 Hz), H-5 and H-6β (10.8 Hz), and H-6β and H-7 (10.8 Hz) were found to
be consistent with the relative configuration shown in Figure 3. In order to compare the
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NMR data with those of 2 and other isosarcophine-derived metabolites measured in C6D6
of our previous studies [13,14], the 1H and 13C NMR spectra of 1 were also measured, and
the results (Table 1) can further confirm the structure of 1 was elucidated. The absolute
configuration of 1 was determined by comparison the CD spectrum of 1 with that of
isosarcophine (3), as shown in Figure 4. The CD spectrum of 1 showed the positive Cotton
effect at 227.0 nm (∆ε = +34.8) for the π–π* transition, while the negative Cotton effect
at 245.5 nm (∆ε = −15.6) for the n–π* transition. This evidence demonstrated the fact
of 2S-configuration [27,28]. Due to the biogenesis of 1 from isosarcophine, the absolute
configuration of 1 was defined as 2S,5R,11R,12R,3E,7E.
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Cherbonolide N (2) was afforded as a colorless oil. Its HRESIMS data showed the
sodiated ion peak at m/z 355.1880 [M + Na]+ (calculated 355.1879, C20H28O4Na), indicating
the molecular formula of C20H28O4 and seven degrees of unsaturation. The IR spectrum
showed the absorption peaks at 3481 and 1741 cm−1, suggesting the presence of the hydroxy
group and ester group. In the 13C spectrum, 2 showed 20 carbon signals, assigning to three
methyls, seven methylenes, four methines, and six quaternary carbons with the DEPT
spectrum assistance. 1H and 13C NMR spectra revealed the signals of a carbonyl group (δC
172.3, C), a tetrasubstituted double bond (δC 166.1, C; 128.1, C), two trisubstituted double
bonds (δH 4.50, d, J = 8.4 Hz; δC 120.7, CH; 139.2, C; δH 4.76, d, J = 10.4 Hz; δC 127.2, CH;
133.8, C), an oxygen-bearing quaternary carbon (δC 79.4, C), two oxygen-bearing methines
(δH 4.93, d, J = 8.4 Hz; δC 79.2, CH; δH 3.21, dd, J = 10.4, 6.4 Hz; δC 70.7, CH), and an
oxygen-bearing methylene (δH 4.46, d, J = 14.8 Hz; 4.31, dd, J = 14.8, 1.6 Hz; δC 55.9, CH2).

The planar structure of 2 was also elucidated by the 2D NMR spectra. The COSY
spectrum showed that compound 2 possesses four partial structures from H-2 to H-3, H2-5
via H2-6 to H-7, H2-9 via H2-10 to H-11, and H2-13 to H2-14. All of the partial structures
were linked by HMBC correlations from H2-17 to C-1, C-15, C-16; H3-18 to C-3, C-4, C-5;
H3-19 to C-7, C-8, C-9; H3-20 to C-11, C-12, C-13; and H2-13 and H2-14 to C-1. Further, the
HMBC correlation from both H-2 (δH 4.93, d, J = 8.4 Hz) and H2-17 (δH 4.46, d, J = 14.8 Hz;
4.31, dd, J = 14.8, 1.6 Hz) to C-16 (δC 172.3) indicated the presence of an α-methylene-
α, β-unsaturated-γ-lactone ring. Accordingly, 2 should possess an additional degree of
unsaturation which could be an additional ring. The HMBC correlation from H2-17 to C-12
(δC 79.4) demonstrated the presence of an ether linkage between C-12 and C-17. Based on
the above evidence, the structure of 2 was established.

Detailed analysis of the NOESY spectrum was applied for the elucidation of the
relative configuration of 2 (Figure 5). It was found the NOE correlations between H-2 and
H-14β (δH 1.66, m), H-14β and H-13β (δH 1.97, m), and also H-13β and H3-20 (δH 1.02, s),
suggesting the β-orientation of H3-20. On the other hand, the NOE correlations between
H-3 (δH 4.50, d, J = 8.4 Hz) and H-14α (δH 2.19, m), H-14α and H-11 (δH 3.21, dd, J = 10.4,
6.4 Hz), and H-11 and H-3 were observed, indicating the α-orientation of H-11 and the
downward orientation of H-3. Furthermore, the upshift resonances of C-18 (δC 18.5) and
C-19 (δC 15.2) demonstrated the E geometry of C-3/C-4 and C-7/C-8. The 3J values of
H-2 and H-3 (8.4 Hz) and H-10 and H-11 (10.4 Hz) were also consistent with the relative
configuration as shown in Figure 5. Based on the above evidence, the relative configuration
of 2 was defined as 2S*,11R*,12S*,3E,7E.
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In the present study, we isolated two cembranoids, cherbonolide M and N (1 and 2),
from the soft coral S. cherbonnieri. Structurally, both isolates belong to the isosarcophine
derivatives. By consideration of the chemical types of reported cembranoids, this is the
first time to discover the cembranoidal scaffold possessing the unique tetrahydrooxepane
with 12,17-ether linkage fusing with a γ-lactone. The plausible biosynthetic pathway
was postulated, as shown in Scheme 1. Moreover, the CD spectrum of 2 (Figure 6) also
revealed the positive effect at 225.0 nm (∆ε = +25) and the negative effect at 255.4 nm
(∆ε = −2.0) as that of isosarcophine (3). Similar to compound 1, metabolite 2 should
also be biotransformed from isosarcophine and thus possessesed a (2S,11R,12S,3E,7E)
absolute configuration.
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In 1990, Kusumi et al. afforded isosarcophine from the Okinawan soft coral, Sinularia
mayi, and demonstrated its moderate cytotoxicity against human colorectal carcinoma
(HCT-116) cell line with the IC50 value of 64 µg/mL [25]. Subsequently, in 1992, Wu et al.
also isolated the same metabolite from a Formosan soft coral, Sarcophyton trocheliophorum,
which was also found to exhibit significant cytotoxicities toward human lung epithelial cells
(A549), human colon carcinoma cells (HT-29), human oral epidermoid carcinoma cells (KB),
mouse lymphoid neoplasm cells (P388), and promyelocytic leukemia cells (HL-60) with the
ED50 values of 13.3, 16.9, 24.5, 0.7, and 6.7 µg/mL, respectively [26]. Many isosarcophine
derivatives have been discovered from different marine soft corals and reported to display
various biological activities [13,14,27].

For the discovery of bioactivities of new metabolites 1 and 2, both compounds were
examined according to the cytotoxic and anti-inflammatory activities. In the evaluation
of cytotoxicity, both isolates were shown to be inactive against the proliferation of A549,
DLD-1, and HuCCT-1 cell lines at the concentration of 30 µM. On the other hand, in
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anti-inflammatory assays at 30 µM, metabolite 2 showed inhibition of superoxide anion
generation (20.6 ± 6.8%) and the elastase release (30.1 ± 3.3%), while 1 only displayed
12.9 ± 5.7% and 16.7 ± 5.9% inhibition of superoxide anion generation and elastase release,
respectively, in the fMLF/CB-induced human neutrophils.

3. Experimental Section
3.1. General Experimental Procedures

Specific optical rotations of both compounds 1 and 2 were measured on a JASCO
P-1020 polarimeter (JASCO Corporation, Tokyo, Japan), and their IR spectra were recorded
on an FT/IR-4100 infrared spectrophotometer (JASCO Corporation, Tokyo, Japan). The
low-resolution electrospray ionization mass spectrometry (LR-ESI-MS) and HR-ESI-MS
experiments were carried out on a Bruker APEX II (Bruker, Bremen, Germany) mass
spectrometer. The CD spectra of 1–3 were recorded by Jasco J-815 spectropolarimeter
(JASCO, Tokyo, Japan) in MeOH. NMR spectra of 1 were acquired on a Varian Unity Inova
500 FT-NMR (Varian Inc., Palo Alto, CA, USA) at 500 MHz for 1H and 125 MHz for 13C
in C6D6 at room temperature (25 ◦C). Further, NMR spectra of 1 and 2 were acquired on
a Varian 400 MR FT-NMR (Varian Inc., Palo Alto, CA, USA) instrument at 400 MHz for
1H and 100 MHz for 13C in acetone-d6 and C6D6 at the same condition. Low-resolution
electrospray ionization mass spectrometry (LRESIMS) and HRESIMS data were recorded
on a Bruker APEX II (Bruker, Bremen, Germany) mass spectrometer. Normal-phase column
chromatography was undertaken using silica gel (Merck, 230–400 mesh). Pre-coated silica
gel plates (Merck, Kieselgel 60 F-254, 0.2 mm, Merck, Darmstadt, Germany) were used for
analytical thin-layer chromatography (TLC). High-performance liquid chromatography
was carried out for further purification of isolates, using a Hitachi L-2455 HPLC apparatus
(Hitachi, Tokyo, Japan) with a Supelco C18 column (250 × 21.2 mm, 5 µm; Supelco,
Bellefonte, PA, USA).

3.2. Animal Material

The collection and identification of the soft coral S. cherbonnieri were carried out as
described previously [13,14].

3.3. Extraction and Isolation

The soft coral S. cherbonnieri (wet weight: 1.2 kg) was freeze-dried to remove the water.
The dried sample was sliced into small pieces for EtOAc extraction. The combined EtOAc
extract was concentrated under reduced pressure to afford an oily residue (10.2 g), which
was chromatographed by a normal phase column with the gradient elution of acetone in
n-hexane (0–100%) and methanol in acetone (0–100%) to separate 19 fractions. Fraction 13,
eluting with n-hexane-acetone (1:1), was further purified over Sephadex LH-20 column
using acetone to afford five subfractions (A–E). Subfraction 13-D was further purified by
reversed-phase HPLC with the elution of acetonitrile-H2O (1.6:1, 5.0 mL/min) to afford 1
(7.1 mg, tR 61.9 min). Subfraction 13-E was also purified by reversed-phase HPLC with the
elution of acetonitrile-H2O (1.7:1, 5.0 mL/min) to afford 2 (3.6 mg, tR 54.5 min).

Cherbonolide M (1): colorless amorphous oil, [α]25
D +29.0 (c 1.00, CHCl3), IR (KBr) νmax 3445,

2927, 2862, 1749, 1679, 1455, 1387, 1093, 1006, 755 cm−1; CD (1.2 × 10–4 M, MeOH) λmax ∆ε
245.5 (−15.6), and 227.0 (+34.8) nm; for 13C and 1H data see Table 1; electrospray ionization
mass spectrometry (ESIMS) m/z 355; HRESIMS m/z 355.1882 [M + Na]+ (calculated for
C20H28O4Na: 355.1880).
Cherbonolide N (2): colorless amorphous oil, [α]25

D +15.0 (c 1.00, CHCl3), IR (KBr) νmax

3481, 2930, 1741, 1678, 1437, 1383, 1102, 1061, 986, 754 cm−1; CD (1.2 × 10−4 M, MeOH)
λmax ∆ε 255.4 (−2.0), and 225.0 (+25.0) nm; for 13C and 1H data see Table 1; ESIMS m/z 355;
HRESIMS m/z 355.1880 [M + H]+ (calculated for C20H28O4Na: 355.1879).
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3.4. Cytotoxicity Testing

To measure the cytotoxicities of 1 and 2, three different concentrations of both com-
pounds were added to A549, DLD-1, and HuCCT-1 cell lines for 72 h. The results were
detected using the Alamar Blue assay [29,30].

3.5. Anti-Inflammatory Assay

The generation of the superoxide anion and elastase release in the fMLF/CB-induced
primary human neutrophils was screened according to the previous description [13].

4. Conclusions

Two new isosarcophine derivatives, cherbonolides M (1) and N (2), were isolated from
the continuous investigation of the soft coral S. cherbonnieri. Structurally, metabolite 2 is
the first cembranoid possessing the unique cembranoidal scaffold of tetrahydrooxepane
with the 12,17-ether linkage fusing with a γ-lactone. A plausible biosynthetic pathway was
postulated for compound 2. In the anti-inflammatory assay, compound 2 was found to show
moderate activity in inhibiting the generation of superoxide anion and elastase release in the
fMLF/CB-induced human neutrophils. Based on the above statements and our previous
discoveries [13,14], the soft coral S. cherbonnieri was demonstrated to be an attractive source
of bioactive diterpenoids. Further, it has been proven that the soft coral S. glacum existed in
more than seven genetically distinct clades and led to the high structural diversification of
natural products of this species [31]. Currently, over 300 cembranoids have been discovered
from the Sarcophyton genera [1], which might also come from the same reason. According
to our investigation and related studies of other research groups [13,14,32–38], the soft
corals of genus Sarcophyton could be considered ideal organisms for discovering natural
products with diversified structures and biological activities.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/md19050260/s1, Figure S1: ESIMS spectrum of 1; Figure S2: HRESIMS spectrum of 1; Figure S3:
IR spectrum of 1; Figure S4: CD spectrum (1.2 × 10−4 M, MeOH) of 1; Figure S5: 1H NMR spectrum
of 1 in acetone-d6 at 400 MHz; Figure S6: 1H NMR spectrum (from 0.9 to 2.9 ppm) of 1 in acetone-d6
at 400 MHz; Figure S7: 13C NMR spectrum of 1 in acetone-d6 at 100 MHz; Figure S8: DEPT spectrum
of 1 in acetone-d6; Figure S9: HSQC spectrum of 1 in acetone-d6; Figure S10: COSY spectrum of
1 in acetone-d6; Figure S11: HMBC spectrum of 1 in acetone-d6; Figure S12: NOESY spectrum of
1 in acetone-d6; Figure S13: 1H NMR spectrum of 1 in C6D6 at 500 MHz; Figure S14: 1H NMR
spectrum (from 0.6 to 2.5 ppm) of 1 in C6D6 at 500 MHz; Figure S15: 13C NMR spectrum of 1 in C6D6
at 125 MHz; Figure S16: DEPT spectrum of 1 in C6D6; Figure S17: HSQC spectrum of 1 in C6D6;
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NOESY spectrum of 1 in C6D6; Figure S21: ESIMS spectrum of 2; Figure S22: HRESIMS spectrum of
2; Figure S23: IR spectrum of 2; Figure S24: CD spectrum (1.2 × 10−4 M, MeOH) of 2; Figure S25: 1H
NMR spectrum of 2 in C6D6 at 400 MHz; Figure S26: 1H NMR spectrum (from 0.8 to 3.2 ppm) of
2 in C6D6 at 400 MHz; Figure S27: 13C NMR spectrum of 2 in C6D6 at 100 MHz; Figure S28: DEPT
spectrum of 2; Figure S29: HSQC spectrum of 2; Figure S30: COSY spectrum of 2; Figure S31: HMBC
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